
Niche decision procedures

John Harrison
Intel Corporation

Calculemus, RISC Linz

Wed 27th June 2007

0

Guiding principles

• Traditional decidable fragments (Presburger, Tarski etc.) have
been thoroughly mined, and are not always practical/useful.

• Real applications throw up requirements for customized niche
decision procedures

• May use more refined features of the problem that are often
ignored, or may try to solve a slightly “more general” problem.

1

Guiding principles

• Traditional decidable fragments (Presburger, Tarski etc.) have
been thoroughly mined, and are not always practical/useful.

• Real applications throw up requirements for customized niche
decision procedures

• May use more refined features of the problem that are often
ignored, or may try to solve a slightly “more general” problem.

• Examples

– Verification of inductive invariants exploiting types (Pnueli et
al, Fontaine)

– Automatic proof of divisibility properties via ideal membership

– Linear reasoning in normed spaces

2

Example I
Verification of inductive

invariants exploiting types

3

Parametrized systems

Important target for verification is parametrized systems.

N equivalent replicated components, so the state space involves
some Cartesian product

Σ = Σ0 ×

N times
︷ ︸︸ ︷

Σ1 × · · · × Σ1

and the transition relation is symmetric between the replicated
components.

Sometimes we have subtler symmetry, but we’ll just consider full
symmetry.

4

Multiprocessors with private cache

Example: multiprocessor where each processor has its own cache.

We have N cacheing agents with state space Σ1 each, and maybe
some special ‘home node’ with state space Σ0.

We can consider Σ1 as finite with two radical but not unreasonable
simplifications:

• Assume all cache lines are independent (no resource allocation
conflicts)

• Ignore actual data and consider only state of cache line (dirty,
clean, whatever)

5

Coherence

The permitted transitions are constrained by a protocol designed to
ensure that all caches have a coherent view of memory.

On some simplifying assumptions, we can express this adequately
just using the cache states.

In classic MESI protocols, each cache can be in four states:
Modified, Exclusive, Shared and Invalid.

Coherence means:

∀i. Cache(i) IN {Modified, Exclusive}

⇒ ∀j. ¬(j = i) ⇒ Cache(j) = Invalid

6

Parametrized verification

Even if Σ0 and Σ1 are finite, we can only use straightforward model
checking when N is a specific number.

In practice, only small N may be feasible.

Yet the system is often expected/supposed to work for arbitrary N .

So we would like a proof that is general, with N treated as an
arbitrary parameter.

Might use induction to prove an invariant (even coherence itself in
very simple abstract case).

7

Inductive proof

Inductiveness statement is

I(σ) ∧ R(σ, σ′) ⇒ I(σ′)

The inductive invariant I is universally quantified, and occurs in both
antecedent and consequent.

The transition relation has outer existential quantifiers ∃i. · · ·

because we have a symmetric choice between all components.

Inside, we may also have universal quantifiers if we choose to
express array updates a(i) := Something as relations between
functions:

a′(i) = Something ∧ ∀j. ¬(j = i) ⇒ a′(j) = a(j)

8

Our quantifier prefix

So our inductiveness claim may look like

(∀i, j, · · ·) ∧ (∃i. ∀j. · · ·) ⇒ (∀i, j, · · ·)

If we put this into prenex normal form in the right way, the quantifier
prefix is of the form:

∀ · · · ∀∃ · · · ∃

Suppose we don’t need any arithmetic.

We can add assumptions for exhaustiveness and exclusiveness of
the 4-element type of cache states without disturbing the logical form.

Is this problem decidable?

9

The AE fragment

A classic decidability result for first order logic due to Bernays,
Schönfinkel and Ramsey.

A first-order formula is in AE form if it contains no function symbols
and has, or can obviously be transformed into, the following prenex
form:

∀x1, . . . , xn. ∃y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

with P [x1, . . . , xn, y1, . . . , ym] quantifier-free. Dually, EA form is

∃x1, . . . , xn. ∀y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

Logical validity for AE formulas / satisfiability for EA formulas is
decidable.

10

Skolem-Gödel-Herbrand proof

By Skolemization, the formula is satisfiable iff this is:

∀y1, . . . , ym. P [c1, . . . , cn, y1, . . . , ym]

By the Skolem-Gödel-Herbrand theorem this is unsatisfiable iff the
set of all ground instances

∧

t1,...,tm

P [c1, . . . , cn, t1, . . . , tm]

with ti ranging over all ground terms.

But the only ground terms are the constants ci, so this is a finite
conjunction, and we can decide it propositionally.

Again, this fails if we have a function symbol, because then we need
to consider the infinite set of instantiations to c, f(c), f(f(c)), . . .

11

Not quite what we need

Our inductive invariance claim does have an AE quantifier prefix.

And it doesn’t need any background theory like arithmetic.

12

Not quite what we need

Our inductive invariance claim does have an AE quantifier prefix.

And it doesn’t need any background theory like arithmetic.

Unfortunately it does include functions! We have the function Cache

representing the array of caches . . .

13

Many-sorted Skolem-Gödel-Herbrand

In many sorted-logic, the obvious analog of the
Skolem-Gödel-Herbrand theorem holds.

