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What is automated reasoning?

In one sense we'll interpret our title narrowly: weare interested in reasoning in logic andmathematics, rather than everyday life. The �eldis also called automated theorem proving.In another sense we interpret it broadly: we don'tjust consider making computers prove theoremsautomatically, but also ways in which they cansupport humans. The correct title might bemechanized theorem proving.We'll divide the discussion into (fully) automaticsystems, and interactive systems.

John Harrison University of Cambridge, 22 January 1997
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The limits of automated reasoning

It's almost certainly impossible, even in principle,that a computer can prove automatically all themathematical theorems we are interested in. Thisfollows from Tarski's theorem on theunde�nability of truth (1936), which implies thatthe set of true facts of arithmetic is not evensemicomputable.However we can set up logical systems that arecapable of deducing many, perhaps most,interesting theorems, such that the set of logicallyvalid formulas is at least semicomputable. Forexample, the system of Zermelo-Fraenkel settheory based on �rst order logic has this property.But this doesn't include all true facts (G�odel1930, also a corollary to Tarski's theorem). And itis still not computable.
John Harrison University of Cambridge, 22 January 1997
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Decidable systems

In fact, for some limited areas of mathematics orlogic, there are systems for which validity isactually computable. A simple example ispropositional logic. We can decide if
:(p _ q)) :p ^ :q

is valid simply by considering cases, e.g. writing atruth table. For a more interesting example, the�rst order theory of reals with multiplication isdecidable (Tarski 1948). This theory includesmany nontrivial problems.In general, note that a system that is completeand semicomputable is also computable. (Thisfollows from a classic theorem in computabilitytheory that if a set and its complement are bothRE, the set is recursive.)John Harrison University of Cambridge, 22 January 1997
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Down to earth

Despite these promising facts, two similarproblems remain.1. Even if a theory is decidable in principle, thetime or space usage of the decision proceduremay make it ine�ective in practice. Thisapplies to the �rst order theory of reals, forexample.2. In systems where validity is semicomputable,we just have to keep searching until we �ndthe theorem. This is also impractical in manycases; typically, we use ingenious tricks to cutdown the search space. The tricks are usuallydrawn either from looking at human behaviouror considering theorems from logicians.There was (is?) still a controversy over whetherthe human-oriented `AI' approach or the `logic'approach is better.John Harrison University of Cambridge, 22 January 1997
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A theorem in geometry

One of the early successes in automated theoremproving (the AI side) was the proof of thefollowing theorem: A
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If the sides AB and AC are equal (i.e. thetriangle is isoseles), then the angles ABC andACB are equal.
John Harrison University of Cambridge, 22 January 1997
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The usual proof

The usual proof proceeds by dropping aperpendicular down from the point A to the sideBC, meeting it at a point D:A
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and then using the fact that the triangles ABDand ACD are congruent.
John Harrison University of Cambridge, 22 January 1997
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The computer's proof

The computer found an ingenious proof whichhad been missed by most writers on geometry(though it had already been used by Pappus).A
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Simply, the triangles ABC and ACB arecongruent. Q.E.D.
John Harrison University of Cambridge, 22 January 1997
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The Robbins Conjecture (1)

A very recent success in automated reasoning, thistime on the logic side, was the proof by McCune'sprogram EQP of the Robbins Conjecture.Huntington (1933) presented the following basisfor Boolean algebra:
x+ y = y + x(x+ y) + z = x+ (y + z)n(n(x) + y) + n(n(x) + n(y)) = x

Shortly thereafter, Herbert Robbins conjecturedthat the Huntington equation can be replacedwith a simpler one:
n(n(x+ y) + n(x+ n(y))) = x

John Harrison University of Cambridge, 22 January 1997
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The Robbins Conjecture (2)

This conjecture went unproved for more that 50years, despite being studied by manymathematicians, even including Tarski.It because a popular target for researchers inautomated reasoning.In May 1996, it was claimed that a proof had beenfound automatically using the REVEAL prover.However this was traced to a bug in REVEAL.The in October 1996 a correct proof was found byMcCune's program EQP.The successful search took about 8 days on anRS/6000 processor and used about 30 megabytesof memory.

John Harrison University of Cambridge, 22 January 1997
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Origins of mechanization

The idea of mechanizing reasoning in a mannersimilar to arithmetic calculation is an old one,going back at least to Hobbes.Reason [. . . ] is nothing but Reckoning.For as Arithmeticians teach to adde andsubtract in numbers [...] The Logiciansteach the same in consequences of words[...] And as in Arithmetique, unpractisedmen must, and Professors themselves mayoften erre, and cast up false; so also inany other subject of Reasoning theablest, most attentive, and mostpractised men, may deceive themselves,and inferre false conclusions.Leibniz envisaged a calculus ratiocinator. Firsthowever we need a characteristica universalis.
John Harrison University of Cambridge, 22 January 1997
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Development of formal logic

We can highlight several important phases in thedevelopment of formal logic.� The Socratic method� Aristotle's syllogisms� Leibniz's attempts at a characteristica� Boole's algebra of logic� Frege's Begri�sschrift� Peano's Formulaire� Russell and Whitehead's PrincipiaMathematica.� Hilbert's programme� Metamathematical studies (G�odel, Tarski,Church, Turing, . . . )
John Harrison University of Cambridge, 22 January 1997
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Early computer experiments

The earliest uses of computers in theorem provingwere in the late 50s and early 60s. Among thepioneers were:� Newell and Simon (AI)� Gelentner's geometry machine (AI)� Gilmore (logical)� Wang (logical)� Prawitz (logical)The logical approach proved successful, but soonreached its limits. Prawitz's method is quite closeto modern tableaux provers. But more powerfulmethods were needed.
John Harrison University of Cambridge, 22 January 1997
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More recent methods

