
Challenges and Opportunities for Automated
Reasoning

John Harrison

Intel Corporation

10th October 2012 (15:50–16:35)

Summary of talk

I Motivation: the need for dependable proof
I LCF-style theorem proving
I Intel verification work
I The Flyspeck project

I Combining tools and certifying results
I Why is this important?
I Focus on nonlinear arithmetic

I Beyond standard geometric decision procedures:
I Without loss of generality
I Decision procedures for vector spaces

0: Motivation

Motivation: dependable proof

We are interested in machine-checked and machine generated
formal proof

I Not just a ‘yes’ or ‘no’ from a complex decision procedure
I A real step-by-step proof using basic rules of formal logic

Why?

I High reliability
I Independent checkability

How?

I LCF approach à la Milner

Motivation: dependable proof

We are interested in machine-checked and machine generated
formal proof

I Not just a ‘yes’ or ‘no’ from a complex decision procedure
I A real step-by-step proof using basic rules of formal logic

Why?

I High reliability
I Independent checkability

How?

I LCF approach à la Milner

Motivation: dependable proof

We are interested in machine-checked and machine generated
formal proof

I Not just a ‘yes’ or ‘no’ from a complex decision procedure
I A real step-by-step proof using basic rules of formal logic

Why?

I High reliability
I Independent checkability

How?

I LCF approach à la Milner

Motivation 1: the FDIV bug

One of the most serious problems that Intel has ever
encountered:

I Error in the floating-point division (FDIV) instruction on
some early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the
costs.

A very powerful motivation for performing rigorous proofs of
numerical algorithms!

Motivation 1: the FDIV bug

One of the most serious problems that Intel has ever
encountered:

I Error in the floating-point division (FDIV) instruction on
some early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the
costs.

A very powerful motivation for performing rigorous proofs of
numerical algorithms!

Motivation 1: the FDIV bug

One of the most serious problems that Intel has ever
encountered:

I Error in the floating-point division (FDIV) instruction on
some early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the
costs.

A very powerful motivation for performing rigorous proofs of
numerical algorithms!

Motivation 1: the FDIV bug

One of the most serious problems that Intel has ever
encountered:

I Error in the floating-point division (FDIV) instruction on
some early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the
costs.

A very powerful motivation for performing rigorous proofs of
numerical algorithms!

Motivation 2: the Kepler conjecture

I States that no arrangement of identical balls in ordinary
3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

I Hales, working with Ferguson, arrived at a proof in 1998,
consisting of 300 pages of mathematics plus 40,000 lines
of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

I Hales submitted his proof to Annals of Mathematics . . .

Motivation 2: the Kepler conjecture

I States that no arrangement of identical balls in ordinary
3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

I Hales, working with Ferguson, arrived at a proof in 1998,
consisting of 300 pages of mathematics plus 40,000 lines
of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

I Hales submitted his proof to Annals of Mathematics . . .

Motivation 2: the Kepler conjecture

I States that no arrangement of identical balls in ordinary
3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

I Hales, working with Ferguson, arrived at a proof in 1998,
consisting of 300 pages of mathematics plus 40,000 lines
of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

I Hales submitted his proof to Annals of Mathematics . . .

The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my
perspective. They have not been able to certify the
correctness of the proof, and will not be able to certify
it in the future, because they have run out of energy to
devote to the problem. This is not what I had hoped
for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”

The birth of Flyspeck

I Hales’s proof was eventually published, and no significant
error has been found in it. Nevertheless, the verdict is
disappointingly lacking in clarity and finality.

I As a result of this experience, the journal changed its
editorial policy on computer proof so that it will no longer
even try to check the correctness of computer code.

I Dissatisfied with this state of affairs, Hales initiated a
project called Flyspeck to completely formalize the proof.

I “Flyspeck” = “Formal proof of the Kepler Conjecture”

The birth of Flyspeck

I Hales’s proof was eventually published, and no significant
error has been found in it. Nevertheless, the verdict is
disappointingly lacking in clarity and finality.

I As a result of this experience, the journal changed its
editorial policy on computer proof so that it will no longer
even try to check the correctness of computer code.

I Dissatisfied with this state of affairs, Hales initiated a
project called Flyspeck to completely formalize the proof.

I “Flyspeck” = “Formal proof of the Kepler Conjecture”

The birth of Flyspeck

I Hales’s proof was eventually published, and no significant
error has been found in it. Nevertheless, the verdict is
disappointingly lacking in clarity and finality.

