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Overview

I Some memories of Andrzej, Bialystok and Cambridge

, Trouble-free formalization: some topological theorems due to
Borsuk.

/ Problematic formalization: Wilf-Zeilberger method for
hypergeometric summation.

I Hypergeometric sequences
I Gosper’s algorithm and the WZ method
I WZ examples, and their difficulties
I Generic proof of Sylvester’s identity, limit formulation of WZ
I Formalizing the gamma function
I Avoiding a countable family of algebraic varieties
I The method at work
I Automation and conclusions
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Back to Borsuk . . .



The Borsuk homotopy extension theorem

Fundamental in relating homotopy to extension properties:

BORSUK_HOMOTOPY_EXTENSION_HOMOTOPIC =

|- !f:real^M->real^N g s t u.

closed_in (subtopology euclidean t) s /\

(ANR s /\ ANR t \/ ANR u) /\

f continuous_on t /\

IMAGE f t SUBSET u /\

homotopic_with (\x. T) (s,u) f g

==> ?g’. homotopic_with (\x. T) (t,u) f g’ /\

g’ continuous_on t /\

IMAGE g’ t SUBSET u /\

!x. x IN s ==> g’(x) = g(x)



Bosuk’s separation theorem

Characterize separation properties in purely homotopic terms

BORSUK_SEPARATION_THEOREM_GEN =

|- !s:real^N->bool.

compact s

==> ((!c. c IN components((:real^N) DIFF s)

==> ~bounded c) <=>

(!f. f continuous_on s /\

IMAGE f s SUBSET sphere(vec 0,&1)

==> ?c. homotopic_with (\x. T)

(s,sphere(vec 0,&1)) f (\x. c)))

Note that the N = 1 case is a bit different, but this statement
works uniformly there too.



Separating space is a homotopy invariant
For compact sets, whether they separate space or not respects
homotopy equivalence

HOMOTOPY_EQUIVALENT_SEPARATION =

|- !s t. compact s /\ compact t /\

s homotopy_equivalent t

==> (connected((:real^N) DIFF s) <=>

connected((:real^N) DIFF t))

This yields in particular a major part of the Jordan Curve Theorem
in a more general context

JORDAN_BROUWER_SEPARATION =

|- !s a:real^N r.

&0 < r /\

s homeomorphic sphere(a,r)

==> ~connected((:real^N) DIFF s)
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A = B

There are algorithmic symbolic methods that can often do a
remarkably good job of automating the proof (or discovery) of
quite complicated sums.

I Gosper’s algorithm for hypergeometric antidifferences

I Zeilberger’s general method using closure properties of
holonomic sequences

I Wilf-Zeilberger method

We are mainly interested in formalizing WZ results, but we also
discuss Gosper’s algorithm since it’s an essential component of WZ.

Reference: ‘A = B’ by Marko Petkovšek, Herbert S. Wilf and
Doron Zeilberger.
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Doron Zeilberger.



A = B

There are algorithmic symbolic methods that can often do a
remarkably good job of automating the proof (or discovery) of
quite complicated sums.

I Gosper’s algorithm for hypergeometric antidifferences

I Zeilberger’s general method using closure properties of
holonomic sequences

I Wilf-Zeilberger method

We are mainly interested in formalizing WZ results, but we also
discuss Gosper’s algorithm since it’s an essential component of WZ.

Reference: ‘A = B’ by Marko Petkovšek, Herbert S. Wilf and
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Hypergeometric sequences
A hypergeometric sequence (or term or series) is one where the
ratio of successive terms is a rational function of n.

an+1/an = r(n) = p(n)/q(n)

For example, factorials where (n + 1)!/n! = n + 1, the ‘power of 2’
function with 2n+1/2n = 2.

