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Inspirations

• Lombardi, “Effective real nullstellensatz and variants”, MEGA
1990

• Lifschitz, “Semantical Completeness Theorems in Logic and
Algebra”, Proceedings of the AMS 1980

• Simmons, “The solution of a decision problem for several classes
of rings”, Pacific Journal of Mathematics 1970
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Objectives

• Don’t necessarily want completely constructive proofs. (We’ll be
using other algorithms anyway to find certificates.)

• Want proofs that are conceptually simple (if you know some very
basic logic)

• Want to emphasize links with word problems rather than
algebraic geometry
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The word problem for rings

We want to decide whether

∀x. s1 = t1 ∧ · · · ∧ sn = tn ⇒ s = t

holds in all rings (uniform word problem). We can assume it’s a
standard polynomial form

∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0
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Solution

∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q(x) = 0

holds in all rings iff

q ∈ IdZ 〈p1, . . . , pn〉

i.e. there exist ‘cofactor’ polynomials with integer coefficients such
that

p1 · q1 + · · · + pn · qn = q
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Proof (model-theoretic)

If

p1 · q1 + · · · + pn · qn = q

then whenever each pi(x) = 0, we must have q(x) = 0.

Conversely if

q 6∈ IdZ 〈p1, . . . , pn〉

then the quotient ring Z[x]/IdZ 〈p1, . . . , pn〉 is a ring where each
pi(x) = 0 but some q(x) 6= 0.
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Axioms for rings

x + y = y + x

x + (y + z) = (x + y) + z

x + 0 = x

x + (−x) = 0

x · y = y · x

x · (y · z) = (x · y) · z

x · 1 = x

x · (y + z) = x · y + x · z
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Axioms for equality

We want to consider proofs in pure first order logic, without equality,
so axiomatize it:

x = x

x = y ⇒ y = x

x = y ∧ y = z ⇒ x = z

x = x′ ⇒ −x = −x′

x = x′ ∧ y = y′ ⇒ x + y = x′ + y′

x = x′ ∧ y = y′ ⇒ x · y = x′ · y′
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Proofs in the theory of rings

Let Ring be all the ring axioms and equality axioms.

A formula φ holds in all rings iff Ring ⊢ φ.

NB: all the axioms in Ring are Horn clauses.

So if there’s a proof of Ring ⊢ φ there’s a Prolog-style proof tree.

8



Prolog-style proof tree

x = x

x + y = x + 0

x + y = x

x + 0 = x

x · (x + y) = x · x
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x = x y = 0
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Alternative proof

By induction on such a proof, for each equation s = t deduced,
(s − t) ∈ IdZ 〈s1 − t1, . . . , sn − tn〉 where the si = ti are the
hypotheses.
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Alternative proof

By induction on such a proof, for each equation s = t deduced,
(s − t) ∈ IdZ 〈s1 − t1, . . . , sn − tn〉 where the si = ti are the
hypotheses.

Also, based on general convexity properties of Horn clause theories,
we can decide the whole universal theory of rings since

Ring ⊢ p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q1 = 0 ∨ · · · ∨ qm = 0

iff for some 1 ≤ i ≤ m we have

Ring ⊢ p1 = 0 ∧ · · · ∧ pn = 0 ⇒ qi = 0
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Generalizes to torsion-free rings

Torsion-free ring axioms are

TFRing = Ring ∪ {

n times
︷ ︸︸ ︷

x + · · · + x = 0 ⇒ x = 0 | n ∈ N+}
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Generalizes to torsion-free rings

Torsion-free ring axioms are

TFRing = Ring ∪ {

n times
︷ ︸︸ ︷

x + · · · + x = 0 ⇒ x = 0 | n ∈ N+}

By an almost identical induction on proofs

TFRing ⊢ p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q = 0

iff

q ∈ IdQ 〈p1, . . . , pn〉
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Generalizes to linear existential theorems

Ring ⊢ ∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p1(x)y1 + · · · + pn(x)yn = a(x)

iff (Horn-Herbrand) there are terms in the language of rings s.t.

Ring ⊢ ∀x.
m∧

i=1

ei(x) = 0 ⇒ p1(x)t1(x) + · · · + pn(x)tn(x) = a(x)

iff (previous theorem)

a ∈ IdZ 〈e1, . . . , em, p1, . . . , pn〉
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. . . and simultaneous linear existentials

Ring ⊢ ∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧

· · · ∧

pk1(x)y1 + · · · + pkn(x)yn = ak(x)

iff

(a1u1 + · · · + akuk)

∈ IdZ 〈e1, . . . , em, (p11u1 + · · · + pk1uk), (p1nu1 + · · · + pknuk)〉

where the ui are fresh variables.
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Application to automated reasoning

Eliminate divisibility notions in terms of existentials:

• s | t to ∃d. t = sd

• s ≡ t (mod u) to ∃d. t − s = ud

• coprime(s, t) to ∃x y. sx + ty = 1.

