
HOL Light and its use in veri�cation 1HOL Lightand its use in veri�cationJohn HarrisonUniversity of Cambridge(visiting TU M�unchen)� History and evolution� Primitive basis� Derived rules and mathematical theories� Mizar mode� Floating point veri�cation
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 2HOL Light's lineageHOL Light is a programmable interactivetheorem prover based on classical higher orderlogic (polymorphic simple type theory). It hasevolved via:� Edinburgh LCF (Milner et al.)� Cambridge LCF (Paulson)� HOL (Gordon, Melham)� hol90 (Slind)Other LCF-style systems include:� Nuprl (Constable et al.)� Coq (Huet et al.)� Isabelle (Paulson)John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 3The spectrum of theorem provers
AUTOMATH (de Bruijn)Stanford LCF (Milner)Mizar (Trybulec).PVS (Owre, Rushby, Shankar).NQTHM (Boyer, Moore)Otter (McCune)John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 4The LCF approachThe key ideas are:� All theorems created by low-level primitiverules.� Guaranteed by using an abstract type oftheorems; no need to store proofs.� ML available for implementing derived rulesby arbitrary programming.This gives advantages of reliability andextensibility. The system's source code can becompletely open. The user controls the means ofproduction (of theorems). To improve e�ciencyone can:� Encapsulate reasoning in single theorems.� Separate proof search and proof checking.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 5Primitive rules (1)` t = t REFL� ` s = t � ` t = u� [� ` s = u TRANS(Up to alpha-equivalence.)� ` s = t � ` u = v� [� ` s(u) = t(v) MK COMB(Provided types agree, e.g. s : � ! � and u : �.)� ` s = t� ` (�x: s) = (�x: t) ABS(Provided x is not free in the assumptions �.)` (�x: t)x = t BETAJohn Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 6Primitive rules (2)fpg ` p ASSUME� ` p = q � ` p� [� ` q EQ MP� ` p � ` q(�� fqg) [(�� fpg) ` p = q DED ANTISYM RULE�[x1; : : : ; xn] ` p[x1; : : : ; xn]�[t1; : : : ; tn] ` p[t1; : : : ; tn] INST�[�1; : : : ; �n] ` p[�1; : : : ; �n]�[1; : : : ; n] ` p[1; : : : ; n] INST TYPE
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 7Principles of de�nitionAll theories in HOL Light are derived from threeaxioms using only primitive rules plus extensionby de�nitions of new constants and new types.For example, the other logical constants arede�ned as follows:> = (�x: x) = (�x: x)^ = �p: �q: (�f: f p q) = (�f: f > >)) = �p: �q: p ^ q = p8 = �P: P = �x:>9 = �P: 8Q: (8x: P (x)) Q)) Q_ = �p: �q: 8r: (p) r)) (q) r)) r? = 8P: P: = �t: t) ?9! = �P: 9P ^ 8x: 8y: P x ^ P y) (x = y)
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 8Mathematical axiomsHOL Light's mathematics is based on one newoperator " and one new type ind.� The axiom of extensionality: 8t: (�x: t x) = t.� The axiom of choice via the Hilbert operator:8P; x: P x) P ("P).� The axiom of in�nity for the type ind:9f : ind! ind: ONE ONE f ^ :(ONTO f).That's all! After that, HOL Light tries toconform to the LCF ideal by deriving everythingvia de�nitional expansion.There are quite a lot of derived rules that the usercan invoke without bothering about their internalworkings. But internally they decompose toprimitive inferences.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 9The main derived rules� Simpli�er for (conditional, contextual)rewriting.� Tactic mechanism for mixed forward andbackward proofs.� Tautology checker.� Automated theorem provers for pure logic,based on tableaux and model elimination.� Tools for de�nition of (in�nitary, mutually)inductive relations.� Tools for de�nition of (mutually) recursivedatatypes� Linear arithmetic decision procedures over R,Z and N .� Di�erentiator for real functions.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 10Mathematical theories� Basic set theory, e.g. de�nition by recursionover �nite sets.� Forms of the Axiom of Choice, e.g. Zorn'sLemma and wellordering principle.� Basic theory of lists, e.g. lengths, mappings,list iteration� Integers and real numbers (constructed)� Elementary real analysis, e.g.{ Basic topology and general limits{ Sequences and series{ Limits of real functions{ Di�erentiation{ Power series and Taylor expansions{ Transcendental functions{ Gauge integrationJohn Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 11Some applicationsApart from oating point veri�cation and realanalysis, we've played around with:� Formalization of simple embeddedprogramming languages, e.g. Dijkstra'sguarded command language.{ Parsing and prettyprinting support{ Operational semantics{ Weakest preconditions{ Veri�cation condition generation� Formalization of theorems from logic, e.g.{ Completeness of a proof system forpropositional logic{ Compactness, Uniformity andL�owenheim-Skolem for �rst order logic{ Tarski's theorem on the unde�nability oftruth in �rst order number theoryJohn Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 12Mizar ModeThe standard HOL proof styles (whether forwardor backward) are highly procedural. They requirea certain amount of `programming' from the user.We also provide a more declarative proof style, asused in Mizar. The machine �lls in the gaps inthe proof for us with explicit inference steps.Here's a proof of 8x: 0 � x) ln(1 + x) � x:let x be real;assume &0 <= x;then &0 < &1 + x by arithmetic;so exp(ln(&1 + x)) = &1 + x by EXP_LN;so suffices to show &1 + x <= exp(x)by EXP_MONO_LE;thus thesis by EXP_LE_XSo far we haven't used this much, but in thefuture we hope to re�ne it in order to make somepure mathematics proofs at least more readable.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 13Floating point veri�cation� Floating point algorithms are fairly small, butoften complicated mathematically.� There have been errors in commercialsystems, e.g. the Pentium FDIV bug in 1994.� In the case of transcendental functions it'sdi�cult even to say what correctness means.� Veri�cation using model checkers is di�cultbecause of the need for mathematicalapparatus.� It can even be di�cult using theorem proverssince not many of them have good theories ofreal numbers etc.
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 14Floating point correctnessWe want to specify the correctness according tothe following diagram:
a
v(a)

