
Theorem Proving in Real Applications 1

Theorem Proving

in

Real Applications

John Harrison

Intel Corporation

• The cost of bugs

• Formal verification

• Levels of verification

• HOL Light

• Real analysis

• Formalizing floating-point arithmetic

• Examples illustrating claims

• Square root example

• Conclusions

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 2

The cost of bugs

Computers are often used in safety-critical

systems where a failure could cause loss of life.

Even when not a matter of life and death, bugs

can be financially serious if a faulty product has

to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium
processor: US $500 million.

• Today, new products are ramped much

faster...

So Intel is especially interested in all techniques

to reduce errors.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 3

Complexity of designs

At the same time, market pressures are leading to

more and more complex designs where bugs are

more likely.

• A 4-fold increase in pre-silicon bugs in Intel

processor designs per generation.

• Approximately 8000 bugs introduced during

design of the Pentium 4.

Fortunately, pre-silicon detection rates are now at

least 99.7%.

Just enough to tread water...

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 4

Limits of testing

Bugs are usually detected by extensive testing,

including pre-silicon simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers

(possible inputs to an adder).

• Vastly higher number of possible states of a

complex microarchitecture.

Formal verification offers a possible solution to

the non-exhaustiveness problem.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 5

Formal verification

Formal verification: mathematically prove the

correctness of a design with respect to a

mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 6

Approaches to formal verification

There are three major approaches to formal

verification, and Intel uses all of them, often in

combination:

• Symbolic simulation

• Temporal logic model checking

• General theorem proving

One of the major tools used for hardware

verification at Intel is a combined system.

As well as general theorem proving and

traditional CTL and LTL model checking it

supports symbolic trajectory evaluation (STE).

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 7

Levels of verification

My job involves verifying higher-level

floating-point algorithms based on assumed

correct behavior of hardware primitives.

gate-level description

fma correct

sin correct

6

6

We will assume that all the operations used obey

the underlying specifications as given in the

Architecture Manual and the IEEE Standard for

Binary Floating-Point Arithmetic.

This is a typical specification for lower-level

verification (someone else’s job).

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 8

Context

Specific work reported here is for the Intel
ItaniumTM processor.

Some similar work has been done for software

libraries for the Intel Pentium 4 processor.

Floating point algorithms for division, square root

and transcendental functions are used for:

• Software libraries (C libm etc.) or compiler

inlining

• Implementing x86 hardware intrinsics

The level at which the algorithms are modeled is

similar in each case.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 9

Theorem proving infrastructure

What do we need to formally verify such

mathematical software?

• Theorems about basic real analysis and

properties of the transcendental functions,

and even bits of number theory.

• Theorems about special properties of floating

point numbers, floating point rounding etc.

• Automation of as much tedious reasoning as

possible.

• Programmability of special-purpose inference

routines.

• A flexible framework in which these

components can be developed and applied in

a reliable way.

We use the HOL Light theorem prover. Other

possibilities would include PVS and maybe ACL2.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 10

Quick introduction to HOL Light

HOL Light is a member of the family of HOL

theorem provers, demonstrated at FMCAD’96.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as

the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms

and 3 axioms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 11

HOL real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 12

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (g o f) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 13

Using real analysis

Just to say what mathematical functions like sin,

log etc. are, and prove their basic properties,

requires a fair amount of real analysis. For

example, we use simple identities like:

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

At their core many algorithms use power series,

and to justify these, we need the typical Taylor or

Laurent series for the basic functions. For

example:

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

This one is harder to prove than you might think

(see Proofs from the Book).

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 14

Using number theory

Trigonometric range reduction requires an

analysis of how close a nonzero floating-point

number can be to a multiple of π
2 .

We formalize the proof that convergents to a real

number x, i.e. rationals p1/q1 < x < p2/q2 with

p2q1 = p1q2 + 1, are the best possible

approximation without having a larger

denominator.

|- (p2 * q1 = p1 * q2 + 1) /\

(&p1 / &q1 < x /\ x < &p2 / &q2)

==> !b. ~(b = 0) /\ b < q1 /\ b < q2

==> abs(&a / &b - x)

> &1 / &(q1 * q2)

We can use such convergents to find the minimal

distance between a nonzero floating-point number

and a multiple of π
2 .

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 15

HOL floating point theory

Generic theory, applicable to all required formats

(hardware-supported or not).