Many basic facts about divisibility can be automatically reduced to
ideal membership problems.
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Examples

d|a ∧ d|b ⇒ d|(a − b)

coprime(d, a) ∧ coprime(d, b) ⇒ coprime(d, ab)

coprime(d, ab) ⇒ coprime(d, a)

coprime(a, b) ∧ x ≡ y (mod a) ∧ x ≡ y (mod b) ⇒ x ≡ y (mod (ab))

m|r ∧ n|r ∧ coprime(m, n) ⇒ (mn)|r

coprime(xy, x2 + y2) ⇔ coprime(x, y)

coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)

ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

gcd(a, n) | b ⇒ ∃x. ax ≡ b (mod n)

17



Integral domains

ID = Ring ∪ {x · y = 0 ⇒ x = 0 ∨ y = 0} ∪ {¬(1 = 0)}

The nontriviality axiom isn’t that important, since word problems are
always true in the trivial ring.
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Integral domains

ID = Ring ∪ {x · y = 0 ⇒ x = 0 ∨ y = 0} ∪ {¬(1 = 0)}

The nontriviality axiom isn’t that important, since word problems are
always true in the trivial ring.

Solving the word problem is again equivalent to solving the entire
universal theory of integral domains, though for a different reason:

ID ⊢ p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q1 = 0 ∨ · · · ∨ qm = 0

iff

ID ⊢ p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q1 · · · qm = 0
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Embedding in field of fractions
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Universal formula in the language of rings holds in all integral
domains [of characteristic p] iff it holds in all fields [of characteristic
p].
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Embedding in algebraic closure
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Universal formula in the language of rings holds in all fields [of
characteristic p] iff it holds in all algebraically closed fields [of
characteristic p]
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Connection to the Nullstellensatz

Also, algebraically closed fields of the same characteristic are
elementarily equivalent.

For a universal formula in the language of rings, all these are
equivalent:

• It holds in all integral domains of characteristic 0

• It holds in all fields of characteristic 0

• It holds in all algebraically closed fields of characteristic 0

• It holds in any given algebraically closed field of characteristic 0

• It holds in C

Penultimate case is basically the Hilbert Nullstellensatz.
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Choice of proof system

The key integral domain axiom is non-Horn, so we can no longer use
Prolog-style proofs.

Lifschitz uses hyperresolution proofs in a sharp canonical form, and
gets a similar argument.

We consider refutation proofs using simple binary resolution.

Assume that all axioms are instantiated first (Herbrand) so we just
need to consider propositional resolution
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Resolution

Propositional resolution is the rule:

p ∨ A ¬p ∨ B

A ∨ B
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Resolution

Propositional resolution is the rule:

p ∨ A ¬p ∨ B

A ∨ B

We consider the disjunctions as multisets, not sets, so we need a
“factoring” rule:

p ∨ p ∨ A

p ∨ A

For example, an instance of the integral domain axiom is
¬(x2 = 0)∨x = 0∨x = 0 and a factoring step gives ¬(x2 = 0)∨x = 0
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Refutation completeness

Resolution is not complete: can’t deduce p ∨ q from p

However, it’s refutation complete, so if a set of clauses is
inconsistent, one can derive the empty disjunction ⊥

Proof is an easy induction on the number of variables occurring both
positively and negatively.
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Main induction hypothesis

Consider resolution refutations with axioms

ID ∪ {p1 = 0, . . . , pn = 0} ∪ {q1 6= 0, . . . , qm 6= 0}

For every clause deduced of the form

r∨

i=1

ei 6= 0 ∨
s∨

j=1

fj = 0

there is some integer k ≥ 0 such that

((
m∏

i=1

qi)(
s∏

j=1

fj))
k ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉
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Proof for the axioms

Easy to establish for the axioms, e.g. the congruence for equality:

x = x′ ∧ y = y′ ⇒ x · y = x′ · y′

where it suffices to show

(x · y − x′ · y′) ∈ IdZ 〈x − x′, y − y′, p1, . . . , pn〉

which is true since

x · y − x′ · y′ = y · (x − x′) + x′ · (y − y′)
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Proof for factoring

Factoring two instances of a of a negated equation

¬(e = 0) ∨ ¬(e = 0) ∨ Γ

¬(e = 0) ∨ Γ

is trivial since IdZ 〈e, e, . . .〉 is the same as IdZ 〈e, . . .〉.
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Proof for factoring

Factoring two instances of a of a negated equation

¬(e = 0) ∨ ¬(e = 0) ∨ Γ

¬(e = 0) ∨ Γ

is trivial since IdZ 〈e, e, . . .〉 is the same as IdZ 〈e, . . .〉.

