
Formal Methods at Intel — An Overview

John Harrison

Intel Corporation

27 September 2011

1



Summary

I Intel’s diverse verification problems

I Verifying hardware with FEV and STE

I Verifying protocols with model checking and SMT

I Verifying floating-point firmware with HOL

I Perspectives and future prospects
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A diversity of activities

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

I Microcode

I Firmware

I Protocols

I Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.
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A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

I Propositional tautology/equivalence checking (FEV)

I Symbolic simulation

I Symbolic trajectory evaluation (STE)

I Temporal logic model checking

I Combined decision procedures (SMT)

I First order automated theorem proving

I Interactive theorem proving

Most of these techniques (trading automation for generality /
efficiency) are in active use at Intel.
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A spectrum of formal techniques

Traditionally, formal verification has been focused on complete
proofs of functional correctness.
But recently there have been notable successes elsewhere for
‘semi-formal’ methods involving abstraction or more limited
property checking.

I Airbus A380 avionics

I Microsoft SLAM/SDV

One can also consider applying theorem proving technology to
support testing or other traditional validation methods like path
coverage.
These are all areas of interest at Intel.
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Models and their validation

We have the usual concerns about validating our specs, but also
need to pay attention to the correspondence between our models
and physical reality.

Actual system

Design model

Formal specification

Actual requirements

6
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Physical problems

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.
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The FDIV bug

Formal methods are more useful for avoiding design errors such as
the infamous FDIV bug:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

This did at least considerably improve investment in formal
verification.
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Layers of verification

If we want to verify from the level of software down to the
transistors, then it’s useful to identify and specify intermediate
layers.

I Implement high-level floating-point algorithm assuming
addition works correctly.

I Implement a cache coherence protocol assuming that the
abstract protocol ensures coherence.

Many similar ideas all over computing: protocol stack, virtual
machines etc.
If this clean separation starts to break down, we may face much
worse verification problems. . .
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How some of our verifications fit together

For example, the fma behavior is the assumption for my
verification, and the conclusion for someone else’s.

gate-level description

fma correct

sin correct

6

6

But this is not quite trivial when the verifications use different
formalisms!
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I: Hardware with SAT and STE

O’Leary, Zhao, Gerth, Seger, Formally verifying IEEE compliance
of floating-point hardware, ITJ 1999.
Yang and Seger, Introduction to Generalized Symbolic Trajectory
Evaluation, FMCAD 2002.
Schubert, High level formal verification of next-generation
microprocessors, DAC 2003.
Slobodova, Challenges for Formal Verification in Industrial Setting,
FMCAD 2007.
Kaivola et al., Replacing Testing with Formal Verification in Intel
CoreTM i7 Processor Execution Engine Validation, CAV 2009.
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Simulation

The traditional method for testing and debugging hardware designs
is simulation.
This is just testing, done on a formal circuit model.

0
1
1
0
1
0
0

0
7-input

AND gate

Feed sets of arguments in as inputs, and check whether the output
is as expected.
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Generalizations of simulation

We can generalize basic simulation in two different ways:

I Ternary simulation, where as well as 0 and 1 we have a “don’t
care” value X.

I Symbolic simulation, where inputs may be parametrized by
Boolean variables, and outputs are functions of those variables
(usually represented as BDDs).

Rather surprisingly, it’s especially useful to do both at the same
time, and have ternary values parametrized by Boolean variables.
This leads on to symbolic trajectory evaluation (STE) and its
generalizations.
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Example of symbolic simulation
We might use Boolean variables for all, or just some, inputs:

a0
a1
a2
a3
a4
a5
a6

a0 ∧ · · · ∧ a6
7-input

AND gate

1
1
1
x
1
1
1

x
7-input

AND gate
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Example of ternary simulation
If some inputs are undefined, the output often is too, but not
always:

X
X
1
X
1
X
X

X
7-input

AND gate

X
X
0
X
X
X
X

0
7-input

AND gate
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Economies

Consider the 7-input AND gate. To verify it exhaustively:

I In conventional simulation, we would need 128 test cases,
0000000, 0000001, . . . , 1111111.

I In symbolic simulation, we only need 1 symbolic test case,
a0a1a2a3a4a5a6, but need to manipulate expressions, not just
constants.

I In ternary simulation, we need 8 test cases, XXXXXX 0,
XXXXX 0X , . . . , 0XXXXXX and 1111111.

If we combine symbolic and ternary simulation, we can parametrize
the 8 test cases by just 3 Boolean variables.
This makes the manipulation of expressions much more economical.
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Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .
We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}

X = {0, 1}

This is essentially a simple case of an abstraction mapping, and we
can think of the abstract values partially ordered by information.

