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The state of formalization

Formalization of mathematics in theorem provers is attracting
increasing interest, for intellectual and practical reasons.

http://www.cs.ru.nl/∼freek/100/ lists some notable
theorems that have been formally proved, e.g.

• Four-Colour Theorem (Gonthier)

• Prime Number Theorem (Avigad, Harrison)

• Jordan Curve Theorem (Hales)

Ambitious projects in progress to formally prove

• Hales’s proof of Kepler conjecture (Flyspeck project)

• Feit-Thomson theorem (from classification of finite simple
groups)
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The interaction-automation spectrum

Theorem provers offer widely different levels of automation:

AUTOMATH (de Bruijn)

Mizar (Trybulec)

. . .

LCF (Milner and others)

. . .

ACL2 (Boyer, Kaufmann, Moore)

Vampire (Voronkov)

Arguably most productive for formalization are those that fall in the
middle, e.g. Coq, HOL, Isabelle, Nuprl, PVS.

The user provides guidance but many “routine” steps are automated.
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Current automation

Many major proof assistants offer efficient automated proof of facts
from linear real, integer or natural number arithmetic.
# time ARITH_RULE ‘!y j:num. y < j ==> y + 1 <= (y + 1 + j) DIV 2‘;;
CPU time (user): 0.11
val it : thm = |- !y j. y < j ==> y + 1 <= (y + 1 + j) DIV 2

Some also offer automation for nonlinear arithmetic over reals, but
this is typically much slower and often impractical
# time REAL_SOS

‘!x:real. abs(x) <= &1
==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1‘;;

CPU time (user): 3.75
...

Of course, by Gödel/Tarski/Matiyasevich, nonlinear arithmetic over
naturals or integers is in general impossible.

But often useful to prove relaxations over reals or over all rings etc.
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Automation gap in formalizing complex analysis

|- abs(norm(w - z) - r) = d /\ norm(u - w) < d / &2 /\ norm(x - z) = r

==> d / &2 <= norm(x - u)

d/2

z

w

x

r

d

u

This is not immediately solvable by HOL Light’s standard automation,
even though the analogous property over R would be.
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Straightforward approach and questions

We could just introduce two real coordinates for each point and
reduce everything to reals.

However, the property doesn’t depend on the fact that we are
working in C = R

2.

It would work equally well over R
n for any n, or indeed any real inner

product space.

Question: is the theory of real inner product spaces decidable?
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The theory of real vector spaces

Two-sorted first-order theory with sorts of vectors V and scalars S.

Language has zero vector 0, addition and negation of vectors, and
multiplication of vector by scalar, plus the usual constants, addition,
negation and multiplication of scalars.

The models of the theory are those structures where S and its
operations are interpreted over R in the usual way, and the vector
space axioms are satisfied.
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Vector space axioms

∀u v w. u + (v + w) = (u + v) + w

∀v w. v + w = w + v

∀v. 0 + v = v

∀v. − v + v = 0

∀a v w. a(v + w) = av + aw

∀a b v. (a + b)v = av + bv

∀v. 1v = v

∀a b v. (ab)v = a(bv)
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The theory of real inner product spaces

The language of vector spaces plus an inner product operation
V × V → S written 〈−,−〉 and satisfying:

∀v w. 〈v,w〉 = 〈w,v〉

∀u v w. 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉

∀a v,w. 〈av,w〉 = a〈v,w〉

∀v. 〈v,v〉 ≥ 0

∀v. 〈v,v〉 = 0 ⇔ v = 0

In Euclidean space, the inner product is 〈x,y〉 =
∑n

i=1
xiyi.
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Decidability of inner product spaces

Answer (Solovay): Yes: the theory of real inner product spaces is
decidable, and admits quantifier elimination in a language expanded
with inequalities on dimension.

In fact (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each R

n for 0 ≤ n ≤ k, which is in the
decidable Tarski subset.

These results directly give rise to methods for testing if a formula
holds in all real inner product spaces, or those satisfying some
particular constraints on dimension.

Inner product spaces are a conservative extension of vector spaces
(use any basis to define an inner product), so we also have quantifier
elimination and decidability for vector spaces.
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The problem of nonlinearity

In Euclidean space, the norm is defined by ‖x‖ =
√

〈x,x〉, and we
can similarly define a norm this way for any inner product space.