I As a result of this experience, the journal changed its
editorial policy on computer proof so that it will no longer
even try to check the correctness of computer code.

I Dissatisfied with this state of affairs, Hales initiated a
project called Flyspeck to completely formalize the proof.

I “Flyspeck” = “Formal proof of the Kepler Conjecture”

The birth of Flyspeck

I Hales’s proof was eventually published, and no significant
error has been found in it. Nevertheless, the verdict is
disappointingly lacking in clarity and finality.

I As a result of this experience, the journal changed its
editorial policy on computer proof so that it will no longer
even try to check the correctness of computer code.

I Dissatisfied with this state of affairs, Hales initiated a
project called Flyspeck to completely formalize the proof.

I “Flyspeck” = “Formal proof of the Kepler Conjecture”

1: Combining tools and
certifying results

Combining tools and certifying results: Why?

I Formal verification uses a wide range of tools including
SAT and SMT solvers, model checkers and theorem
provers

I The Kepler proof uses linear programming, nonlinear
optimization, and other more ad hoc algorithms

I Many powerful facilities in computer algebra systems that
we’d like to exploit

I May want to combine work done in different theorem
provers, e.g. ACL2, Coq, HOL, Isabelle.

Combining tools and certifying results: Why?

I Formal verification uses a wide range of tools including
SAT and SMT solvers, model checkers and theorem
provers

I The Kepler proof uses linear programming, nonlinear
optimization, and other more ad hoc algorithms

I Many powerful facilities in computer algebra systems that
we’d like to exploit

I May want to combine work done in different theorem
provers, e.g. ACL2, Coq, HOL, Isabelle.

Combining tools and certifying results: Why?

I Formal verification uses a wide range of tools including
SAT and SMT solvers, model checkers and theorem
provers

I The Kepler proof uses linear programming, nonlinear
optimization, and other more ad hoc algorithms

I Many powerful facilities in computer algebra systems that
we’d like to exploit

I May want to combine work done in different theorem
provers, e.g. ACL2, Coq, HOL, Isabelle.

Combining tools and certifying results: Why?

I Formal verification uses a wide range of tools including
SAT and SMT solvers, model checkers and theorem
provers

I The Kepler proof uses linear programming, nonlinear
optimization, and other more ad hoc algorithms

I Many powerful facilities in computer algebra systems that
we’d like to exploit

I May want to combine work done in different theorem
provers, e.g. ACL2, Coq, HOL, Isabelle.

Diversity at Intel

Intel is best known as a hardware company, and hardware is
still the core of the company’s business. However this entails
much more:

I Microcode
I Firmware
I Protocols
I Software

If the Intel Software and Services Group (SSG) were split off
as a separate company, it would be in the top 10 software
companies worldwide.

Diversity at Intel

Intel is best known as a hardware company, and hardware is
still the core of the company’s business. However this entails
much more:

I Microcode
I Firmware
I Protocols
I Software

If the Intel Software and Services Group (SSG) were split off
as a separate company, it would be in the top 10 software
companies worldwide.

A diversity of verification problems

This gives rise to a corresponding diversity of verification
problems, and of verification solutions.

I Propositional tautology/equivalence checking (FEV)
I Symbolic simulation
I Symbolic trajectory evaluation (STE)
I Temporal logic model checking
I Combined decision procedures (SMT)
I First order automated theorem proving
I Interactive theorem proving

Integrating all these is a challenge!

Flyspeck: a diversity of methods

The Flyspeck proof combines large amounts of pure
mathematics, optimization programs and special-purpose
programs:

I Standard mathematics including Euclidean geometry and
measure theory

I More specialized theoretical results on hypermaps, fans
and packing.

I Enumeration procedure for ‘tame’ graphs
I Many linear programming problems.
I Many nonlinear programming problems.

Certificates for linear arithmetic

I Generally works quite well for universal formulas over R or
Q.

I The key is Farkas’s Lemma, which implies that for any
unsatisfiable set of inequalities, there’s a linear
combination of them that’s ‘obviously false’ like 1 < 0.

I Alexey Solovyev’s highly optimized implementation of this
is essential for Flyspeck.

Certificates for linear arithmetic

I Generally works quite well for universal formulas over R or
Q.

I The key is Farkas’s Lemma, which implies that for any
unsatisfiable set of inequalities, there’s a linear
combination of them that’s ‘obviously false’ like 1 < 0.

I Alexey Solovyev’s highly optimized implementation of this
is essential for Flyspeck.

Certificates for linear arithmetic

I Generally works quite well for universal formulas over R or
Q.

