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Levels of verification

Verifying higher-level floating-point algorithms based

on assumed correct behavior of hardware primitives.

gate-level description

fma correct

sincorrect

6

6

We will assume that all the operations used obey the

underlying specifications as given in the Architecture

Manual and the IEEE Standard for Binary

Floating-Point Arithmetic.

This is a typicalspecificationfor lower-level

verification.
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Context

Specific work reported here is for the Intel ItaniumTM

processor.

Similar work is underway on software libraries for the

Intel Pentium 4 processor.

Floating point algorithms for transcendental functions

are used for:

• Software libraries (Clibm etc.)

• Implementing x86 hardware intrinsics

The level at which the algorithms are modeled is

similar in each case.
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Infrastructure

What do we need to formally verify such

mathematical software?

• Theorems about basic real analysis and properties

of the transcendental functions.

• Theorems about special properties of floating

point numbers, floating point rounding etc.

• Automation of as much tedious reasoning as

possible.

• Ability to write special-purpose inference

routines.

• A flexible framework in which these components

can be developed and applied in a reliable way.

We use the HOL Light theorem prover. Other

possibilities would include PVS and maybe ACL2.
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Quick introduction to HOL Light

HOL Light is a member of the family of HOL theorem
provers, demonstrated atFMCAD’96.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as the
interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical
inference rules plus 2 definition mechanisms and

3 axioms.

• More powerful proof procedures programmed on
top, inheriting their reliability from the logical

core. Fully programmable by the user.

• Well-developed mathematical theories including
basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light
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Real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration
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HOL floating point theory

Generic theory, applicable to all required formats

(hardware-supported or not).

A floating point format is identified by a triple of

natural numbersfmt .

The corresponding set of real numbers is

format(fmt) , or ignoring the upper limit on the

exponent,iformat(fmt) .

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member ofiformat(fmt) for

an exact valuex , depending on the rounding moderc ,

which may be one ofNearest , Down, Up andZero.
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The (1+ ε) property

Most routine floating point proofs just use results like

the following:

|- normalizes fmt x /\

˜(precision fmt = 0)

==> ?e. abs(e) <= mu rc /

&2 pow (precision fmt - 1) /\

(round fmt rc x = x * (&1 + e))

Rounded result is true result perturbed by relative

error.

Derived rules apply this result to computations in a

floating point algorithm automatically, discharging the

conditions as they go.
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Cancellation theorems

The present algorithms also rely on a number of
low-level tricks.

Rounding is trivial when the value being rounded is
already representable exactly:

|- a IN iformat fmt ==> (round fmt rc a = a)

Some special situations where this happens are as
follows:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

|- x IN iformat fmt /\

y IN iformat fmt /\

abs(x) <= abs(y)

==> (round fmt Nearest (x + y) - y)

IN iformat fmt /\

(round fmt Nearest (x + y) - (x + y))

IN iformat fmt
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Sine/cosine algorithm

Works roughly as follows (details simplified):

• The input numberX is first reduced tor +c with

|c| << |r| and approximately|r| ≤ π/4 such that

X = r +Nπ/2 for some integerN. We now need

to calculate±sin(r) or ±cos(r) depending onN

modulo4 and whether we wantsin(X) or cos(X).

• Main function is evaluated by a fairly long power

series, e.g.sin(r +c) =

r +P1r3 +P2r5 + · · ·+P8r17+c(1− r2/2).

• To reduce the effect of rounding error, the second

term of all the power series are split into a high

part calculated exactly and a low part whose

rounding error is less significant. For example
1
2r2 = 1

2r2
hi +

1
2(r + rhi)(r − rhi).
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Sources of error

The error in the result can be split into several

components:

1. The error from range reduction:

|sin(r)−sin(X−N π
2).

2. The polynomial approximation error

|p(r +c)−sin(r +c)|.

3. The additional error in neglecting higher powers

of c: |p(r +c)− (p(r)+c(1− r2/2))|.

4. The rounding error in actually computing

p(r)+c(1− r2/2)).
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Error analysis

1. Range reduction error requires some non-trivial

mathematics to find how smallr can be relative to

X. If X is too close to a multiple ofπ2 , the reduced

argument could be inaccurate.

2. Polynomial approximation error is determined

automatically. However, it was a fair amount of

work to automatically generate formal proofs for

results of this kind.

3. Additional approximation error is bounded by

straightforward analytical theorems.

4. A lot of the rounding error can be computed

automatically. However the tricks used to ensure

exact computation need to be proved with human

intervention. This applies even more to the range

reduction computation.
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Example: mathematics of range reduction

We formalize the proof thatconvergentsto a real
numberx, i.e. rationalsp1/q1 < x < p2/q2 with
p2q1 = p1q2 +1, are the best possible approximation
without having a larger denominator.

|- (p2 * q1 = p1 * q2 + 1) /\

(&p1 / &q1 < x /\ x < &p2 / &q2)

==> !b. ˜(b = 0) /\ b < q1 /\ b < q2

==> abs(&a / &b - x)

> &1 / &(q1 * q2)

We find such convergents (outside the logic) using the
Stern-Brocot tree, and by inserting the values into the
approximation theorems, and can answer the above
question for input numbers in the specified range:

|- integer(N) /\ ˜(N = &0) /\

a IN iformat (rformat Register) /\

abs(a) < &2 pow 64

==> abs (a - N * pi / &2)

>= &113 / &2 pow 76
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Conclusions

• Formal verification of higher-level floating point

algorithms is realistic with current

theorem-proving technology.

• A large part of the work involves building up

general theories about both pure mathematics and

special properties of floating point numbers.

• It is easy to underestimate the amount of pure

mathematics needed for obtaining very practical

results.

• Using HOL Light, we can confidently integrate all

the different aspects of the proof, using

programmability to automate tedious parts.
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