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 16

The (1 + ǫ) property

Most routine floating point proofs just use results

like the following:

|- normalizes fmt x /\

~(precision fmt = 0)

==> ?e. abs(e) <= mu rc /

&2 pow (precision fmt - 1) /\

(round fmt rc x = x * (&1 + e))

Rounded result is true result perturbed by

relative error.

Derived rules apply this result to computations in

a floating point algorithm automatically,

discharging the conditions as they go.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 17

Cancellation theorems

Many of our algorithms also rely on a number of

low-level tricks.

Rounding is trivial when the value being rounded

is already representable exactly:

|- a IN iformat fmt ==> (round fmt rc a = a)

Some special situations where this happens are as

follows:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

|- x IN iformat fmt /\

y IN iformat fmt /\

abs(x) <= abs(y)

==> (round fmt Nearest (x + y) - y)

IN iformat fmt /\

(round fmt Nearest (x + y) - (x + y))

IN iformat fmt

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 18

The need for automation

Linear arithmetic, e.g. in analyzing properties of

floating-point rounding.

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

First order logic, e.g. proving basic logical

lemmas or filling in boring details.

let sym_lemma = prove

(‘(!m n. P m n ==> P n m)

==> ((!m n. P m n) =

(!m n. m <= n ==> P m n))‘,

MESON_TAC[LE_CASES]);;

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 19

The need for programmability

There’s really no chance that a theorem prover

designer will build in all the special proof

procedures needed, so the user must be able to

program the system (without compromising

soundness). For example:

• Automatically evaluate value of specific

floating-point encoding into its real value

• Automatically prove that a particular power

series approximation to a transcendental

function is accurate to a given ǫ over a given

[a, b].

The latter is much harder, but is important since

most transcendentals are approximated by Remez

minimax approximations, not the Taylor series.

Besides, the coefficients are floating-point

numbers.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 20

Square root example

1. y0 = 1√
a
(1 + ǫ) frsqrta

b = 1
2a Single

2. z0 = y2
0 Single

S0 = ay0 Single

3. d = 1
2 − bz0 Single

k = ay0 − S0 Single

H0 = 1
2y0 Single

4. e = 1 + 3
2d Single

T0 = dS0 + k Single

5. S1 = S0 + eT0 Single

c = 1 + de Single

6. d1 = a − S1S1 Single

H1 = cH0 Single

7. S = S1 + d1H1 Single

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 21

Square root perfect rounding

Several square root algorithms work by a final

rounding of a more accurate intermediate result

S∗. For perfect rounding, we should ensure that

the two real numbers
√

a and S∗ never fall on

opposite sides of a midpoint between two floating

point numbers, as here:

-
66√

a
S∗

Rather than analyzing the rounding of the final

approximation explicitly, we can just appeal to

general properties of the square root function.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 22

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 23

Difficult cases

So to ensure the equal rounding property, we need

to make the final approximation before the last

rounding accurate to more than twice the final

accuracy.

The fused multiply-add (fma) can help us to

achieve just under twice the accuracy, but to do

better is slow and complicated. How can we

bridge the gap?

Only a fairly small number of possible inputs a

can come closer than say 2−(2p−1). For all the

other inputs, a straightforward relative error

calculation (which in HOL we have largely

automated) yields the result.

To obtain the complete result, we isolate all

special cases and explicitly “run” the algorithm

on them inside the logic.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 24

Isolating difficult cases

By some straightforward mathematics,

formalizable in HOL without difficulty, one can

show that the difficult cases have mantissas m,

considered as p-bit integers, such that one of the

following diophantine equations has a solution k

for d a small integer. (Typically ≤ 10, depending

on the exact accuracy of the final approximation

before rounding.)

2p+2m = k2 + d

or

2p+1m = k2 + d

We consider the equations separately for each

chosen d. For example, we might be interested in

whether:

2p+1m = k2 − 7

has a solution. If so, the possible value(s) of m

are added to the set of difficult cases.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 25

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2p+1m = k2 + d) ⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no

solutions. In general, we recurse down to an

equation that is trivially unsatisfiable, as here, or

immediately solvable. One equation can split into

two, but never more.

John Harrison Intel Corporation, 4th April 2002

Theorem Proving in Real Applications 26

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed can be done in a unified way

with the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof of basic exclusion zone properties

• Routine relative error computation for the

final result before rounding

• Number-theoretic isolation of difficult cases

• Explicit computation with those cases

• Etc.

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

The detailed examination of the proofs that

formal verification requires threw up significant

improvements that have led to some faster

algorithms.

John Harrison Intel Corporation, 4th April 2002