I The key is Farkas’s Lemma, which implies that for any
unsatisfiable set of inequalities, there’s a linear
combination of them that’s ‘obviously false’ like 1 < 0.

I Alexey Solovyev’s highly optimized implementation of this
is essential for Flyspeck.

Certificates for universal theory of reals (1)

I There is an analogous way of certifying nonlinear universal
formulas over R using the Real Nullstellensatz, which
involves sums of squares (SOS):

I The polynomial equations p1(x) = 0, . . . , pk (x) = 0 in a
real closed closed field have no common solution iff there
are polynomials q1(x), . . . , qk (x), s1(x), . . . , sm(x) such
that

q1(x) ·p1(x)+ · · ·+qk (x) ·pk (x)+s1(x)2 + · · ·+sm(x)2 = −1

I The similar but more intricate Positivstellensatz
generalizes this to inequalities of all kinds.

Certificates for universal theory of reals (1)

I There is an analogous way of certifying nonlinear universal
formulas over R using the Real Nullstellensatz, which
involves sums of squares (SOS):

I The polynomial equations p1(x) = 0, . . . , pk (x) = 0 in a
real closed closed field have no common solution iff there
are polynomials q1(x), . . . , qk (x), s1(x), . . . , sm(x) such
that

q1(x) ·p1(x)+ · · ·+qk (x) ·pk (x)+s1(x)2 + · · ·+sm(x)2 = −1

I The similar but more intricate Positivstellensatz
generalizes this to inequalities of all kinds.

Certificates for universal theory of reals (1)

I There is an analogous way of certifying nonlinear universal
formulas over R using the Real Nullstellensatz, which
involves sums of squares (SOS):

I The polynomial equations p1(x) = 0, . . . , pk (x) = 0 in a
real closed closed field have no common solution iff there
are polynomials q1(x), . . . , qk (x), s1(x), . . . , sm(x) such
that

q1(x) ·p1(x)+ · · ·+qk (x) ·pk (x)+s1(x)2 + · · ·+sm(x)2 = −1

I The similar but more intricate Positivstellensatz
generalizes this to inequalities of all kinds.

Certificates for universal theory of reals (2)

The appropriate certificates can be found in practice via
semidefinite programming (SDP). For example
23x2 + 6xy + 3y2− 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0 or

∀a b c x . ax2 + bx + c = 0⇒ b2 − 4ac ≥ 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.

Certificates for universal theory of reals (2)

The appropriate certificates can be found in practice via
semidefinite programming (SDP). For example
23x2 + 6xy + 3y2− 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0 or

∀a b c x . ax2 + bx + c = 0⇒ b2 − 4ac ≥ 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.

Results on floating-point verification

I Many floating-point algorithms need a proven bound on the
difference between a mathematical function f (x) and a
polynomial p(x).

I Use an intermediate, very accurate, Taylor series t(x) and
|f (x)− p(x)| ≤ |f (x)− t(x)|+ |t(x)− p(x)|.

I Core problem becomes bounding polynomial t(x)− p(x)
on an interval.

I SOS works very easily in this univariate case: can
generate accurate certificates using a more direct method.

Results on floating-point verification

I Many floating-point algorithms need a proven bound on the
difference between a mathematical function f (x) and a
polynomial p(x).

I Use an intermediate, very accurate, Taylor series t(x) and
|f (x)− p(x)| ≤ |f (x)− t(x)|+ |t(x)− p(x)|.

I Core problem becomes bounding polynomial t(x)− p(x)
on an interval.

I SOS works very easily in this univariate case: can
generate accurate certificates using a more direct method.

Results on floating-point verification

I Many floating-point algorithms need a proven bound on the
difference between a mathematical function f (x) and a
polynomial p(x).

I Use an intermediate, very accurate, Taylor series t(x) and
|f (x)− p(x)| ≤ |f (x)− t(x)|+ |t(x)− p(x)|.

I Core problem becomes bounding polynomial t(x)− p(x)
on an interval.

I SOS works very easily in this univariate case: can
generate accurate certificates using a more direct method.

Results on floating-point verification

I Many floating-point algorithms need a proven bound on the
difference between a mathematical function f (x) and a
polynomial p(x).

I Use an intermediate, very accurate, Taylor series t(x) and
|f (x)− p(x)| ≤ |f (x)− t(x)|+ |t(x)− p(x)|.

I Core problem becomes bounding polynomial t(x)− p(x)
on an interval.

I SOS works very easily in this univariate case: can
generate accurate certificates using a more direct method.

