
High-Level Verification using Theorem Proving and Formalized Mathematics 1

High-Level Verification
using

Theorem Proving
and

Formalized Mathematics
John Harrison

Intel Corporation

• A hierarchy of verifications

• What do we need?

• HOL Light

• Theories of reals and floating point numbers

• Tangent algorithm

• Mathematics of range reduction and power series

• Conclusions

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 2

Formal verification and formal models

Formal verification aims to make a link (by rigorous

mathematical proof) between a mathematical model of

an actual system and a model of its intended behavior.

Actual system

Mathematical model

Mathematical specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 3

A hierarchy of verifications

Experience shows that computer systems can better be
kept intellectually manageable if designed
hierarchically, with clear interfaces between layers.

Formal verifications should be structured in the same
way, i.e. requirements at one level should be the
system model at the next level up. Consider the
precise mathematical formalization of:

The execution of theFADDinstruction results
in writing to the appropriate register the
IEEE-specified floating point sum of the
contents of the input registers . . .

For someone (Carl) verifying the correctness of the
hardware implementation, this is part of the
specification to be proved.

For someone (John) verifying correctness of
mathematical software that uses operations likeFADD,
this is one of the assumptions in the implementation
model.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 4

Verification of mathematical software

We are mostly concerned with software for calculating
the common mathematical functions, e.g.tan(x) for an
input numberx, and formally verifying its numerical
accuracy.

We will assume that all the operations used obey the
underlying specifications as given in the Architecture
Manual and the IEEE Standard for Binary
Floating-Point Arithmetic.

What do we need to formally verify such
mathematical software?

• Theorems about basic real analysis and properties
of the transcendental functions.

• Theorems about special properties of floating
point numbers, floating point rounding etc.

• Automation of as much tedious reasoning as
possible

• A flexible framework in which these components
can be developed and applied in a reliable way.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 5

The spectrum of theorem provers

From interactive proof checkers to fully automatic

theorem provers.

AUTOMATH (de Bruijn)

Stanford LCF(Milner)

Mizar (Trybulec)

. . .

. . .
PVS(Owre, Rushby, Shankar)

. . .

. . .
ACL2 (Boyer, Kaufmann, Moore)

Otter(McCune)

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 6

Quick introduction to HOL Light

HOL Light is a member of the family of HOL theorem
provers.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as the
interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical
inference rules plus 2 definition mechanisms and

3 axioms.

• More powerful proof procedures programmed on
top, inheriting their reliability from the logical

core. Fully programmable by the user.

• Well-developed mathematical theories including
basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 7

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s= t ∆ ⊢ t = u
Γ∪∆ ⊢ s= u

TRANS

Γ ⊢ s= t ∆ ⊢ u = v
Γ∪∆ ⊢ s(u) = t(v)

MK COMB

Γ ⊢ s= t
Γ ⊢ (λx.s) = (λx. t)

ABS

⊢ (λx. t)x = t
BETA

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 8

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p
Γ∪∆ ⊢ q

EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ−{q})∪ (∆−{p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . ,xn] ⊢ p[x1, . . . ,xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . ,αn] ⊢ p[α1, . . . ,αn]

Γ[γ1, . . . ,γn] ⊢ p[γ1, . . . ,γn]
INST TYPE

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 9

Some of HOL Light’s derived rules

• Simplifier for (conditional, contextual) rewriting.

• Tactic mechanism for mixed forward and

backward proofs.

• Tautology checker.

• Automated theorem provers for pure logic, based

on tableaux and model elimination.

• Tools for definition of (infinitary, mutually)

inductive relations.

• Tools for definition of (mutually) recursive

datatypes

• Linear arithmetic decision procedures overR, Z

andN.

• Differentiator for real functions.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 10

Breakdown to primitive inferences

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

Takes10.6seconds (on my laptop) and generates

40040primitive inferences:

REFL 11466

TRANS 4429

MK COMB 6057

ABS 0

BETA 1989

ASSUME 288

EQ MP 7536

DEDUCT ANTISYM RULE 1882

INST TYPE 479

INST 5914

TOTAL 40040

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 11

Existing real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 12

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (\x. g(f x)) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 13

HOL floating point theory

We have formalized a generic floating point theory in

HOL, which can be applied to all the required formats,

and others supported in software such as quad

precision.

A floating point format is identified by a triple of

natural numbersfmt .

The corresponding set of real numbers is

format(fmt) , or ignoring the upper limit on the

exponent,iformat(fmt) .

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member ofiformat(fmt) for

an exact valuex , depending on the rounding moderc ,

which may be one ofNearest , Down, Up andZero.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 14

The (1+ ε) property

Most of the routine parts of floating point proofs rely

on either an absolute or relative bound on the effect of

floating point rounding. The key theorem underlying

relative error analysis is the following:

|- normalizes fmt x /\

˜(precision fmt = 0)

==> ?e. abs(e) <= mu rc /

&2 pow (precision fmt - 1) /\

(round fmt rc x = x * (&1 + e))

This says that given that the value being rounded is in

the range of normalized floating point numbers, then

rounding perturbs the exact result by at most a relative

error bound depending only on the floating point

precision and rounding control.