We call a function of several variables hypergeometric if it’s
hypergeometric in each argument separately, e.g. binomial
coefficients (

n + 1

k

)
=

n + 1

n − k + 1

(
n

k

)
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Gosper’s algorithm

Given a hypergeometric term tk , Gosper’s algorithm will either

I Find a hypergeometric ‘antidifference’ or ‘indefinite sum’ sk
such that sk+1 − sk = tk

I Determine that no such hypergeometric antidifference exists

An antidifference also lets us solve definite summation problems:

b∑
k=a

tk =
b∑

k=a

(sk+1 − sk) = sb+1 − sa

If sk+1 − sk = tk and sk is hypergeometric, sk and tk are
rational-function multiples of each other, so tk is hypergeometric
too.
However some hypergeometric terms have no hypergeometric
antidifference.
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Gosper example

Consider the term tk = k·k!
nk

(n
k

)
. We’ll use the implementation of

Gosper’s algorithm in Maxima due to Fabrizio Caruso:

(%i2) AntiDifference(k * k! * binomial(n,k) / n^k,k);

1 - k

(%o2) - k! n binomial(n, k)

That is sk = −k!n1−k(n
k

)
. This lets us easily verify the following

definite sum, which was problem E 3088 in the “American
Mathematical Monthly”.

n∑
k=1

k · k!

nk

(
n

k

)
= sn+1 − s1 = n



Gosper example

Consider the term tk = k·k!
nk

(n
k

)
. We’ll use the implementation of

Gosper’s algorithm in Maxima due to Fabrizio Caruso:

(%i2) AntiDifference(k * k! * binomial(n,k) / n^k,k);

1 - k

(%o2) - k! n binomial(n, k)

That is sk = −k!n1−k(n
k

)
. This lets us easily verify the following

definite sum, which was problem E 3088 in the “American
Mathematical Monthly”.

n∑
k=1

k · k!

nk

(
n

k

)
= sn+1 − s1 = n



Gosper example

Consider the term tk = k·k!
nk

(n
k

)
. We’ll use the implementation of

Gosper’s algorithm in Maxima due to Fabrizio Caruso:

(%i2) AntiDifference(k * k! * binomial(n,k) / n^k,k);

1 - k

(%o2) - k! n binomial(n, k)

That is sk = −k!n1−k(n
k

)
. This lets us easily verify the following

definite sum, which was problem E 3088 in the “American
Mathematical Monthly”.

n∑
k=1

k · k!

nk

(
n

k

)
= sn+1 − s1 = n



From Gosper to WZ

We’ll explicitly consider terms parametrized by n, say F (n, k)
where summation is over k , with finite support w.r.t. k for each n.

Even when a hypergeometric term has a hypergeometric definite
sum, it might not have a hypergeometric antidifference, so
Gosper’s algorithm doesn’t help, e.g.

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n

but it turns out
(n
k

)
has no hypergeometric antidifference.

The idea of the WZ algorithm is to apply Gosper not to F (n, k)
itself, but rather to F (n + 1, k)− F (n, k) (or in general a more
complicated combination, but we’ll ignore that here).
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The basic WZ idea

We say that G (n, k) is the WZ-mate of F (n, k), and that F and G
form a ‘WZ-pair’, when

F (n + 1, k)− F (n, k) = G (n, k + 1)− G (n, k)

We get a similar telescoping phenomenon summing over k

b∑
k=a

F (n + 1, k)−
b∑

k=a

F (n, k) = G (n, b + 1)− G (n, a)

If G (n, k) has finite support, summing over all (or enough) integers
shows

∑
k F (n + 1, k)−

∑
k F (n, k) = 0, i.e. the sum is

independent of n.
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The WZ method

If we want to verify a summation of the form
∑

k F (n, k) = S(n)

1. Divide through by S(n) so we just need the special case∑
k F (n, k) = 1

2. Apply Gosper’s algorithm to find a WZ-mate G (n, k) with
F (n + 1, k)− F (n, k) = G (n, k + 1)− G (n, k)

3. Conclude that
∑

k F (n, k) is independent of n and so we just
need to check the following, which we expect to be easy∑

k F (0, k) = 1
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WZ example

Closely following ‘A = B’, we prove
∑

k

(n
k

)2
=
(2n
n

)

1. We divide through by the right-hand side so we need to verify∑
k F (n, k) = 1 where

F (n, k) =

(n
k

)2(2n
n

) =
n!4

k!2(n − k)!2(2n)!