However, the construction of ground terms is constrained by type: we
only consider well-typed combinations.

In particular, since Cache has type Node → State, terms like
Cache(Cache(i)) are ill-typed.

So there is still only a finite set of ground terms!

14

Practical implications

Our inductiveness problem is decidable. The decision method: a
relatively modest finite expansion then hit it with a free-variable SMT
solver.

Works for relatively complex transition relations and invariants,
provided their logical form is right.

We can even add theories such as arithmetic, even though in general
this leads to undecidability.

Still some limitations, since many non-trivial protocols have arrays of
nodes (FLASH etc.)

15

Example II
Automatic proof of divisibility

properties

16

Solving a more general problem

Classic example is proving a universally quantified linear formula
over the integers.

Just solve the ‘LP relaxation’.

Combine with some simple discretization, e.g. x < y ⇔ x ≤ y − 1;
usually very effective.

However, misses simple formulas like ¬(2x = 2y + 1).

17

Divisibility properties over the integers

Often want to prove tedious lemmas like

∀a n x y. ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

18

Expanding divisibility properties

Eliminate divisibility notions in terms of existentials:

• s | t to ∃d. t = sd

• s ≡ t (mod u) to ∃d. t − s = ud

• coprime(s, t) to ∃x y. sx + ty = 1.

19

Applied to the example

∀a n x y. (∃d. ay − ax = nd)∧

(∃u v. au + nv = 1)

⇒ (∃e. y − x = ne)

Pull out the quantifiers in the antecedent:

∀a n x y d u v. ay − ax = nd ∧ au + nv = 1 ⇒ ∃e. y − x = ne

20

Solving a more general problem

We are already well into the realm of ‘undecidable in general’ thanks
to the unsolvability of Hilbert’s 10th problem.

21

Solving a more general problem

We are already well into the realm of ‘undecidable in general’ thanks
to the unsolvability of Hilbert’s 10th problem.

Instead, attempt to prove the property holds in all rings.

It turns out that this problem is decidable using well-known methods.

22

Word problem for rings

∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0

holds in all rings iff

q ∈ Id
Z
〈p1, . . . , pn〉

i.e. there exist ‘cofactor’ polynomials with integer coefficients such
that

p1 · q1 + · · · + pn · qn = q

23

Generalizes to linear existential theorems

∀x.

m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p1(x)y1 + · · · + pn(x)yn = a(x)

holds in all rings iff (Horn-Herbrand) there are terms in the language
of rings s.t.

Ring ⊢ ∀x.
m∧

i=1

ei(x) = 0 ⇒ p1(x)t1(x) + · · · + pn(x)tn(x) = a(x)

iff (previous theorem)

a ∈ Id
Z
〈e1, . . . , em, p1, . . . , pn〉

24

. . . and simultaneous linear existentials

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧

· · · ∧

pk1(x)y1 + · · · + pkn(x)yn = ak(x)

holds in all rings iff

(a1u1 + · · · + akuk)

∈ Id
Z
〈e1, . . . , em, (p11u1 + · · · + pk1uk), (p1nu1 + · · · + pknuk)〉

where the ui are fresh variables.

25

Solving ideal membership problems

The most natural approach to solving ideal membership problem is
Gröbner bases.

Strictly, should use an integer version. However, can use the rational
version speculatively and see if we get integer cofactors.

With an instrumented version of Buchberger’s algorithm, can
generate cofactors and hence easily generate a rigorous formal
proof.

26

Successful examples

d|a ∧ d|b ⇒ d|(a − b)

coprime(d, a) ∧ coprime(d, b) ⇒ coprime(d, ab)

coprime(d, ab) ⇒ coprime(d, a)

coprime(a, b) ∧ x ≡ y (mod a) ∧ x ≡ y (mod b) ⇒ x ≡ y (mod (ab))

m|r ∧ n|r ∧ coprime(m, n) ⇒ (mn)|r

coprime(xy, x2 + y2) ⇔ coprime(x, y)

coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)

ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

gcd(a, n) | b ⇒ ∃x. ax ≡ b (mod n)

27

Failures

Can’t solve problems where special properties of the integers are
used

2|x2 + x

This fails over some rings, e.g. R[x].

However, such examples very seldom appear in typical routine
lemmas.

28

Example III
Linear reasoning in normed

spaces

29

Norm properties in analysis

In the formalization of complex analysis or analysis in R
n, often need

tedious lemmas about distances like

|‖w − z‖ − r| = d ∧ ‖u − w‖ < d/2 ∧ ‖x − z‖ = r ⇒ d/2 ≤ ‖x − u‖

30

Solvable in principle

• Could replace each variable x with a pair (x1, x2) and replace
‖x‖ by

√

x2

1
+ x2

2
.

• Even in general R
n with a norm defined via inner products, can

use Solovay’s procedure

31

Solvable in principle

• Could replace each variable x by a pair (x1, x2) and replace ‖x‖

by
√

x2

1
+ x2

2
.

• Even in general R
n with a norm defined via inner products, can

use Solovay’s procedure

However linear vector problems give rise to nonlinear real problems.