18



Extended truth tables

The truth-tables for basic gates are extended:

p q p ∧ q p ∨ q p ⇒ q p ⇔ q
X X X X X X
X 0 0 X X X
X 1 X 1 1 X
0 X 0 X 1 X
0 0 0 0 1 1
0 1 0 1 1 0
1 X X 1 X X
1 0 0 1 0 0
1 1 1 1 1 1

Composing gates in this simple way, we may lose information.

19



Symbolic trajectory evaluation

Symbolic trajectory evaluation (STE) is a further development of
ternary symbolic simulation.
The user can write specifications in a restricted temporal logic,
specifying the behavior over bounded-length trajectories
(sequences of circuit states).
A typical specification would be: if the current state satisfies a
property P, then after n time steps, the state will satisfy the
property Q.
The circuit can then be checked against this specification by
symbolic quaternary simulation.

20



STE plus theorem proving

STE (sometimes its extension GSTE) is the basic hardware
verification workhorse at Intel
However, it often needs to be combined with theorem-proving for
effective problem decomposition.
Intel has its own custom tool integrating lightweight theorem
proving with STE, GSTE and other model checking engines.
This combination has been applied successfully to many hardware
components, including floating-point units and many others.
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II: Protocols with model checking and SMT

Chou, Mannava and Park: A simple method for parameterized
verification of cache coherence protocols, FMCAD 2004.
Krstic, Parametrized System Verification with Guard Strengthening
and Parameter Abstraction, AVIS 2005.
Talupur, Krstic, O’Leary and Tuttle, Parametric Verification of
Industrial Strength Cache Coherence Protocols, DCC 2008.
Bingham, Automatic non-interference lemmas for parameterized
model checking, FMCAD 2008.
Talupur and Tuttle, Going with the Flow: Parameterized
Verification Using Message Flows, FMCAD 2008.
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Parametrized systems

We mean by a parameterized system a transition system with N
‘equivalent’ replicated components, so the state space involves
some Cartesian product

Σ = Σ0 ×
N times︷ ︸︸ ︷

Σ1 × · · · × Σ1

and the transition relation is symmetric between the replicated
components.
Sometimes we have subtler symmetry, but we’ll just consider full
symmetry.
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Multiprocessors with private cache

Example: multiprocessor where each processor has its own cache.
We have N cacheing agents with state space Σ1 each, and maybe
some special ‘home node’ with state space Σ0.
We can consider Σ1 as finite with two radical but not unreasonable
simplifications:

I Assume all cache lines are independent (no resource allocation
conflicts)

I Ignore actual data and consider only state of cache line (dirty,
clean, whatever)
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Cache coherence protocol

I A cache coherence protocol is a parametrized transition
system designed to ensure that all caches have a coherent
view of memory.

I On some simplifying assumptions, we can express this
adequately using just the cache states.

I In classic MESI protocols, each cache can be in four states:
Modified, Exclusive, Shared and Invalid.

I Coherence means:
∀i . Cache(i) ∈ {Modified ,Exclusive}
⇒ ∀j . j 6= i ⇒ Cache(j) = Invalid
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Why coherence isn’t trivial

At an abstract level, each memory operation updates cache states
appropriately, e.g.:

When writing a given line to cache i :

I If state was Exclusive, change it to Modified.
I Otherwise change it to Exclusive and all j 6= i to

Invalid.

In practice, each such operation is decomposed into a complicated
series of communications (‘invalidate request’, . . . ) and responses.
It’s very hard to be sure that with all the intricate ways these
multiple transactions can interact, coherence is maintained.
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Proving cache coherence

Given a protocol specification, how might we show that it ensures
coherence?

I Enumeration — if the state space is finite and small enough,
can analyze exhaustively (model checking).

I Abstraction — cleverly replace the transition system by a
simpler one and infer results from that.

I Induction — prove that invariant holds in initial states and is
preserved by transitions.
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Model checking

If Σ0 × ΣN
1 is small enough, then it may be feasible to perform

model checking. However:

I For a complex protocol (e.g. the one in Intel QuickPath
Interconnect protocol) this may be infeasible even for small N.

I In general, a protocol is designed to work for any N, and we
would prefer a general proof that doesn’t require a specific N.
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Proving coherence by induction

If we’re very lucky, the property P of coherence may itself be an
inductive invariant:

I Holds in the initial state P(σ0).