2. We apply Gosper’s algorithm to obtain the magic rational
function

R(n, k) =
−k2(3n − 2k + 3)

2(n − k + 1)2(2n + 1)

such that G (n, k) = R(n, k)F (n, k) satisfies the key property
F (n + 1, k)− F (n, k) = G (n, k + 1)− G (n, k)

3. So
∑

k F (n, k) is independent of n, so we can evaluate the
case n = 0, which is easy to simplify to 1
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A routine formalization?

It now seems very natural to formally certify the basic
manipulations, using a standard WZ implementation to provide the
key rational function. All we need is to formalize this:

“Well, at this point we have arrived at a situation that
will be referred to throughout this book as a “routinely
verifiable” identity. That phrase means roughly that your
pet chimpanzee could check out the equation. More
precisely it means this. First cancel out all factors that
look like cn or ck [. . . ] that can be cancelled. Then
replace every binomial coefficient in sight by the quotient
of factorials that it represents. Finally, cancel out all of
the factorials by suitable divisions, leaving only a
polynomial identity that involves n and k.” (from
‘A = B’)
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Problems

Unfortunately when you examine it closely (as formalizing makes
you do) this looks much too glib:

I We are supposed to sum over all integers, but how are
factorials and binomial coefficients defined for negative
numbers?

I It’s not at all clear why it’s valid to replace(n
k

)
= n!/k!(n − k)! since that is in general only

valid/meaningful for 0 ≤ k ≤ n

I The rational function certificates often have poles, so on the
face of it we seem to be simplifying terms of the form 0/0.

It seems very hard to avoid these issues in a nice and automatable
way if we use a straightforward interpretation.



Problems

Unfortunately when you examine it closely (as formalizing makes
you do) this looks much too glib:

I We are supposed to sum over all integers, but how are
factorials and binomial coefficients defined for negative
numbers?

I It’s not at all clear why it’s valid to replace(n
k

)
= n!/k!(n − k)! since that is in general only

valid/meaningful for 0 ≤ k ≤ n

I The rational function certificates often have poles, so on the
face of it we seem to be simplifying terms of the form 0/0.

It seems very hard to avoid these issues in a nice and automatable
way if we use a straightforward interpretation.



Problems

Unfortunately when you examine it closely (as formalizing makes
you do) this looks much too glib:

I We are supposed to sum over all integers, but how are
factorials and binomial coefficients defined for negative
numbers?

I It’s not at all clear why it’s valid to replace(n
k

)
= n!/k!(n − k)! since that is in general only

valid/meaningful for 0 ≤ k ≤ n

I The rational function certificates often have poles, so on the
face of it we seem to be simplifying terms of the form 0/0.

It seems very hard to avoid these issues in a nice and automatable
way if we use a straightforward interpretation.



Problems

Unfortunately when you examine it closely (as formalizing makes
you do) this looks much too glib:

I We are supposed to sum over all integers, but how are
factorials and binomial coefficients defined for negative
numbers?

I It’s not at all clear why it’s valid to replace(n
k

)
= n!/k!(n − k)! since that is in general only

valid/meaningful for 0 ≤ k ≤ n

I The rational function certificates often have poles, so on the
face of it we seem to be simplifying terms of the form 0/0.

It seems very hard to avoid these issues in a nice and automatable
way if we use a straightforward interpretation.



Problems

Unfortunately when you examine it closely (as formalizing makes
you do) this looks much too glib:

I We are supposed to sum over all integers, but how are
factorials and binomial coefficients defined for negative
numbers?

I It’s not at all clear why it’s valid to replace(n
k

)
= n!/k!(n − k)! since that is in general only

valid/meaningful for 0 ≤ k ≤ n

I The rational function certificates often have poles, so on the
face of it we seem to be simplifying terms of the form 0/0.

