Theorem Provers and Computer
Algebra Systems

John Harrison

Cambridge University Computer Laboratory

2nd November 1994

Theorem Provers

e Are mainly used by computer scientists

e Applications include hardware, software and
protocol verification

e Aim to support logic as applied mathematics

e Generally use “discrete” mathematics

Computer Algebra Systems

e Are mainly used by applied mathematicians,
engineers and scientists

e Multiprecision arithmetic, differentiation, in-
tegration ...

e Aim to support conventional applied mathe-
matics

e Mainly use “continuous” mathematics

Features of Theorem Provers

e They are logically and mathematically precise

e They employ rigorous principles of deduction

e They are usually difficult to use

e They are often very slow

Computer Algebra Systems

e Are easy to use

e Are efficient and powerful

e Lack a precise notion of logic

e Are deductively unsound

The Lack of Logic in Computer
Algebra Systems

They are mainly based on a simple dialogue
with the user:

e The user gives an expression F;
e The CAS returns an expression F,

e We are supposed to believe that E; = Ej

But are we? What about undefinedness?

Sometimes we can reason about simple inequal-
ities, and there is at least a case analysis ...

The Unsoundness of Computer
Algebra Systems

e Maple: 1
/_1 Va2 dz =0
e Mathematica:
11
/_1 \/? dil? = O

Anyway is an antiderivative what we want?
Maybe we want

e Riemann Integral
e Lebesgue Integral

e Gauge Integral

The Spectrum of Theorem
Proving Systems

e Proof Checkers

— Automath (de Bruijn)
— Stanford LCF (Milner et al.)

¢ Automatic Theorem Provers

— NQTHM (Boyer-Moore)
— Otter (McCune)

Which approach is better?

The LCF approach

Aims to combine low-level proof checker and
high level theorem prover.

e Low-level primitive inferences

e Use of ML as programming environment for
writing complex procedures

e Secure abstract datatype of theorems

The LCF family

e Original was Edinburgh LCF (Milner, Gor-
don, Morris, Newey, Wadsworth)

e Reengineered as Cambridge LCF (Paulson)

e Many descendants include

— HOL (Gordon)
— Nuprl (Constable)
— Coq (Huet)

e Refinements of the basic idea include Isabelle
(Paulson)

The ML programming language started life as
the MetaLanguage for LCF

10

Quick Summary of HOL

e Higher order logic based on simply typed lambda
calculus

e ML-style parametric polymorphism

e Conservative definition mechanism

e Very few primitive rules (in theory)

e Several versions (HOL88, hol90, ProofPower)

11

Analytica — a remedy for the lack
of logic

e Designed by Clarke and Zhao

e Written in the Mathematica language

e Incorporates many powerful decision proce-
dures

e But it relies on Mathematica’s own (unsound)
simplifier

12

Mathpert — a remedy for the lack
of soundness

e Designed by Beeson

e Intended for educational use; stresses ‘glass
box’ approach

e Underlying sequent calculus where side con-
ditions accumulate

e Attempt to avoid the logic appearing explic-
itly

e It remains to be seen how it compares with
existing systems in power

13

Harrison and Théry — exploiting
a link

We link together a Theorem Prover (HOL) and
a Computer Algebra System (Maple).

HOL can ask Maple questions — but what do
we do with the answers?

1. Trust the Computer Algebra System completely

2. Trust it partially; tag the theorem

3. Don’t trust it at all — check the answer

14

Examples where Checking is Easy

e Solving equations (of all kinds)

e Factorizing polynomials (or indeed numbers!)

e Integrating expressions

15

Example combining integration
and factorization (1)

We want to evaluate:

t .
/0 sin®u du

Maple tells us:

2
/t sin’u du = — - sin’tcost — — cost + —
0 3 3 3

HOL can differentiate this expression to yield

L, . . 3 2 .
—— SIN{COSTCOST — S1In — Sin
; (2sint cost cost t)+ 3 sint

but it doesn’t simplify down to what we wanted
(neither does Maple in fact!)

16

Example combining integration
and factorization (2)

We want to show that

——(2sintcostcost — sin’t) + ~sint = sin’ ¢
3 3

Let’s replace sint by z and cost by y; we want
to show that

1 2
I——§(2xyy—x3)—|—§x—£€3=0

17

Example combining integration
and factorization (3)

We ask Maple to factorize this expression, and
it tells us:

1 2 2
|——§(2xyy—x3)+§x—x3:—§x(y2+$2—1)

HOL can check this answer very easily.

When z = sint and y = cost we have y*+2>—1 =
0, so the equation is proved.

Now the Fundamental Theorem of Calculus yields
the result. Maple was right!

18

What have we Gained?

In HOL, real analysis, including (gauge) inte-
gration and its relationship with differentiation,
has been developed formally by definitional means.
So we have:

e An independent check on Maple’s correctness

e A formal HOL proof using incontrovertible,
low-level principles

e A rigorously defined, mathematically useful
statement

19

Conclusions

e More experience needed. Does rigour mean
rigor mortis?

e For the approach to generalize, we need pow-
erful simplifiers

e But it gives quite a lot for very little work

e Theorem prover and computer algebra de-
signers have a lot to learn from each other.

20