Consider now factoring a positive equation

f = 0 ∨ f = 0 ∨ Γ

f = 0 ∨ Γ

By the inductive hypothesis we have (p · f · f)k ∈ I, so (p · f)2k ∈ I
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Proof for resolution (1)

e 6= 0 ∨
∨r

i=1
ei 6= 0 ∨

∨s

j=1
fj = 0 e = 0 ∨

∨t

i=1
gi 6= 0 ∨

∨u

j=1
hj = 0

∨r

i=1
ei 6= 0 ∨

∨t

i=1
gi 6= 0 ∨

∨s

j=1
fj = 0 ∨

∨u

j=1
hj = 0

By the inductive hypothesis, for some k ≥ 0, l ≥ 0

(QF )k ∈ IdZ 〈e, e1, . . . , er, p1, . . . , pn〉

(QeH)l ∈ IdZ 〈g1, . . . , gt, p1, . . . , pn〉

where Q =
∏m

i=1
qi, F =

∏s

j=1
fj and H =

∏u

j=1
hj .
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Proof for resolution (1)

e 6= 0 ∨
∨r

i=1
ei 6= 0 ∨

∨s

j=1
fj = 0 e = 0 ∨

∨t

i=1
gi 6= 0 ∨

∨u

j=1
hj = 0

∨r

i=1
ei 6= 0 ∨

∨t

i=1
gi 6= 0 ∨

∨s

j=1
fj = 0 ∨

∨u

j=1
hj = 0

By the inductive hypothesis, for some k ≥ 0, l ≥ 0

(QF )k ∈ IdZ 〈e, e1, . . . , er, p1, . . . , pn〉

(QeH)l ∈ IdZ 〈g1, . . . , gt, p1, . . . , pn〉

where Q =
∏m

i=1
qi, F =

∏s

j=1
fj and H =

∏u

j=1
hj . Write first as:

(QF )k − re ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉

32



Proof for resolution (2)

Since xl − yl is always divisible by x − y:

(QF )kl − rlel ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉

Use closure under multiplication:

(QF )kl(QH)l − rl(QeH)l ∈ IdZ 〈e1, . . . , er, p1, . . . , pn〉

Use second part of inductive hypothesis:

(QF )kl(QH)l ∈ IdZ 〈e1, . . . , er, g1, . . . , gt, p1, . . . , pn〉

Use closure under multiplication:

(QFH)kl+l ∈ IdZ 〈e1, . . . , er, g1, . . . , gt, p1, . . . , pn〉
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The Nullstellensatz

In the case of the empty clause we deduce:

ID ⊢ ∀x. p1(x) = 0 ∧ · · · ∧ pn(x) = 0 ⇒ q1(x) = 0 ∨ · · · ∨ qm(x) = 0

iff there is a nonnegative integer k with

(
m∏

i=1

qi)
k ∈ IdZ 〈p1, . . . , pn〉

In the special case of the word problem:

p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q = 0

iff there is a nonnegative integer k with

qk ∈ IdZ 〈p1, . . . , pn〉
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Other variants

p1 = 0 ∧ · · · ∧ pn = 0 ⇒ q = 0

holds in

• All integral domains / fields / algebraically closed fields iff some
qk ∈ IdZ 〈p1, . . . , pn〉

• All integral domains / fields / algebraically closed fields of
characteristic p iff some cqk ∈ IdZ 〈p, p1, . . . , pn〉 for p 6 |c

• All integral domains / fields / algebraically closed fields of
characteristic 0 iff some cqk ∈ IdZ 〈p1, . . . , pn〉 for c 6= 0 i.e. iff
qk ∈ IdQ 〈p1, . . . , pn〉
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The Real Nullstellensatz / Positivstellensatz

Same basic approach is workable for real-closed fields.

Every ordered integral domain can be embedded in a real-closed
field.

So focus on resolution refutations in the theory of ordered rings.
(Can eliminate equality in terms of ordering for simplicity.)

Details are a bit more technical but we can recover the usual Stengle
Positivstellensatz.
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Positivstellensatz for discrete ordered integral domains?

We can also consider discrete ordered integral domains, with axiom

x ≤ y ∨ y + 1 ≤ x

Details remain to be worked out.

Maybe we can get an analog of the Stengle Positivstellensatz but
with terms of the form x2 − x in place of the usual x2.
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Conclusions

• Close connection between Nullstellensatz-type results and word
problems

• Easy model-theoretic embedding argument saves us from
arguing about more complicated axioms

• Get one possible insight into where certain hypotheses get used
and where the complexity comes from

• Some merit to the simple free-variable calculi from automated
deduction

• Not clear we can get more refined forms like Schmüdgen PSatz
from this kind of analysis.

38