32

Solving a more general problem

Instead try to show that the property holds in all normed spaces.

In this setting we can preserve linearity in the vector problem.

33

Normed spaces

Usual vector space axioms plus properties of norms:

‖x‖ = 0 ⇔ x = 0

‖cx‖ = |c|‖x‖

‖x + y‖ ≤ ‖x‖ + ‖y‖

Euclidean norm
√∑

i x2

i satisfies these, but so do many others, e.g.
1-norm

∑

i |xi| and the infinity-norm maxi |xi|.

Suppose that we use just these three norm properties.

34

In principle, all different

Some problems hold in 1-D Euclidean space, but not in general

‖x−y‖+‖y−z‖ = ‖x−z‖∨‖y−z‖+‖z−x‖ = ‖y−x‖∨‖z−x‖+‖x−y‖ = ‖y−x‖

and others depend on the norm, e.g. this fails in 1-norm

‖a − c‖ = ‖b − c‖ ∧ ‖b − a‖ = 2‖a − c‖∧

‖a − c′‖ = ‖b − c′‖ ∧ ‖b − a‖ = 2‖a − c′‖

⇒ c′ = c

But in practice, most routine lemmas still work in any normed space.

35

The linear universal theory of normed spaces

This example shows the key ideas:

‖x + y‖ ≤ 1∧

‖2x + 3y‖ ≤ 2∧

‖x − 5y‖ ≤ 3∧

‖3x − 4y‖ ≤ 4

⇒ ‖y‖ ≤ ??

36

What can we deduce?

Using the norm properties, we can generate any upper bounds of the
form:

‖a(x+y)+ b(2x+3y)+ c(x−5y)+d(3x−4y)‖ ≤ |a|+2|b|+3|c|+4|d|

for a, b, c, d ∈ R.

37

What can we deduce?

Using the norm properties, we can generate any upper bounds of the
form:

‖a(x+y)+ b(2x+3y)+ c(x−5y)+d(3x−4y)‖ ≤ |a|+2|b|+3|c|+4|d|

for a, b, c, d ∈ R.

If we want this to be a bound on y we need:

a + 2b + c + 3d = 0

a + 3b − 5c − 4d = 1

38

A familiar problem

We can do some case splits to eliminate the absolute value function,
so we get 16 cases of the form:

Minimize a + 2b + 3c + 4d subject to:

a − 2b + c − 3d = 0

a − 3b − 5c + 4d = 1

a ≥ 0

b ≥ 0

c ≥ 0

d ≥ 0

Just a linear programming problem! Solution is 8/13

39

The general case

In general we have linear forms in real variables and other norms as
bounds:

‖x + y‖ ≤ s∧

‖2x + 3y‖ ≤ t∧

‖x − 5y‖ ≤ u∧

‖3x − 4y‖ ≤ v

⇒ ‖y‖ ≤ ??

40

Parametrized linear programming

Now we need to minimize as + bt + cu + dv subject to:

a − 2b + c − 3d = 0

a − 3b − 5c + 4d = 1

a ≥ 0

b ≥ 0

c ≥ 0

d ≥ 0

A parametrized form of linear programming.

41

Naive solution

The constraining polytope is still unparametrized.

Enumerate all its vertices (well-studied problem, or use stupid
algorithm of solving all n-tuples of constraints with unique solutions).

Each vertex gives rise to a linear constraint in terms of s, t, u, v.

42

In our example

We can do limited naive subsumption, but in general we get many
bounds:

‖y‖ ≤ 3/11u + 1/11v

‖y‖ ≤ 3/17t + 2/17v

‖y‖ ≤ 1/13t + 2/13u

‖y‖ ≤ 2s + t

‖y‖ ≤ 3/7s + 1/7v

‖y‖ ≤ 1/6s + 1/6u

Can integrate this into standard linear prover to get a complete proof
procedure.

43

Successful examples

|‖x‖ − ‖y‖| ≤ ‖x − y‖

|‖w − z‖ − r| = d ∧ ‖u − w‖ < d/2 ∧ ‖x − z‖ = r ⇒ d/2 ≤ ‖x − u‖

¬(x = u) ∧ ¬(x = w) ∧ ‖x − z‖ = r ∧ ‖u − w‖ < d/2 ∧ 0 < ‖u − w‖∧

0 < d ∧ |‖w − z‖ − r| = d ∧ 0 < e ∧ 0 ≤ r ∧ ¬(‖w − z‖ = r) ∧ 0 < r

⇒ d ≤ ‖x − w‖

44

Conclusions

• Some examples of non-traditional logical decision procedures

– More refined view from sorts

– Assuming assertion is true in a more general setting

45

Conclusions

• Some examples of non-traditional logical decision procedures

– More refined view from sorts

– Assuming assertion is true in a more general setting

• Often respond to a real practical need: necessity is the mother of
invention!

46

Conclusions

• Some examples of non-traditional logical decision procedures

– More refined view from sorts

– Assuming assertion is true in a more general setting

• Often respond to a real practical need: necessity is the mother of
invention!

• There are probably many more useful examples to be found . . .

47