Unfortunately, problems that look entirely “linear” but involve the
norm, like our example:

|‖w − z‖ − r| = d ∧ ‖u − w‖ < d/2 ∧ ‖x− z‖ = r ⇒ d/2 ≤ ‖x − u‖

then give rise to nonlinear problems over the reals, whether we use
the general decision procedure or just a reduction to R

2.
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Naive reduction of our example

Just introduce coordinates for each point and use ni for the norms:

(w1 − z1)
2 + (w2 − z2)

2 = n2

1
∧ n1 ≥ 0∧

(u1 − w1)
2 + (u2 − w2)

2 = n2

2
∧ n2 ≥ 0∧

(x1 − z1)
2 + (x2 − z2)

2 = n2

3
∧ n3 ≥ 0∧

(x1 − u1)
2 + (x2 − u2)

2 = n2

4
∧ n4 ≥ 0∧

|n1 − r| = d ∧ n2 < d/2 ∧ n3 = r

⇒ d/2 ≤ n4

This is within the scope of automation in principle, but it’s quite
inefficient in practice.

Can we be even more general and prove that our property holds in
all normed real vector spaces?
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The theory of real normed spaces

The language of vector spaces plus a norm operation V → S written
‖ − ‖ and satisfying:

∀v. ‖v‖ = 0 ⇒ v = 0

∀a v. ‖av‖ = |a|‖v‖

∀v w. ‖v + w‖ ≤ ‖v‖ + ‖w‖

For example, on R
n, can use the 1-norm ‖x‖ =

∑n

i=1
|xi| or the

∞-norm ‖x‖ = max{|xi| | 1 ≤ i ≤ n}.
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Relation between decision problems

Every inner product space gives rise to a normed space by defining
‖x‖ =

√

〈x,x〉.

Not every norm arises from an inner product in this way, but if it does,
we can recover the inner product from the norm, e.g. by
〈x,y〉 = (‖x + y‖2 − ‖x‖2 − ‖y‖2)/2.

Write p∗ for such a replacement inside a formula p, and let I be the
inner product axioms. Then p holds in all inner product spaces iff
I∗ ∧ p∗ holds in all normed spaces.

Thus, on general grounds, the decision problem for normed spaces
is at least as hard as that for vector spaces. But is it harder?

13



Normed spaces: better or worse?

(Solovay) Yes, the full theory of real normed spaces is strongly
undecidable. In fact, it is not even arithmetical, and is actually harder
than deciding second-order arithmetic!

(Arthan) Even the purely additive theory of 2-dimensional normed
spaces is strongly undecidable.

(Harrison, Arthan) However universally quantified and linear
problems in the theory of normed spaces can be decided by a
generalization of parametrized linear programming, and the full
universal theory is still decidable.
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Related results: constraints on dimension

There is a striking contrast between the well-behaved decidable
theory of inner product spaces and the strongly undecidable theory
of normed spaces.

One way of understanding this is to recall the ‘finite-dimensional
model’ property of inner product spaces and see that this fails for
normed spaces:

There exist non-zero vectors, and the unit disc has no
extreme points. (An extreme point of a set is one that is not
on a line between two other distinct points of the set.)

This has an infinite-dimensional model, e.g. R
∗ with the ∞-norm, but

by the Krein-Milman theorem, no finite-dimensional model.

15



Related results: dependence on field

It has been known since Tarski that all real-closed fields are
elementarily equivalent to R.

For the theory of inner product spaces, we have a similar property:
the theory is the same over R as over any real-closed field.

In fact, the reduction of a vector formula to an equivalid scalar
formula depends on very few properties, mainly the existence of
square roots.

On the other hand, because the theory of real normed spaces is
non-arithmetical, it must differ from the theory over real-closed fields
in general, since that theory is recursively axiomatizable.

16



Completeness

We say that a space is complete if every Cauchy sequence

∀ǫ > 0. ∃N. ∀m, n ≥ N. ‖xm − xn‖ < ǫ

converges

∃l. ∀ǫ > 0. ∃N. ∀n ≥ N. ‖xn − l‖ < ǫ

The following is standard terminology.

• Hilbert space = complete inner product space

• Banach space = complete normed space
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Related results: significance of completeness

Completeness cannot be expressed in the language we consider
here.

The theories of Hilbert spaces and inner product spaces are the
same, because all finite-dimensional inner product spaces are
complete.

(Solovay) The theories of Banach spaces and normed spaces are
different.

(Solovay) The decision problems for Banach spaces and normed
spaces are, however, mutually many-one reducible, to each other
and to a certain fragment of third-order number theory.
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Related results: metric spaces

Results for normed spaces are echoed by the simpler theory of
metric spaces, where we have no operations on points.

