
Formal verification of IA-64 division & square root software 1

Formal verification of

IA-64 division

and square root

software

John Harrison

Intel Corporation, EY2-03

• IA-64 overview

• Quick introduction to HOL

• Floating point numbers and IA-64 formats

• HOL floating point theory

• Square root algorithm

• Correctness proof in HOL

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 2

IA-64 overview

IA-64 is a new 64-bit computer architecture

jointly developed by Hewlett-Packard and Intel,

and the forthcoming Merced chip from Intel will

be its first silicon implementation. Among the

special features of IA-64 are:

• An instruction format encoding parallelism

explicitly

• Instruction predication

• Speculative and advanced loads

• Upward compatibility with IA-32 (x86).

The IA-64 Applications Developer’s Architecture

Guide is now available from Intel in printed form

and online:

http://developer.intel.com/design/ia64/downloads/adag.htm

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 3

Quick introduction to HOL

The prover we use, HOL Light, is based on the

approach to theorem proving pioneered in

Edinburgh LCF in the 70s. The key ideas are:

• All theorems created by low-level primitive

rules.

• Guaranteed by using an abstract type of

theorems; no need to store proofs.

• ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and

extensibility. The system’s source code can be

completely open. The user controls the means of

production (of theorems). To improve efficiency

one can:

• Encapsulate reasoning in single theorems.

• Separate proof search and proof checking.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 4

Some primitive rules of HOL Light

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪ ∆ ⊢ s(u) = t(v)

MK COMB

⊢ (λx. t)x = t
BETA

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

There are a few more similar primitive rules, and

two rules of definition.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 5

Some of HOL Light’s derived rules

• Simplifier for (conditional, contextual)

rewriting.

• Tactic mechanism for mixed forward and

backward proofs.

• Tautology checker.

• Automated theorem provers for pure logic,

based on tableaux and model elimination.

• Tools for definition of (infinitary, mutually)

inductive relations.

• Tools for definition of (mutually) recursive

datatypes

• Linear arithmetic decision procedures over R,

Z and N.

• Differentiator for real functions.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 6

Floating point numbers

There are various different schemes for floating

point numbers. Usually, the floating point

numbers are those representable in some number

n of significant binary digits, within a certain

exponent range, i.e.

(−1)s × d0.d1d2 · · · dn × 2e

where

• s ∈ {0, 1} is the sign

• d0.d1d2 · · · dn is the significand and d1d2 · · · dn

is the fraction. These are not always used

consistently; sometimes ‘mantissa’ is used for

one or the other

• e is the exponent.

We often refer to p = n + 1 as the precision.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 7

IA-64 floating point formats

A floating point format is a particular allowable

precision and exponent range.

IA-64 supports a multitude of possible formats,

e.g.

• IEEE single: p = 24 and −126 ≤ e ≤ 127

• IEEE double: p = 53 and −1022 ≤ e ≤ 1023

• IEEE double-extended: p = 64 and

−16382 ≤ e ≤ 16383

• IA-64 register format: p = 64 and

−65534 ≤ e ≤ 65535

There are various other hybrid formats, and a

separate type of parallel FP numbers, which is

SIMD single precision.

The highest precision, ‘register’, is normally used

for intermediate calculations in algorithms.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 8

HOL floating point theory (1)

We have formalized a generic floating point

theory in HOL, which can be applied to all the

IA-64 formats, and others supported in software

such as quad precision.

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 9

HOL floating point theory (2)

For example, the definition of rounding down is:

|- (round fmt Down x = closest

{a | a IN iformat fmt ∧ a <= x} x)

We prove a large number of results about

rounding, e.g. that a real number rounds to itself

if it is in the floating point format:

|- ¬(precision fmt = 0) ∧ x IN iformat fmt

=⇒ (round fmt rc x = x)

that rounding is monotonic:

|- ¬(precision fmt = 0) ∧ x <= y

=⇒ round fmt rc x <= round fmt rc y

and that subtraction of nearby floating point

numbers is exact:

|- a IN iformat fmt ∧ b IN iformat fmt ∧
a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) IN iformat fmt

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 10

Division and square root on IA-64

There are no hardware instructions (in IA-64

mode) for division and square root. Instead,

approximation instructions are provided, e.g. the

floating point reciprocal square root

approximation instruction.

frsqrta.sf f1, p2 = f3

In normal cases, this returns in f1 an

approximation to 1√
f3

. The approximation has a

worst-case relative error of about 2−8.85. The

particular approximation is specified in the IA-64

architecture.

Software is intended to start from this

approximation and refine it to an accurate square

root, using for example Newton-Raphson

iteration, power series expansions or any other

technique that seems effective.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 11

Correctness issues

The IEEE standard states that all the algebraic

operations should give the closest floating point

number to the true answer, or the closest number

up, down, or towards zero in other rounding

modes.