EXP (a)
exp(v(a))v(EXP (a))

-
-6 6

EXP
expv v

We measure the di�erence between v(EXP (a))and exp(v(a)) in `units in the last place' ofEXP (a).
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 15Our implementation languageThis includes the following constructs:command = variable := expression| command ; command| if expression then commandelse command| if expression then command| while expression do command| do command while expression| skip| f expressiongWe have a simple relational semantics in HOL,and derive weakest preconditions and totalcorrectness rules. We then prove total correctnessvia VC generation.The idea is that this language can be formallylinked to C, Verilog, Handel, . . .John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 16Sketch of the algorithmThe algorithm we verify is taken from a paper byTang in ACM Transactions on MathematicalSoftware, 1989.Similar techniques are widely used for oatingpoint libraries, and, probably, for hardwareimplementations.The algorithm relies on a table of precomputedconstants. Tang's paper gives actual values as hexrepresentations of IEEE numbers.We can split the operations into three steps:� Perform range reduction� Use polynomial approximation� Reconstruct answer using tablesJohn Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 17Code for the algorithmif Isnan(X) then E := Xelse if X == Plus_infinity then E := Plus_infinityelse if X == Minus_infinity then E := Plus_zeroelse if abs(X) > THRESHOLD_1 thenif X > Plus_zero then E := Plus_infinityelse E := Plus_zeroelse if abs(X) < THRESHOLD_2 then E := Plus_one + Xelse(N := INTRND(X * Inv_L);N2 := N % Int_32;N1 := N - N2;if abs(N) >= Int_2e9 thenR1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1elseR1 := X - Tofloat(N) * L1;R2 := Tofloat(--N) * L2;M := N1 / Int_32;J := N2;R := R1 + R2;Q := R * R * (A1 + R * A2);P := R1 + (R2 + Q);S := S_Lead(J) + S_Trail(J);E1 := S_Lead(J) + (S_Trail(J) + S * P);E := Scalb(E1,M))John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 18Organization of HOL proofReal numbers/ \/ \/ \Programming / \language IEEE spec Real analysis| / | || / | || / | || / | Squarefree decomp &| / | Sturm's theorem| / | /| / | /Algorithm | /\ | /\ | /\ | /\ FP lemmas /\ | /\ | /\ | /\ | /\ | /VerificationJohn Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 19Floating point lemmas (1)A large part of the proof (though not the mostdi�cult part!) involves analyzing the wayrounding errors build up, and how in specialsituations, the error can be zero.We de�ne the error error(x) resulting fromrounding a real number to a oating point value.Because of the regular way in which theoperations are de�ned, all the operations thenrelate to their abstract mathematicalcounterparts according to the same pattern:|- Finite(a) ^ Finite(b) ^abs(Val(a) + Val(b)) < threshold(float_format)) Finite(a + b) ^(Val(a + b) = (Val(a) + Val(b)) +error(Val(a) + Val(b)))The comparisons are even more straightforward:|- Finite(a) ^ Finite(b)) (a < b = Val(a) < Val(b))John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 20Floating point lemmas (2)We have several lemmas quantifying the error, ofwhich the most useful is the following:|- abs(x) < threshold(float_format) ^abs(x) < (&2 