Results on Flyspeck

Some simple Flyspeck inequalities, after being expressed
componentwise, can be proved efficiently by SOS certification,
e.g. this one in HOL Light syntax:

!u v w:realˆ3.dist(u,v) >= &2 /\
dist(u,w) >= &2 /\
dist(v,w) >= &2 /\
norm(u - v) < sqrt(&8)
==> norm(w - &1 / &2 % (u + v))

> norm(u - v) / &2

However, some of the more complex ones seem to be out of
reach of current SOS implementations.

Results on Flyspeck

Some simple Flyspeck inequalities, after being expressed
componentwise, can be proved efficiently by SOS certification,
e.g. this one in HOL Light syntax:

!u v w:realˆ3.dist(u,v) >= &2 /\
dist(u,w) >= &2 /\
dist(v,w) >= &2 /\
norm(u - v) < sqrt(&8)
==> norm(w - &1 / &2 % (u + v))

> norm(u - v) / &2

However, some of the more complex ones seem to be out of
reach of current SOS implementations.

Alternative approaches

I Alternative algorithms for real quantifier elimination
I CAD — efficient but apparently difficult to certify
I Cohen/Hörmander — possible but apparently inefficient
I Others? . . .

I Methods focused on restricted nonlinear optimzation
I Bernstein polynomials (Zumkeller)
I Interval arithmetic by proof (Solovyev)

Solovyev’s highly optimized implementation in HOL Light is
already able to prove many difficult inequalities, but efficiency
challenges remain.

Alternative approaches

I Alternative algorithms for real quantifier elimination
I CAD — efficient but apparently difficult to certify
I Cohen/Hörmander — possible but apparently inefficient
I Others? . . .

I Methods focused on restricted nonlinear optimzation
I Bernstein polynomials (Zumkeller)
I Interval arithmetic by proof (Solovyev)

Solovyev’s highly optimized implementation in HOL Light is
already able to prove many difficult inequalities, but efficiency
challenges remain.

Alternative approaches

I Alternative algorithms for real quantifier elimination
I CAD — efficient but apparently difficult to certify
I Cohen/Hörmander — possible but apparently inefficient
I Others? . . .

I Methods focused on restricted nonlinear optimzation
I Bernstein polynomials (Zumkeller)
I Interval arithmetic by proof (Solovyev)

Solovyev’s highly optimized implementation in HOL Light is
already able to prove many difficult inequalities, but efficiency
challenges remain.

2: Beyond standard
geometric decision

procedures

Beyond existing decision procedures

Many geometric problems can be solved efficiently using
coordinate reduction and automated algorithms, e.g.

I Wu’s algorithm or Gröbner bases for problems over
algebraically closed fields.

I Nonlinear real decision procedures for real-specific cases,
e.g. involving inequalities.

However, these are not always efficient when applied in a
straightforward manner, especially with the extra problem of
generating a complete formal proof.

Beyond existing decision procedures

Many geometric problems can be solved efficiently using
coordinate reduction and automated algorithms, e.g.

I Wu’s algorithm or Gröbner bases for problems over
algebraically closed fields.

I Nonlinear real decision procedures for real-specific cases,
e.g. involving inequalities.

However, these are not always efficient when applied in a
straightforward manner, especially with the extra problem of
generating a complete formal proof.

Beyond existing decision procedures

Many geometric problems can be solved efficiently using
coordinate reduction and automated algorithms, e.g.

I Wu’s algorithm or Gröbner bases for problems over
algebraically closed fields.

I Nonlinear real decision procedures for real-specific cases,
e.g. involving inequalities.

However, these are not always efficient when applied in a
straightforward manner, especially with the extra problem of
generating a complete formal proof.

Beyond existing decision procedures

Many geometric problems can be solved efficiently using
coordinate reduction and automated algorithms, e.g.

I Wu’s algorithm or Gröbner bases for problems over
algebraically closed fields.

I Nonlinear real decision procedures for real-specific cases,
e.g. involving inequalities.

However, these are not always efficient when applied in a
straightforward manner, especially with the extra problem of
generating a complete formal proof.

Without loss of generality

I Mathematical proofs sometimes state that a certain
assumption can be made ‘without loss of generality’
(WLOG).

I Claims that proving the result in a more special case is
nevertheless sufficient to justify the theorem in full
generality.

I Often justified by some sort of symmetry or invariance in
the problem, particularly in geometry:

I Choose a convenient origin based on invariance under
translation

I Choose convenient coordinate axes based on rotation
invariance

Without loss of generality

I Mathematical proofs sometimes state that a certain
assumption can be made ‘without loss of generality’
(WLOG).