It is easy to get within a bit or so of the right

answer, but meeting the IEEE spec is

significantly more challenging.

In addition, all the flags need to be set correctly,

e.g. inexact, underflow,

There are various methods for designing

IEEE-correct software algorithms, and we will

show one such algorithm for square root and show

how it was formally verified.

Related techniques can be used for division.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 12

Our algorithm example

Our example is an algorithm for square roots

using only single precision computations (hence

suitable for SIMD). It is built using two basic

IA-64 operations:

• The reciprocal square root approximation

frsqrta described above, which given an

input a returns an approximation to 1/
√

a

with relative error at most about 2−8.85.

• The fused multiply add and its negated

variant, which calculates xy + z or z − xy

with just a single rounding error.

Because it only uses single precision calculations,

readers can ‘try it at home’; it’s fairly easy to

simulate a single-precision fused multiply-add on

standard hardware. The actual tables used in the

frsqrta instruction are documented in the IA-64

Architecture Guide.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 13

The square root algorithm

1. y0 = 1√
a
(1 + ǫ) f(p)rsqrta

b = 1
2a Single

2. z0 = y2
0 Single

S0 = ay0 Single

3. d = 1
2 − bz0 Single

k = ay0 − S0 Single

H0 = 1
2y0 Single

4. e = 1 + 3
2d Single

T0 = dS0 + k Single

5. S1 = S0 + eT0 Single

c = 1 + de Single

6. d1 = a − S1S1 Single

H1 = cH0 Single

7. S = S1 + d1H1 Single

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 14

Proving IEEE correctness

Provided the input number is in a certain range,

this algorithm returns the correctly rounded

square root and sets all the IEEE flags correctly.

How do we prove that the result is correctly

rounded? We will concentrate on

round-to-nearest mode, which is the most

interesting case. What the algorithm actually

returns is the result of rounding the value:

S∗ = S1 + d1H1

The algorithm is correct if this is always the

same as the result of rounding the exact square

root
√

a.

Moreover, properties of this value S∗, e.g.

whether it is already exactly a floating point

number, determine the final flag settings

(intermediate steps do not set flags). We also

want to make sure these properties are the same

as for the exact square root.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 15

Condition for perfect rounding

We prove perfect rounding using a formalization

of a technique described here:

http://developer.intel.com/technology/itj/q21998/articles/art_3.htm

A sufficient condition for perfect rounding is that

the closest floating point number to
√

a is also the

closest to S∗. That is, the two real numbers
√

a

and S∗ never fall on opposite sides of a midpoint

between two floating point numbers.

In the following diagram this is not true;
√

a

would round to the number below it, but S∗ to

the number above it.

-
66√

a S∗

How can we prove this?

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 16

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

=⇒ abs(x - y) < abs(x - m))

=⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 17

Difficult cases

So to ensure the equal rounding property, we need

to make the final approximation before the last

rounding accurate to more than twice the final

accuracy.

The fused multiply-add can help us to achieve just

under twice the accuracy, but to do better is slow

and complicated. How can we bridge the gap?

Only a fairly small number of possible inputs a

can come closer than say 2−(2p−1). For all the

other inputs, a straightforward relative error

calculation (which in HOL we have largely

automated) yields the result.

We can then use number-theoretic reasoning to

isolate the additional cases we need to consider,

then simply try them and see! More than likely

we will be lucky, since all the error bounds are

worst cases and even if the error is exceeded, it

might be in the right direction to ensure perfect

rounding anyway.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 18

Isolating difficult cases

By some straightforward mathematics,

formalizable in HOL without difficulty, one can

show that the difficult cases have mantissas m,

considered as p-bit integers, such that one of the

following diophantine equations has a solution k

for d a small integer. (Typically ≤ 10, depending

on the exact accuracy of the final approximation

before rounding.)

2p+2m = k2 + d

or

2p+1m = k2 + d

We consider the equations separately for each

chosen d. For example, we might be interested in

whether:

2p+1m = k2 − 7

has a solution. If so, the possible value(s) of m

are added to the set of difficult cases.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 19

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2p+1m = k2 + d) =⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no

solutions. In general, we recurse down to an

equation that is trivially unsatisfiable, as here, or

immediately solvable. One equation can split into

two, but never more.

John Harrison Intel Corporation, 1 October 1999

Formal verification of IA-64 division & square root software 20

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed can be done in a unified way

with the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof that the condition tested ensures

perfect rounding

• Routine relative error computation for the

final result before rounding

• Number-theoretic isolation of difficult cases

• Explicit computation with those cases

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

In short, HOL is an almost ideal vehicle for

verifications of this type.

John Harrison Intel Corporation, 1 October 1999

