Automated Reasoning

Automated Reasoning

What is automated reasoning? Automatic vs.

interactive.

Successes of the Al and logic approaches
Development of formal logic

History of automated reasoning
Verification

Current research topics

University of Cambridge, 22 January 1997




Automated Reasoning

What is automated reasoning?

In one sense we’ll interpret our title narrowly: we
are interested in reasoning in logic and
mathematics, rather than everyday life. The field

is also called automated theorem proving.

In another sense we interpret it broadly: we don’t

just consider making computers prove theorems

automatically, but also ways in which they can
support humans. The correct title might be

mechanized theorem proving.

We’ll divide the discussion into (fully) automatic

systems, and interactive systems.

University of Cambridge, 22 January 1997




Automated Reasoning

The limits of automated reasoning

It’s almost certainly impossible, even in principle,

that a computer can prove automatically all the

mathematical theorems we are interested in. This
follows from Tarski’s theorem on the
undefinability of truth (1936), which implies that
the set of true facts of arithmetic is not even

semicomputable.

However we can set up logical systems that are
capable of deducing many, perhaps most,
interesting theorems, such that the set of logically
valid formulas is at least semicomputable. For
example, the system of Zermelo-Fraenkel set
theory based on first order logic has this property.
But this doesn’t include all true facts (Godel
1930, also a corollary to Tarski’s theorem). And it

is still not computable.

University of Cambridge, 22 January 1997




Automated Reasoning

Decidable systems

In fact, for some limited areas of mathematics or
logic, there are systems for which validity is
actually computable. A simple example is

propositional logic. We can decide if

—(pV g = pA—gq

is valid simply by considering cases, e.g. writing a
truth table. For a more interesting example, the
first order theory of reals with multiplication is
decidable (Tarski 1948). This theory includes

many nontrivial problems.

In general, note that a system that is complete
and semicomputable is also computable. (This
follows from a classic theorem in computability
theory that if a set and its complement are both

RE, the set is recursive.)

University of Cambridge, 22 January 1997




Automated Reasoning

Down to earth

Despite these promising facts, two similar

problems remain.

1. Even if a theory is decidable in principle, the
time or space usage of the decision procedure
may make it ineffective in practice. This
applies to the first order theory of reals, for

example.

. In systems where validity is semicomputable,
we just have to keep searching until we find
the theorem. This is also impractical in many
cases; typically, we use ingenious tricks to cut
down the search space. The tricks are usually
drawn either from looking at human behaviour

or considering theorems from logicians.

There was (is?) still a controversy over whether
the human-oriented ‘A’ approach or the ‘logic’

approach is better.

University of Cambridge, 22 January 1997




Automated Reasoning

A theorem in geometry

One of the early successes in automated theorem

proving (the Al side) was the proof of the

following theorem:

If the sides AB and AC are equal (i.e. the
triangle is isoseles), then the angles ABC and
ACB are equal.

University of Cambridge, 22 January 1997




The usual proof

The usual proof proceeds by dropping a

perpendicular down from the point A to the side

BC, meeting it at a point D:

and then using the fact that the triangles ABD
and AC'D are congruent.

University of Cambridge, 22 January 1997




o
The computer’s proof

The computer found an ingenious proof which

had been missed by most writers on geometry

(though it had already been used by Pappus).

Simply, the triangles ABC' and AC'B are
congruent. Q.E.D.

University of Cambridge, 22 January 1997




The Robbins Conjecture (1)

A very recent success in automated reasoning, this
time on the logic side, was the proof by McCune’s

program EQP of the Robbins Conjecture.

Huntington (1933) presented the following basis

for Boolean algebra:

Tr+vy
(z+y) + 2
n(n(z) +y) + n(n(z) + n(y))

Shortly thereafter, Herbert Robbins conjectured
that the Huntington equation can be replaced

with a simpler one:

n(n(z +y) +n(z +n(y))) ==

University of Cambridge, 22 January 1997




The Robbins Conjecture (2)

This conjecture went unproved for more that 50
years, despite being studied by many

mathematicians, even including Tarski.

It because a popular target for researchers in

automated reasoning.

In May 1996, it was claimed that a proof had been
found automatically using the REVEAL prover.

However this was traced to a bug in REVEAL.

The in October 1996 a correct proof was found by
McCune’s program EQP.

The successtul search took about 8 days on an
RS /6000 processor and used about 30 megabytes

of memory.

University of Cambridge, 22 January 1997




Automated Reasoning

Origins of mechanization

The idea of mechanizing reasoning in a manner

similar to arithmetic calculation is an old one,

going back at least to Hobbes.

Leibniz envisaged a calculus ratiocinator. First

however we need a characteristica universalis.

University of Cambridge, 22 January 1997




Automated Reasoning

Development of formal logic

We can highlight several important phases in the

development of formal logic.

The Socratic method

Aristotle’s syllogisms

Leibniz’s attempts at a characteristica
Boole’s algebra of logic

Frege’s Begriffsschrift

Peano’s Formulaire

Russell and Whitehead’s Principia

Mathematica.
Hilbert’s programme

Metamathematical studies (Godel, Tarski,
Church, Turing, ...)

University of Cambridge, 22 January 1997




Automated Reasoning

Early computer experiments

The earliest uses of computers in theorem proving
were in the late 50s and early 60s. Among the

ploneers were:

e Newell and Simon (AI)

Gelentner’s geometry machine (Al)
Gilmore (logical)
Wang (logical)

Prawitz (logical)

The logical approach proved successtul, but soon
reached its limits. Prawitz’s method is quite close
to modern tableaux provers. But more powertul

methods were needed.