The two most e�cient general �rst order theoremproving methods were invented in the 60s.� Resolution, invented by Alan Robinson, is abottom-up, local, proof method based on asingle, very simple, inference rule:p _ q :pq
� Model elimination, invented by DonaldLoveland, is a top-down, global, proof methodwhich in many versions is quite similar toProlog.These are still the big two methods today,represented by SETHEO (from Munich) and Otter(from Chicago), probably the most powerfulgeneral �rst order provers at present.John Harrison University of Cambridge, 22 January 1997
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Logical foundations

Tableaux, model elimination and resolution allrely on a number of fundamental theorems inlogic, due to G�odel, Skolem, Gentzen, Herbrandand others. The most important is the `uniformitytheorem', also called the Skolem-G�odel-Herbrandtheorem, which states that if:
9x1; : : : ; xn: P [x1; : : : ; xn]

is valid then there are terms such that thefollowing is too:
P [t11; : : : ; t1n] _ � � � _ P [tk1 ; : : : ; tkn]

This can be proved either by semantic orsyntactic means. In the latter version it isproperly known as Herbrand's theorem.John Harrison University of Cambridge, 22 January 1997
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Obviousness

A problem with automation is that what humansand computers �nd obvious are not the same. Forexample computers �nd:
(8x y z: P (x; y) ^ P (y; z)) P (x; z)) ^(8x y z: Q(x; y) ^Q(y; z)) Q(x; z)) ^(8x y: Q(x; y)) Q(y; x)) ^(8x y: P (x; y) _Q(x; y))) (8x y: P (x; y)) _ (8x y: Q(x; y))

very obvious, but most people need to think aboutit. Conversely, most people �nd McCarthy's`mutilated checkerboard' obvious (when shownthe trick) but computers have trouble. Computersare really oriented towards `logical' obviousness.
John Harrison University of Cambridge, 22 January 1997
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The Boyer-Moore Prover

Boyer and Moore's NQTHM is unusual in that itdoesn't work in pure logic. Instead it uses a verysimple system of `primitive recursive arithmetic'(Skolem, Goodstein).It has the remarkable ability to do proofs byinduction automatically.These properties make it much more useful inmany real situations than provers for pure logic.It has been used for many impressive applications,mainly in veri�cation, which we consider later.It is fully automatic. Nevertheless, the user stillhas to guide it in some way by selecting asequence of lemmas. And there is not muchcontrol over what it does.
John Harrison University of Cambridge, 22 January 1997
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Interactive theorem proving

Given the limitations of automation, why notbuild systems to combine automation with humancontrol and guidance? There were pioneeringattempts in the SAM (semi-automatedmathematics) project. Other pioneering proofcheckers appeared in the 70s:� AUTOMATH (de Bruijn)� Mizar (Trybulec et al.)� Stanford LCF (Milner)However, these tended to be tedious to use. Whatwas needed was a better mix of automation withthe manual controllability.
John Harrison University of Cambridge, 22 January 1997
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Edinburgh LCF

One of the most important developments intheorem proving was the development ofEdinburgh LCF (Milner et al.)This provides low-level security, and at the sametime, programmability.The user can write completely arbitraryprocedures in the ML programming language.At the same time, inside the machine, everythinghappens by simple primitive inferences.Many descendants including HOL (Gordon),Isabelle (Paulson), Coq (Huet et al.) and Nuprl(Constable et al.)

John Harrison University of Cambridge, 22 January 1997
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Formalized Mathematics

One application of theorem provers is to checklarge bodies of existing mathematics, makingthem completely formal.Peano started such a project with his Formulairebut did not really formalize proofs.Bourbaki seems to believe in formalization `inprinciple', but not in practice.However with the help of the computer we canactually achieve formalization.The most impressive example is the Mizar project.There is a recent proposal for a QED Project toextend this formalization much further.

John Harrison University of Cambridge, 22 January 1997
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Veri�cation

The idea of veri�cation is to make sure computersystems (hardware, software) work correctly byformal veri�cation of the design. It is a moresystematic approach than testing. It's importantto understand exactly what this means.1. The informal requirements2. Formal speci�cation3. Model of the implementation4. Actual implementationWe try to link levels 2 and 3. The connectionsbetween 1 and 2 and between 3 and 4 areinformal, though we can try hard to make themsmall.
John Harrison University of Cambridge, 22 January 1997
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Conclusions

We can draw the following conclusions:� Automated reasoning is one of the mostinteresting applications of symbolicprocessing. It is also a controlled testgroundfor ideas from Arti�cial Intelligence.� There is much research waiting to be done.Many problems have not been solved andthere are many competing and completelydi�erent theorem provers in the world.� The formalization of mathematics seems tobe an interesting project, with particularvalue for education.� It may be that theorem proving is the way tomake the next generation of computersystems more reliable.
John Harrison University of Cambridge, 22 January 1997
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Postscript

A theorem prover in 6 lines of Prolog (Beckertand Possega):prove(Fml,VarLim) :- nonvar(VarLim),!,prove(Fml,[],[],[],VarLim).prove(Fml,Result) :-iterate(VarLim,1,prove(Fml,[],[],[],VarLim),Result).prove_uv(Fml,VarLim) :- nonvar(VarLim),!,prove(Fml,[],[],[],[],[],VarLim).prove_uv(Fml,Result) :-iterate(VarLim,1,prove(Fml,[],[],[],[],[],VarLim),Result).iterate(Current,Current,Goal,Current) :- nl,write('Limit = '),write(Current),nl,Goal.iterate(VarLim,Current,Goal,Result) :-Current1 is Current + 1,iterate(VarLim,Current1,Goal,Result).

John Harrison University of Cambridge, 22 January 1997


