
Formal Verification of Mathematical Algorithms 1

Formal Verification

of

Mathematical Algorithms

John Harrison

Intel Corporation

• The cost of bugs

• Formal verification

• Levels of verification

• HOL Light

• Formalizing mathematics

• Applications

• Conclusions

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 2

The cost of bugs

Computers are often used in safety-critical

systems where a failure could cause loss of life.

Even when not a matter of life and death, bugs

can be financially serious if a faulty product has

to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium
processor: US $500 million.

• Today, new products are ramped much

faster...

So Intel is especially interested in all techniques

to reduce errors.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 3

Complexity of designs

At the same time, market pressures are leading to

more and more complex designs where bugs are

more likely.

• A 4-fold increase in pre-silicon bugs in Intel

processor designs per generation.

• Approximately 8000 bugs introduced during

design of the Pentium 4.

Fortunately, pre-silicon detection rates are now

well over 99.5%.

Just enough to tread water...

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 4

Limits of testing

Bugs are usually detected by extensive testing,

including pre-silicon simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers

(possible inputs to an adder).

• Vastly higher number of possible states of a

complex microarchitecture.

Formal verification offers a possible solution to

the non-exhaustiveness problem.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 5

Formal verification

Formal verification: mathematically prove the

correctness of a design with respect to a

mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 6

Formal verification is hard

Writing out a completely formal proof of

correctness for real-world hardware and software

is difficult.

• Must specify intended behavior formally

• Need to make many hidden assumptions

explicit

• Requires long detailed proofs, difficult to

review

The state of the art is quite limited.

Software verification has been around since the

60s, but there have been few major successes.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 7

Machine-checked proof

A more promising approach is to have the proof

checked (or even generated) by a computer

program.

• It can reduce the risk of mistakes.

• The computer can automate some parts of

the proofs.

There are limits on the power of automation, so

detailed human guidance is usually necessary.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 8

Approaches to formal verification

There are three major approaches to formal

verification, and Intel uses all of them, often in

combination:

• Symbolic simulation

• Temporal logic model checking

• General theorem proving

One of the major tools used for hardware

verification at Intel is a combined system.

As well as general theorem proving and

traditional CTL and LTL model checking it

supports symbolic trajectory evaluation (STE).

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 9

Levels of verification

My job involves verifying higher-level

floating-point algorithms based on assumed

correct behavior of hardware primitives.

gate-level description

fma correct

sin correct

6

6

We will assume that all the operations used obey

the underlying specifications as given in the

Architecture Manual and the IEEE Standard for

Binary Floating-Point Arithmetic.

This is a typical specification for lower-level

verification (someone else’s job).

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 10

Context

Specific work reported here is for the Intel
ItaniumTM processor.

Some similar work has been done for software

libraries for the Intel Pentium 4 processor.

Floating point algorithms for division, square root

and transcendental functions are used for:

• Software libraries (C libm etc.) or compiler

inlining

• Implementing x86 hardware intrinsics

The level at which the algorithms are modeled is

similar in each case.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 11

Theorem proving infrastructure

What do we need to formally verify such

mathematical software?

• Theorems about basic real analysis and

properties of the transcendental functions,

and even bits of number theory.

• Theorems about special properties of floating

point numbers, floating point rounding etc.

• Automation of as much tedious reasoning as

possible.

• Programmability of special-purpose inference

routines.

• A flexible framework in which these

components can be developed and applied in

a reliable way.

We use the HOL Light theorem prover. Other

possibilities would include PVS and maybe ACL2.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 12

Quick introduction to HOL Light

HOL Light is a member of the large family of

HOL theorem provers.

• An LCF-style programmable proof checker

written in CAML Light / OCaml, which also

serves as the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms

and 3 axioms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 13

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪ ∆ ⊢ s(u) = t(v)

MK COMB

Γ ⊢ s = t
Γ ⊢ (λx. s) = (λx. t)

ABS

⊢ (λx. t)x = t
BETA

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 14

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪ ∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ − {q}) ∪ (∆ − {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 15

Formalized mathematics

Our work involves the actual formalization of

mathematics in a simple logical proof system.

(Not just formalization-in-principle.)

In the same spirit as the work of many logical

pioneers (Frege, Peano, Russell and Whitehead).

The aim is the same: precision in assertions and

reliability of proofs.

Arguably, formal proofs written out by people

would not be more reliable than informal proofs

— probably quite the reverse.

In fact, the proofs we do sometimes involve ≈ 108

primitive inferences — very difficult for people to

do at all!

But computers are very good at applying formal

rules efficiently and without error, so we really do

get a dramatic improvement in reliability.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 16

Applying formal real analysis

We’ve formalized a definitional construction of

the real numbers, and the development on top of

it of basic real analysis (limits, series,

differentiation, power series, . . .). Used:

• to prove basic identities used in computation

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• to verify Taylor or Laurent expansions for

functions with convergence criteria:

cot(x) = 1/x −
1

3
x −

1

45
x3 −

2

945
x5 − . . .

• and to prove that particular minimax

polynomials really are approximations to a

given precision.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 17

Applying formal number theory

Sometimes we need to employ a little number

theory too:

• Initial trigonometric range reduction

r = x − N · π/2 needs to be done with a

relatively involved algorithm. To justify it, we

need to analyze how close a floating-point

number can be to an integral multiple of π/2,

a classic problem in Diophantine

approximation solvable using convergents.

• Analytical proof of correctness of some square

root algorithms excludes special cases that

can be characterized as the solution of

Diophantine equations of the form

2pm = k2 + d. We need to enumerate a

provably exhaustive set of k and m for given

p and d.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 18

Programmability

Note that for some applications, programmability

of the theorem prover is practically essential.

The structure of the proof is essentially

predictable, and we can program up a general

procedure, whereas chreographing various

instances by hand would be almost unbearably

tedious.

• Can bound polynomial approximation error

using a more accurate Taylor series and a

recursive procedure based on recursive root

isolation and bounding of all the derivatives

of the difference polynomial.

• Can solve Diophantine equations using

even-odd case analysis to reduce p, and

proceed by recursion.

This is something HOL supports well, given its

implementation within a general purpose

programming language.

John Harrison Intel Corporation, 3rd June 2002

Formal Verification of Mathematical Algorithms 19

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed can be done in a unified way

with the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof of basic exclusion zone properties

• Routine relative error computation for the

final result before rounding

• Number-theoretic isolation of difficult cases

• Explicit computation with those cases

• Etc.

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

Could be said to realize, and extend, the work of

the logical pioneers in actual formalization.

John Harrison Intel Corporation, 3rd June 2002