University of Cambridge, 22 January 1997




Automated Reasoning

More recent methods

The two most efficient general first order theorem

proving methods were invented in the 60s.

e Resolution, invented by Alan Robinson, is a
bottom-up, local, proof method based on a

single, very simple, inference rule:

pVvVqg —p
q

e Model elimination, invented by Donald
Loveland, is a top-down, global, proof method
which in many versions is quite similar to

Prolog.

These are still the big two methods today,
represented by SETHEO (from Munich) and Otter
(from Chicago), probably the most powerful

general first order provers at present.

University of Cambridge, 22 January 1997




Automated Reasoning

Logical foundations

Tableaux, model elimination and resolution all

rely on a number of fundamental theorems in

logic, due to Godel, Skolem, Gentzen, Herbrand

and others. The most important is the ‘uniformity
theorem’, also called the Skolem-Godel-Herbrand

theorem, which states that if:

Az1, ..., Tn. Plzy, ..., 2p]

i1s valid then there are terms such that the

following is too:
P[t],... ,tL v -V P[th, . . tF]

This can be proved either by semantic or
syntactic means. In the latter version it is
properly known as Herbrand’s theorem.

University of Cambridge, 22 January 1997




Automated Reasoning

Obviousness

A problem with automation is that what humans
and computers find obvious are not the same. For
example computers find:

Vx y z. P(x,y) N P(y,z) = P(z,z)) A
(Ve y z. Qz,y) NQ(y, z) = Q(z,2)) A
(

Vo y. Q(zr,y) = Qy,r)) A
(Vzy. P(z,y) V Q(z,y))
= (Vo y. P(x,y)) vV (V2 y. Q(r,y))

very obvious, but most people need to think about
it. Conversely, most people find McCarthy’s
‘mutilated checkerboard’ obvious (when shown
the trick) but computers have trouble. Computers
are really oriented towards ‘logical’ obviousness.

University of Cambridge, 22 January 1997




Automated Reasoning

The Boyer-Moore Prover

Boyer and Moore’s NQTHM is unusual in that it

doesn’t work in pure logic. Instead it uses a very

simple system of ‘primitive recursive arithmetic’
(Skolem, Goodstein).

It has the remarkable ability to do proofs by

induction automatically.

These properties make it much more useful in

many real situations than provers for pure logic.

It has been used for many impressive applications,

mainly in verification, which we consider later.

It is fully automatic. Nevertheless, the user still
has to guide it in some way by selecting a
sequence of lemmas. And there is not much

control over what it does.

University of Cambridge, 22 January 1997




Automated Reasoning

Interactive theorem proving

Given the limitations of automation, why not
build systems to combine automation with human
control and guidance? There were pioneering
attempts in the SAM (semi-automated
mathematics) project. Other pioneering proof

checkers appeared in the 70s:

e AUTOMATH (de Bruijn)

e Mizar (Trybulec et al.)

e Stanford LCF (Milner)

However, these tended to be tedious to use. What
was needed was a better mix of automation with

the manual controllability.

University of Cambridge, 22 January 1997




Automated Reasoning

Edinburgh LCF

One of the most important developments in

theorem proving was the development of
Edinburgh LCF (Milner et al.)

This provides low-level security, and at the same

time, programmability.

The user can write completely arbitrary
procedures in the ML programming language.

At the same time, inside the machine, everything

happens by simple primitive inferences.

Many descendants including HOL (Gordon),
Isabelle (Paulson), Coq (Huet et al.) and Nuprl
(Constable et al.)

University of Cambridge, 22 January 1997




Automated Reasoning

Formalized Mathematics

One application of theorem provers is to check

large bodies of existing mathematics, making

them completely formal.

Peano started such a project with his Formulaire
but did not really formalize proofs.

Bourbaki seems to believe in formalization ‘in

principle’, but not in practice.

However with the help of the computer we can

actually achieve formalization.
The most impressive example is the Mizar project.

There is a recent proposal for a QED Project to

extend this formalization much further.

University of Cambridge, 22 January 1997




Automated Reasoning

The idea of verification is to make sure computer

systems (hardware, software) work correctly by

formal verification of the design. It is a more
systematic approach than testing. It’s important
to understand exactly what this means.

. The informal requirements
. Formal specification
. Model of the implementation

. Actual implementation

We try to link levels 2 and 3. The connections
between 1 and 2 and between 3 and 4 are
informal, though we can try hard to make them

small.

University of Cambridge, 22 January 1997




Automated Reasoning

Conclusions

We can draw the following conclusions:

Automated reasoning is one of the most
interesting applications of symbolic
processing. It is also a controlled testground

for ideas from Artificial Intelligence.

There is much research waiting to be done.
Many problems have not been solved and
there are many competing and completely

different theorem provers in the world.

The formalization of mathematics seems to
be an interesting project, with particular

value for education.

It may be that theorem proving is the way to
make the next generation of computer

systems more reliable.

University of Cambridge, 22 January 1997




Automated Reasoning

Postscript

A theorem prover in 6 lines of Prolog (Beckert

and Possega):

prove (Fml,VarLim) :- nonvar(VarLim),!,prove(Fml,[],[],[],VarLim).
prove (Fml,Result) :-
iterate(VarLim,1,prove(Fml,[],[],[],VarLim) ,Result).

prove_uv(Fml,VarLim) :- nonvar (VarLim),!,prove(Fml,[],[1,[]1,[],[],VarLim).

prove_uv(Fml,Result) :-
iterate (VarLim,1,prove(Fml,[],[],[],[],[],VarLim) ,Result).

iterate (Current,Current,Goal,Current) :- nl,
write(’Limit = ),
write (Current) ,nl,
Goal.

iterate (VarLim,Current,Goal,Result) :-
Currentl is Current + 1,

iterate (VarLim,Currentl,Goal,Result).

University of Cambridge, 22 January 1997