Derived rules apply this result to computations in a

floating point algorithm automatically, discharging the

conditions as they go.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 15

Cancellation theorems

Low-level mathematical algorithms often rely on

special tricks to avoid rounding error, or compensate

for it. Rounding is trivial when the value being

rounded is already representable exactly:

|- a IN iformat fmt ==> (round fmt rc a = a)

Some special situations where this happens are as

follows:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

|- x IN iformat fmt /\

y IN iformat fmt /\

abs(x) <= abs(y)

==> (round fmt Nearest (x + y) - y)

IN iformat fmt /\

(round fmt Nearest (x + y) - (x + y))

IN iformat fmt

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 16

A tangent algorithm

An algorithm to calculate tangents works essentially as

follows.

• The input numberX is first reduced tor with

approximately|r| ≤ π/4 such thatX = r +Nπ/2

for some integerN. We now need to calculate

±tan(r) or±cot(r) depending onN modulo4.

• If the reduced argumentr is still not small

enough, it is separated into its leading few bitsB

and the trailing partx = r −B, and the overall

result computed fromtan(x) and pre-stored

functions ofB, e.g.

tan(B+x) = tan(B)+

1
sin(B)cos(B)tan(x)

cot(B)− tan(x)

• Now a power series approximation is used for

tan(r), cot(r) or tan(x) as appropriate.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 17

Overview of the verification

In order to verify this algorithm, we need to prove:

• The range reduction to obtainr is done accurately.

• The mathematical facts used to reconstruct the

result from components are applicable.

• The pre-stored constants such astan(B) are

sufficiently accurate.

• The power series approximation does not

introduce too much error in approximation.

• The rounding errors involved in computing with

floating point arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of

them require more pure mathematics than might be

expected. We will look at the mathematics required to

analyze range reduction and the power series

approximation.

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 18

Range reduction (1)

Range reduction involves a fairly complicated

computation, using various tricks to avoid rounding

error. This can mostly be dealt with using the general

lemmas given above. However, controlling the errors

is harder the smaller the reduced argument is, so we

need to answer the key mathematical question:

How close can a floating point number be to

an integer multiple ofπ/2?

To answer this question, we need to formalize in HOL

some theorems about rational approximations. First of

all, we have formalized some results allowing us to

(provably) find arbitrarily good rational

approximations toπ, e.g. the series:

π = Σ∞
m=0

1
16m(

4
8m+1

−
2

8m+4
−

1
8m+5

−
1

8m+6
)

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 19

Range reduction (2)

We then formalize the proof thatconvergentsto a real
numberx, i.e. rationalsp1/q1 < x < p2/q2 with
p2q1 = p1q2 +1, are the best possible approximation
without having a larger denominator.

|- (p2 * q1 = p1 * q2 + 1) /\

(&p1 / &q1 < x /\ x < &p2 / &q2)

==> !b. ˜(b = 0) /\ b < q1 /\ b < q2

==> abs(&a / &b - x)

> &1 / &(q1 * q2)

We find such convergents (outside the logic) using the
Stern-Brocot tree, and by inserting the values into the
approximation theorems, and can answer the above
question for input numbers in the specified range:

|- integer(N) /\ ˜(N = &0) /\

a IN iformat (rformat Register) /\

abs(a) < &2 pow 64

==> abs (a - N * pi / &2)

>= &113 / &2 pow 76

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 20

Power series approximation (1)

The power series for tangent and cotangent are found

in many mathematical handbooks. For example (for

x 6= 0):

cot(x) = 1/x−
1
3

x−
1
45

x3−
2

945
x5− . . .

However, such handbooks typically don’t give any

proof, while more rigorous works don’t usually

discuss such concrete results at all. It’s no accident

that the proof we eventually found and formalized is in

an older book: Knopp’s“Infinite Series”. By a rather

complicated limit argument we can prove:

πx cot(πx) = 1+2x2Σ∞
k=1

1
x2−k2

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 21

Power series approximation (2)

We can then expand the individual terms of the power
series:

−x2

x2−k2 = Σ∞
n=1(x

2/k2)
n

Since all terms have the same sign, it’s fairly easy to
show that we can reverse the order of the summations.
This gives us a power series with coefficients
expressed in terms of the harmonic sums like
1+1/24 +1/34 +1/44 + · · ·. By using the fact that
cot(x)−2cot(2x) = tan(x) (for 0 < |x| < π/2), we can
compare the coefficients against the derivatives oftan

and hence get them as rational numbers. As a
byproduct, we derive various well-known theorems
like:

1+1/22 +1/32 +1/42 + · · · = π2/6

1+1/24 +1/34 +1/44 + · · · = π4/90

John Harrison Intel Corporation, 17 June 2000

High-Level Verification using Theorem Proving and Formalized Mathematics 22

Conclusions

• Formal verification of mathematical software is
industrially important, and can be attacked with
current theorem proving technology.

• A large part of the work involves building up
general theories about both pure mathematics and
special properties of floating point numbers.

• It is easy to underestimate the amount of pure
mathematics needed for obtaining very practical
results.

• The mathematics required is often the sort that is
not found in current textbooks: very concrete
results but with a proof!

• Using HOL Light, we can confidently integrate all
the different aspects of the proof, using
programmability to automate tedious parts.

• These proofs are probably the largest ever
formally generated in such a simple primitive
inference system.

John Harrison Intel Corporation, 17 June 2000