I Preserved by permitted state transitions
P(σ) ∧ R(σ, σ′)⇒ P(σ′)

For a non-trivial protocol, that seldom happens. The solution is
familiar from ‘strengthening the inductive hypothesis’. We seek an
I such that

I I is an inductive invariant

I ∀σ. I (σ)⇒ P(σ)

This may be quite difficult and need considerable skill and
ingenuity.
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A more frivolous example

Three bugs are crawling on the coordinate plane. They move one
at a time, and each bug will only crawl in a direction parallel to the
line joining the other two.
The bugs start out at (0,0), (3,0), and (0,3).

(a) Is it possible that after some time the first bug will end up
back where it started, while the other two bugs switch places?

(b) Can the bugs end up at (1,2), (2,5), and (-2,3)?
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Finding an inductive invariant

The answer is no in both cases. How could we prove it?
The property of not being at a particular point is certainly not
inductive.
So we need to find some inductive invariant that implies the
property we want.
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Solution to the bug puzzle

The oriented area of the triangle formed by the bugs does not
change.
If the bugs are at (ax , ay ), (bx , by ) and (cx , cy ), the oriented area
is:

((bx − ax) · (cy − ay )− (cx − ax) · (by − ay ))/2

In the initial configuration this is 9/2, and in the two final
configurations it’s −9/2 and ±5.
So all we need to prove is that ‘the oriented area is 9/2’ is
inductive, and we’re done.
This is just algebra.
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Chou-Mannava-Park method

One practical approach that has been used extensively at Intel:

I Method due to Chou, Mannava and Park

I Draws inspiration from McMillan’s work

I Made more systematic by Krstic

I Further generalized, extended and applied by Bingham,
Talupur, Tuttle and others.
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Basic idea of the method

Consider an abstraction of the system as a product of isomorphic
finite-state systems parametrized by a view, which is a 2-element
set of node indices.
Basically, for each pair of nodes {i , j}, we modify the real system
by:

I Using as node indices the two elements i and j plus one
additional node Other.

I Conservatively interpreting the transition relation, using Other
in place of the ‘ignored’ nodes.

Too crude to deduce the desired invariant, but it is supplemented
with noninterference lemmas in an interactive process.
Symmetric between components of the Cartesian product, so only
need consider a finite-state system.
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III: Floating-point firmware with HOL

Harrison, A Machine-Checked Theory of Floating Point Arithmetic,
TPHOLs 1999.
Harrison, Formal verification of IA-64 division algorithms, TPHOLs
2000.
Harrison, Formal verification of floating point trigonometric
functions, FMCAD 2000.
Harrison, Floating-Point Verification using Theorem Proving, SFM
summer school 2006.
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Our work

We have formally verified correctness of various floating-point
algorithms.

I Division and square root (Marstein-style, using fused
multiply-add to do Newton-Raphson or power series
approximation with delicate final rounding).

I Transcendental functions like log and sin (table-driven
algorithms using range reduction and a core polynomial
approximations).

Proofs use the HOL Light prover

I http://www.cl.cam.ac.uk/users/jrh/hol-light
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Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations
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Example: tangent algorithm

I The input number X is first reduced to r with approximately
|r | ≤ π/4 such that X = r + Nπ/2 for some integer N. We
now need to calculate ±tan(r) or ±cot(r) depending on N
modulo 4.

I If the reduced argument r is still not small enough, it is
separated into its leading few bits B and the trailing part
x = r − B, and the overall result computed from tan(x) and
pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B)− tan(x)

I Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.
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Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.
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Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X − Nπ/2 is small.
To check that the computation is accurate enough, we need to
know:

How close can a floating point number be to an integer
multiple of π/2?

Even deriving the power series (for 0 < |x | < π):

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

is much harder than you might expect.
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Why HOL Light?

We need a general theorem proving system with:

I High standard of logical rigor and reliability

I Ability to mix interactive and automated proof

I Programmability for domain-specific proof tasks

I A substantial library of pre-proved mathematics

Other theorem provers such as ACL2, Coq and PVS have also been
used for verification in this area.

41



Conclusions
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The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.
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What’s missing?

I Hardware verification proofs use STE as the workhorse, but
sometimes want greater theorem-proving power than the
current framework provides.

I The CMP method uses model checking with an ad hoc
program for doing the abstraction and the successive
refinements, not formally proved correct.

I The high-level HOL verifications assumes the correctness of
the basic FP operations, but this is not the same as the
low-level specs used in the hardware verification.

All in all, Intel has achieved a lot in the field of FV, but we could
achieve even more with a completely seamless combination of all
our favorite techniques!
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