It seems very hard to avoid these issues in a nice and automatable
way if we use a straightforward interpretation.



Generic proof of Sylvester’s identity

For inspiration we look at the proof in HOL Light of Sylvester’s
determinant identity det(I + AB) = det(I + BA).

It’s fairly easy by padding out the matrices to assume they are
square. Then we have

det(I + AB) det(A) = det(A + ABA) = det(A) det(I + BA)

and the result follows by cancelling det(A) provided that is not
zero.
To handle the general case we use a limit argument, that every
matrix can be approached arbitrarily closely by an invertible one.
This effectively lets us choose a ‘generic’ matrix in the main
argument.
We want to do the same sort of thing with WZ.
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The gamma function
In order to use limits, we need to generalize things from the
integers to the reals, defining Γ(z) such that Γ(n + 1) = n!



Formalizing the gamma function

We define complex gamma functions via the following limit,
though we derive other equivalent forms of the definition

Γ(z) = lim
n→∞

nzn!

Πn
m=0(z + m)

In HOL Light:

|- cgamma(z) =

lim sequentially

(\n. (Cx(&n) cpow z * Cx(&(FACT n))) /

cproduct(0..n) (\m. z + Cx(&m)))

We derive many useful properties and specialize to the real gamma
function gamma, which is what we use here.
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Generalizing to the reals

We establish some definitions to generalize factorials and binomial
coefficients to the reals:

|- rfact x = gamma(x + &1)

|- rbinom(n,k) = rfact n / (rfact k * rfact (n - k))

In general, factorials are still not well-defined at negative integers,
and similarly not all binomial coefficients make sense.
But they behave very well as limits

|- !net nn kk n k.

(nn ---> &n) net /\ (kk ---> &k) net

==> ((\a. rbinom(nn a,kk a))

---> &(binom(n,k))) net

This lets us justify all the ‘naive’ manipulations in this context
without any case analysis.
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Making limits work
However, to make the limit argument work, we need to show we
can approach a pair (n, k) arbitrarily closely while avoiding various
special values:

I Those where Γ is applied to negative integers where it is
undefined, or where recurrence formulas fail.

I Those where the denominator of the rational function in the
certificate becomes zero.

All problem cases (x , y) are defined by a bivariate polynomial with
rational coefficients.

|- ratpolyfun p <=>

?s. FINITE s /\

s SUBSET (:num#num) CROSS rational /\

p = \(x,y). sum s

(\((i,j),c). c * x pow i * y pow j)

|- ratty t <=>

?p. ratpolyfun p /\ p t = &0 /\ ~(!w. p w = &0)
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Avoiding a countable family of algebraic varieties

We want to show that any integer point (n, k) can be approached
arbitrarily closely by a pair of reals (x , y) that is not ‘ratty’. This
follows from:

A non-trivial algebraic variety has empty interior.

|- !f c. real_polynomial_function f /\

~(!x. f x = c)

==> interior {x | f(x) = c} = {}

A countable union of nowhere dense sets has empty interior (this is
a Baire-type result):

|- !g:(real^N->bool)->bool.

COUNTABLE g /\

(!s. s IN g ==> closed s /\ interior s = {})

==> interior(UNIONS g) = {}
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The WZ limit theorem
Hence we can obtain a WZ-type theorem that allows one free rein
to manipulate terms ‘naively’:

|- (!n. FINITE {k | ~(f n k = &0)}) /\

(!n k. (FF ---> f n k) (at(complex(&n,&k)))) /\

(!n k. integer k /\ k < &0

==> (FF ---> &0) (at(complex(&n,k)))) /\

(!n B. ?i j. integer i /\ integer j /\

i < &0 /\ &B <= j /\

(GG ---> &0) (at(complex(&n,i))) /\

(GG ---> &0) (at(complex(&n,j)))) /\

(!n k. ~ratty(n,k)

