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Summary

e The theory of reals and its universal fragment
e Nonnegativity via sum-of-squares

e Semidefinite programming

e The real Positivstellensatz

e EXxperiences



Disclaimer

My role here is ambassadorial. Nothing of substance in what follows
IS original to me.

Based heavily on work of Parrilo, and also older work by Shor etc.

General point: learn the lessons of related fields (optimization,
constraints, computer algebra, ...) as well as other theorem provers
(Mizar, ACL2, ...)



The theory of reals and its universal fragment

Consider this first-order theory:
e All rational constants p/q
e Operators of negation, addition, subtraction and multiplication
e Relations ‘=, ‘<’, ‘<, ‘>, >’

An interesting theory that can express many nontrivial (indeed open)
problems:

Kissing problem: how many disjoint n-dimensional spheres
can be packed into space so that they touch a given unit
sphere?



Decidability

There is a quantifier elimination algorithm, and so a decision method,
for this theory (Tarski).

R (3z.az? +bx+c=0) < a# 0N > dacVa=0A(b#0Vc=0)

Collins’s CAD algorithm is much more efficient and the first decision
method actually to be implemented.

Some good implementations like gepcad and REDLOG, but
theoretical and practical complexity issues limit its application.

Cohen-Hormander algorithm is significantly simpler and has been
Implemented in Coq and HOL to generate proofs, but even slower.



The universal fragment

Many interesting problems fall into the purely universal fragment:
e Everyday trivialities likeVx y. 2 > 0Ny > 0= zy > 0

e Polynomial bound problems like Vx € [0, 1]. |p(x)| < k (used for
some of my verifications).

e Most classical geometrical theorems

NB: geometry theorems with no use of ordering often turn out to be
true over C, which makes things easier.



Positivity

Consider first an even more special case of proving positive
semidefiniteness:

Vri, ..., xn.p(T1,...,2,) >0

Not as limited as it may appear: can express polynomial bounds by

2
. = y
change of variables like z — -

lllustrates the core techniques of SOS and SDP methods while
avoiding some technicalities.



Sum-of-squares proofs

A sufficient condition for

Vri, ..., xn.p(T1,...,2,) >0

IS the expressibility of p as a sum of squares (SOS)

p(x1,...,xp) :sl(xl,...,a:n)2—|—---—|—sk(:131,...,xn)2

It is not a necessary condition, as shown by the Motzkin form
1+ 2%y? 4+ 2%y* — 322%y2. But:

e In practice, nonnegativity problems often are solvable via SOS

e Can base complete approaches on similar SOS methods



Example (problem)

Consider the following (Zeng et al, JSC vol 37, 2004, p83-99).

Vwzyz. wd+ 222w + 2* + y* + 2% + 22%w + 2222+
3r + w4+ 2zw+ 22 +224+2w+1>0

Constraint problems of this sort are in general quite hard to solve.



Example (solution)

We can express the polynomial as a SOS.:

wO + 22%w3 + 2t + y* 4 2t + 22%w + 2222+
32 +w?+ 22w+ 22 +22+ 2w+ 1=
(Y22 + (22 +w+ 2+ 1)2 + 22 + (w? + 22)?

Note how nice this is for LCF-style proving: the SOS decomposition
can be checked without any tricky decision procedures.

But how do we find the SOS decomposition? By semidefinite
programming (SDP)!



Reduction to quadratic form

By introducing new variables for monomials, we can express a
polynomial as a quadratic form subject to linear constrants. Example:

224 + 225y — x°y? + Hy?

We consider all monomials (only need homogenous ones since
original is a form): z; = z?, 23 = y?, 23 = xy and write the
polynomial in matrix form:

_ _T o _
21 di1 412 {13 <1
Z9 421 422 ({23 )

| 23 431 432 433 Z3
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Linear parametrization

By comparing coefficients we get linear constraints, and after
exploiting symmetry, we only end up with one parameter.

qgi1 =9

g2 =9

933 +2q12 = —1
2q13 = 2

2¢23 =0

In general we’ll get more, but the key point is that the
parametrization is lineatr.



Semidefinite programming

In general, we noted that being positive semidefinite is not equivalent
to having an SOS decomposition.

But for quadratic forms it is (basically just ‘completing the square’).

Finding a parametrization making a matrix PSD, subject to (and
optimizing) linear constraints is a standard problem called
semidefinite programming.

The problem is polynomial-time solvable using interior-point
algorithms.

There are many efficient tools to solve the problem effectively in
practice. | mostly use CSDP.
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The usual Nullstellensatz

Over algebraically closed fields like C we have a nice simple
equivalence.

The polynomial equations pi(z1,...,2,) =0, ..., pe(x1,...,2,) =0
in an algebraically closed field have no common solution iff there are
polynomials ¢ (z1,...,2n), ..., qx(x1, ..., x,) Such that the following
polynomial identity holds:

Q1 (21, Tn) PL(2L, o ) e, ) DE(TL, L T,) =1

Thus we can reduce equation-solving to ideal membership and
solve it efficiently using Grobner bases.
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Real Nullstellensatzen and Positivstellensatzen

There is a similar but more complicated Nullstellensatz (and
Positivstellensatz) over R.

The general form is similar, but it's more complicated because of all
the different orderings.

It inherently involves sums of squares (SOS), and the certificates can
be found efficiently using semidefinite programming.

Example: prove
Vabex.ax? +bxr+c=0=b*>—4ac>0
via the following SOS certificate:

b — dac = (2ax + b)* — 4a(az® + bz + ¢)
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Experience

This approach is often much more efficient than competing
techniques such as general quantifier elimination.

Lends itself very well to a separation of proof search and LCF-style
checking, so fits very well with HOL Light.

Still some awkward numerical problems where the PSD is tight (can
become zero) and the rounding to rationals causes loss of
PSD-ness.

Available with HOL Light 2.0 release in Exanpl es/ sos. nl , and
seems quite useful.

15