pow j / &2 pow 125)) abs(error(x)) <= &2 pow j / &2 pow 150There are many important situations, however,where the operations are exact, because the resultis exactly representable. Trivially, for example,the negation and absolute value functions arealways exact:|- Finite(a)) Finite(abs(a)) ^ (Val(abs(a)) = abs(Val(a)))Also, if a result only has 24 signi�cant digits(modulo some care in the denormal case), then itis exactly representable:|- (abs(x) = (&2 pow e / &2 pow 149) * &k) ^k < 2 EXP 24 ^ e < 254) 9a. Finite(a) ^ (Val(a) = x)John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 21Floating point lemmas (3)Any calculation whose result is exactlyrepresentable has an error of zero:|- Finite(a) ^ Finite(b) ^Finite(c) ^ (Val(c) = Val(a) * Val(b))) Finite(a * b) ^(Val(a * b) = Val(a) * Val(b))Another important case of exact operations issubtraction of nearby values with the same sign:|- Finite(a) ^ Finite(b) ^&2 * abs(Val(a) - Val(b)) <= abs(Val(a))) Finite(a - b) ^(Val(a - b) = Val(a) - Val(b))This is a classic result in oating point erroranalysis.We also have a type of machine integers, andprove various obvious results about how thearithmetic operations on those work.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 22Error in polynomial approximationThis part is tricky. In brief, these are the steps:� Prove that the error in a high-order Taylorseries is much better than we need.� Consider the di�erence between this and theminimax polynomial actually used.� Locate the zeros of (the squarefreedecomposition of) its derivative.� Prove using Sturm's theorem that these areall the zeros.� Hence get a bound on the error by evaluationat the endpoints of the interval and thepoints of zero derivative, using someelementary real analysis.Tang makes a small slip over the necessaryinterval.John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 23The �nal resultUnder the various `de�nitional' assumptions, wecon�rm Tang's bottom-line result:(Isnan(X)) Isnan(E)) ^(X == Plus_infinity _Finite(X) ^exp(Val X) >= threshold(float_format)) E == Plus_infinity) ^(X == Minus_infinity) E == Plus_zero) ^(Finite(X) ^ exp(Val X) < threshold(float_format)) Isnormal(E) ^abs(Val(E) - exp(Val X))< (&54 / &100) * Ulp(E) _(Isdenormal(E) _ Iszero(E)) ^abs(Val(E) - exp(Val X))< (&77 / &100) * Ulp(E))This is somewhat more explicit than Tang'sstatement regarding overow.
John Harrison University of Cambridge, 6 March 1998

HOL Light and its use in veri�cation 24Conclusions� HOL Light successfully implements the LCFapproach to theorem proving. Its primitivesare very simple, but its derived rules areenough for some non-toy proofs.� Particular proofs or veri�cations tend topoint up the weak and strong points ofsystems. For example{ Programmability and the automation oflinear arithmetic are invaluable, as is thepresence of a decent real analysis theory.{ Better tools are needed for nonlinearreasoning. Explicit calculations are stillvery slow.� In the oating point proof, we con�rm (andstrengthen) the main results of the handproof. But we detect a few slips and uncoversubtle issues. This class of proofs is a goodtarget for veri�cation.John Harrison University of Cambridge, 6 March 1998