I Claims that proving the result in a more special case is
nevertheless sufficient to justify the theorem in full
generality.

I Often justified by some sort of symmetry or invariance in
the problem, particularly in geometry:

I Choose a convenient origin based on invariance under
translation

I Choose convenient coordinate axes based on rotation
invariance

Without loss of generality

I Mathematical proofs sometimes state that a certain
assumption can be made ‘without loss of generality’
(WLOG).

I Claims that proving the result in a more special case is
nevertheless sufficient to justify the theorem in full
generality.

I Often justified by some sort of symmetry or invariance in
the problem, particularly in geometry:

I Choose a convenient origin based on invariance under
translation

I Choose convenient coordinate axes based on rotation
invariance

HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists
I Systematically rewrites quantifiers ∀x . φ[x] to ∀x . φ[T (x)],

and likewise with other quantifiers, set abstractions etc.
I Uses a stored list of ‘invariance’ theorems to automatically

lift up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier
and more natural.

HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists

I Systematically rewrites quantifiers ∀x . φ[x] to ∀x . φ[T (x)],
and likewise with other quantifiers, set abstractions etc.

I Uses a stored list of ‘invariance’ theorems to automatically
lift up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier
and more natural.

HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists
I Systematically rewrites quantifiers ∀x . φ[x] to ∀x . φ[T (x)],

and likewise with other quantifiers, set abstractions etc.

I Uses a stored list of ‘invariance’ theorems to automatically
lift up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier
and more natural.

HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists
I Systematically rewrites quantifiers ∀x . φ[x] to ∀x . φ[T (x)],

and likewise with other quantifiers, set abstractions etc.
I Uses a stored list of ‘invariance’ theorems to automatically

lift up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier
and more natural.

HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists
I Systematically rewrites quantifiers ∀x . φ[x] to ∀x . φ[T (x)],

and likewise with other quantifiers, set abstractions etc.
I Uses a stored list of ‘invariance’ theorems to automatically

lift up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier
and more natural.

Avoiding coordinate reduction

I Performing a coordinate reduction is a general approach,
but often unnatural and inefficient, even with a good choice
of coordinates.

I Attractive to consider other algorithms (e.g. the area
method, bracket algebra, . . .)

I In collaboration with Solovay and Arthan, we considered
general decision procedures for various theories of vector
spaces

I Many interesting results, both positive and negative, and
some practically useful outcomes.

Avoiding coordinate reduction

I Performing a coordinate reduction is a general approach,
but often unnatural and inefficient, even with a good choice
of coordinates.

I Attractive to consider other algorithms (e.g. the area
method, bracket algebra, . . .)

I In collaboration with Solovay and Arthan, we considered
general decision procedures for various theories of vector
spaces

I Many interesting results, both positive and negative, and
some practically useful outcomes.

Avoiding coordinate reduction

I Performing a coordinate reduction is a general approach,
but often unnatural and inefficient, even with a good choice
of coordinates.

I Attractive to consider other algorithms (e.g. the area
method, bracket algebra, . . .)

I In collaboration with Solovay and Arthan, we considered
general decision procedures for various theories of vector
spaces

I Many interesting results, both positive and negative, and
some practically useful outcomes.

Avoiding coordinate reduction

I Performing a coordinate reduction is a general approach,
but often unnatural and inefficient, even with a good choice
of coordinates.

I Attractive to consider other algorithms (e.g. the area
method, bracket algebra, . . .)

I In collaboration with Solovay and Arthan, we considered
general decision procedures for various theories of vector
spaces

I Many interesting results, both positive and negative, and
some practically useful outcomes.

Vector space axioms

∀u v w. u + (v + w) = (u + v) + w
∀v w. v + w = w + v
∀v. 0 + v = v
∀v. − v + v = 0
∀a v w. a(v + w) = av + aw
∀a b v. (a + b)v = av + bv
∀v. 1v = v
∀a b v. (ab)v = a(bv)

The theory of real inner product spaces

The language of vector spaces plus an inner product operation
V × V → S written 〈−,−〉 and satisfying:

∀v w. 〈v,w〉 = 〈w,v〉
∀u v w. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
∀a v,w. 〈av,w〉 = a〈v,w〉
∀v. 〈v,v〉 ≥ 0
∀v. 〈v,v〉 = 0⇔ v = 0

Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded
with inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also
decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k .

Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded
with inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also
decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k .

Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded
with inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also
decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k .

The theory of real normed spaces

The language of vector spaces plus a norm operation V → S
written ‖ − ‖ and satisfying:

∀v. ‖v‖ = 0⇒ v = 0
∀a v. ‖av‖ = |a|‖v‖
∀v w. ‖v + w‖ ≤ ‖v‖+ ‖w‖

Normed spaces: better or worse?

I (Solovay) The full theory of real normed spaces is strongly
undecidable (same many-one degree as the true Π2

1
sentences in third-order arithmetic).

I (Arthan) Even the purely additive theory of 2-dimensional
normed spaces is strongly undecidable.

I (Harrison) However the ∀ (purely universal) fragment of the
theory is decidable. In the additive case, can be decided
by a generalization of parametrized linear programming.

I (Arthan) This decidability result is quite sharp: both the ∀∃
and ∃∀ fragments, and even the (∀)⇒ (∀) fragments are
undecidable.

Normed spaces: better or worse?

I (Solovay) The full theory of real normed spaces is strongly
undecidable (same many-one degree as the true Π2

1
sentences in third-order arithmetic).

I (Arthan) Even the purely additive theory of 2-dimensional
normed spaces is strongly undecidable.

I (Harrison) However the ∀ (purely universal) fragment of the
theory is decidable. In the additive case, can be decided
by a generalization of parametrized linear programming.

I (Arthan) This decidability result is quite sharp: both the ∀∃
and ∃∀ fragments, and even the (∀)⇒ (∀) fragments are
undecidable.

Normed spaces: better or worse?

I (Solovay) The full theory of real normed spaces is strongly
undecidable (same many-one degree as the true Π2

1
sentences in third-order arithmetic).

I (Arthan) Even the purely additive theory of 2-dimensional
normed spaces is strongly undecidable.

I (Harrison) However the ∀ (purely universal) fragment of the
theory is decidable. In the additive case, can be decided
by a generalization of parametrized linear programming.

I (Arthan) This decidability result is quite sharp: both the ∀∃
and ∃∀ fragments, and even the (∀)⇒ (∀) fragments are
undecidable.

Normed spaces: better or worse?

I (Solovay) The full theory of real normed spaces is strongly
undecidable (same many-one degree as the true Π2

1
sentences in third-order arithmetic).

I (Arthan) Even the purely additive theory of 2-dimensional
normed spaces is strongly undecidable.

I (Harrison) However the ∀ (purely universal) fragment of the
theory is decidable. In the additive case, can be decided
by a generalization of parametrized linear programming.

I (Arthan) This decidability result is quite sharp: both the ∀∃
and ∃∀ fragments, and even the (∀)⇒ (∀) fragments are
undecidable.

Real application in formalizing complex analysis
An example where our linear normed space procedure is much
more efficient than coordinate reduction:

|- abs(norm(w - z) - r) = d /\
norm(u - w) < d / &2 /\
norm(x - z) = r
==> d / &2 <= norm(x - u)

z

w

x

r

d

u

d/2

Conclusions

I Practical and efficient certification is an interesting problem
for symbolic computation algorithms generally.

I A useful tool in soundly integrating different proof tools,
which has value in verification and in mathematics

I Nonlinear arithmetic is a particularly challenging example
for such certification, and has many potential applications.

I There are strong motivations for looking for higher-level
(more efficient or conceptual) approaches to such
problems.

Conclusions

I Practical and efficient certification is an interesting problem
for symbolic computation algorithms generally.

I A useful tool in soundly integrating different proof tools,
which has value in verification and in mathematics

I Nonlinear arithmetic is a particularly challenging example
for such certification, and has many potential applications.

I There are strong motivations for looking for higher-level
(more efficient or conceptual) approaches to such
problems.

Conclusions

I Practical and efficient certification is an interesting problem
for symbolic computation algorithms generally.

I A useful tool in soundly integrating different proof tools,
which has value in verification and in mathematics

I Nonlinear arithmetic is a particularly challenging example
for such certification, and has many potential applications.

I There are strong motivations for looking for higher-level
(more efficient or conceptual) approaches to such
problems.

Conclusions

I Practical and efficient certification is an interesting problem
for symbolic computation algorithms generally.

I A useful tool in soundly integrating different proof tools,
which has value in verification and in mathematics

I Nonlinear arithmetic is a particularly challenging example
for such certification, and has many potential applications.

I There are strong motivations for looking for higher-level
(more efficient or conceptual) approaches to such
problems.