==> FF(complex(n + &1,k)) -

FF(complex(n,k)) =

GG(complex(n,k + &1)) -

GG(complex(n,k))) /\

sum (:num) (f 0) = l

==> !n. sum (:num) (f n) = l



An example

We define appropriate F (n, k) and G (n, k) for the example∑n
k=0

(n
k

)
= 2n, as functions C→ R:

|- FF z = rbinom(z$1,z$2) / &2 rpow z$1

|- RR z = z$2 / (&2 * (z$2 - z$1 - &1))

We can justify the WZ-pair property for all reals except for a few
special cases, all ‘ratty’

|- ~(n + &1 = &0) /\ ~(n + &1 = k) /\

~(k + &1 = &0) /\ ~(n = k)

==> FF(complex(n + &1,k)) - FF(complex(n,k)) =

GG(complex(n,k + &1)) - GG(complex(n,k))
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Conclusions and thoughts on automation

I We have tested examples by hand and they all work exactly
following the style of the ‘naive’ presentation in ‘A = B’, but
now justified by a clear semantics.

I Most of the algebraic manipulations are quite easy to
automate, including the cancellation of factorials, since we
avoid any possible trouble points or singularities.

I There is still currently a bit of manual work involved in
showing that suitable limits for end values of G exist.

I However, this could be automated too by arguing that the
denominator of the certificate, for fixed n, is a polynomial in k
and hence is nonzero for large enough |k|.

I We believe this is a satisfying, if somewhat involved,
interpretation, and that it justifies the WZ method more
clearly.



Conclusions and thoughts on automation

I We have tested examples by hand and they all work exactly
following the style of the ‘naive’ presentation in ‘A = B’, but
now justified by a clear semantics.

I Most of the algebraic manipulations are quite easy to
automate, including the cancellation of factorials, since we
avoid any possible trouble points or singularities.

I There is still currently a bit of manual work involved in
showing that suitable limits for end values of G exist.

I However, this could be automated too by arguing that the
denominator of the certificate, for fixed n, is a polynomial in k
and hence is nonzero for large enough |k|.

I We believe this is a satisfying, if somewhat involved,
interpretation, and that it justifies the WZ method more
clearly.



Conclusions and thoughts on automation

I We have tested examples by hand and they all work exactly
following the style of the ‘naive’ presentation in ‘A = B’, but
now justified by a clear semantics.

I Most of the algebraic manipulations are quite easy to
automate, including the cancellation of factorials, since we
avoid any possible trouble points or singularities.

I There is still currently a bit of manual work involved in
showing that suitable limits for end values of G exist.

I However, this could be automated too by arguing that the
denominator of the certificate, for fixed n, is a polynomial in k
and hence is nonzero for large enough |k|.

I We believe this is a satisfying, if somewhat involved,
interpretation, and that it justifies the WZ method more
clearly.



Conclusions and thoughts on automation

I We have tested examples by hand and they all work exactly
following the style of the ‘naive’ presentation in ‘A = B’, but
now justified by a clear semantics.

I Most of the algebraic manipulations are quite easy to
automate, including the cancellation of factorials, since we
avoid any possible trouble points or singularities.

I There is still currently a bit of manual work involved in
showing that suitable limits for end values of G exist.

I However, this could be automated too by arguing that the
denominator of the certificate, for fixed n, is a polynomial in k
and hence is nonzero for large enough |k|.

I We believe this is a satisfying, if somewhat involved,
interpretation, and that it justifies the WZ method more
clearly.



Conclusions and thoughts on automation

I We have tested examples by hand and they all work exactly
following the style of the ‘naive’ presentation in ‘A = B’, but
now justified by a clear semantics.

I Most of the algebraic manipulations are quite easy to
automate, including the cancellation of factorials, since we
avoid any possible trouble points or singularities.

I There is still currently a bit of manual work involved in
showing that suitable limits for end values of G exist.

I However, this could be automated too by arguing that the
denominator of the certificate, for fixed n, is a polynomial in k
and hence is nonzero for large enough |k|.

I We believe this is a satisfying, if somewhat involved,
interpretation, and that it justifies the WZ method more
clearly.