∀x y. d(x,y) ≥ 0

∀x y. d(x,y) = 0 ⇔ x = y

∀x y. d(x,y) = d(y,x)

∀x y z. d(x,y) + d(y, z) ≤ d(x, z)

The full theory is strongly undecidable, but the universal subset (in
fact the AE subset) is decidable.

Completeness cannot be expressed in the metric language.

The theories of metric spaces and complete metric spaces are
different.
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Interpreting first-order arithmetic

For a formula N(x) with one free scalar variable, we can assert that
its interpretation within R is the natural numbers by this formula Nat:

(∀x. N(x) ⇒ x ≥ 0) ∧

(∀x. x ≥ 0 ⇒ (N(x) ⇔ N(x + 1))) ∧

(∀x. 0 ≤ x ∧ x < 1 ⇒ (N(x) ⇔ x = 0))

Let φN be the result of relativizing all quantifiers in φ, e.g.
(∀n. P [n])N =def ∀n. N(n) ⇒ P [n]N.

Then provided there is at least one model of the metric space axioms
where the formula N(x) does indeed define N, we have:

φ holds in N iff Nat ⇒ φN holds in all metric spaces.
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Interpreting second-order arithmetic

(Folklore? See similar results in Moschovakis and Kechris) In the
theory of reals with an integer or natural number predicate, can even
interpret second-order arithmetic.

One way is to encode a set S ⊆ N with characteristic function χS as
the real ♯S =

∑

∞

n=0
χS(n)/3n, replacing quantification over sets with

quantification over R.

Thus, provided there is at least one model of the metric space
axioms where the formula N(x) does indeed define N, the theory of
metric spaces is at least as hard as second-order arithmetic.

And there is indeed such a model, just the integers with the usual
metric and the formula N(x) =def ∃a b. d(a,b) = x.
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Interpretation in a linear theory

With a bit more work, we can even avoid assuming multiplication in
the language by similarly characterizing it for a formula M(x, y, z)

and finding a model where some such formula works too:

(∀x y. ∃!z. M(x, y, z))∧

(∀x y z. M(x, y, z) ⇒ M(y, x, z))∧

(∀y z. M(0, y, z) ⇔ z = 0) ∧ (∀y z. M(1, y, z) ⇔ z = y)∧

(∀x1 x2 y z1 z2. M(x1, y, z1) ∧ M(x2, y, z2) ⇒ M(x1 + x2, y, z1 + z2)∧

(∀x y z ǫ. M(x, y, z) ∧ ǫ > 0

⇒ ∃δ. δ > 0 ∧ ∀x′ z′. |x − x′| < δ ∧ M(x′, y, z′) ⇒ |z − z′| < ǫ)

NB: we need full real multiplication to interpret second-order
arithmetic.
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A more exotic metric space

One can indeed come up with an exotic metric space where this
works.

c

r

q

a = p

b

a = p
qb

c
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The same thing for normed spaces

Constructing a normed space where we can define the integers is
harder. One way is using this ‘infinigon’ in R

2:

(−4, 1) (1, 1) (3, 1)(−1, 1)(−2, 1)(−3, 1) (2, 1) (4, 1)

v1
v2

v−1
v−2

e1

e2

v0

0

This can be used as the unit circle of a norm, and one can
characterize the integers using just the language of normed spaces.
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Decidability of AE fragment for metric spaces

Validity of an AE formula reduces, after negation and Skolemization,
to unsatisfiability of a formula with some vector constants ci and real
constants, but only universally quantified variables, at least over
vectors:

∀y/Qz. P [c1, . . . , cn,y, z]

This formula is satisfiable in a metric space iff it is satisfiable in a
metric space with a point domain of size ≤ n.

We can test it by instantiating the universally quantified vector
variables in this formula and the metric axioms with constants ci in
all possible ways.

A similar ‘finite model’ property holds for normed spaces, but
replacing ‘size’ by ‘dimension’. The universal fragment at least is
decidable.
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Current status and conclusions

A paper by Solovay, Arthan and Harrison proving all the main results
is almost complete.

HOL Light contains implementations of:

• A limited case of the decision procedure for inner product
spaces. The practical usefulness is limited but it can, for
example, prove the Cauchy-Schwartz inequality automatically.

• The procedure for universal linear problems in normed spaces.
This is very useful for solving routine problems like the motivating
example at the beginning.

A good example of how problems arising from real formalization
problems can lead to interesting theoretical investigation.
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