
Decimal Transcendentals via Binary

John Harrison, Intel Corporation

ARITH-19, Portland OR
June 10, 2009 (11:00–11:30)

0

Why decimal transcendentals?

Intel is distributing a portable open-source library supporting the
decimal formats in the newly revised IEEE-754R Standard:

http://software.intel.com/en-us/articles/

intel-decimal-floating-point-math-library

Most transcendental functions are not widely used in financial
applications for which decimal arithmetic is intended.

1

Why decimal transcendentals?

Intel is distributing a portable open-source library supporting the
decimal formats in the newly revised IEEE-754R Standard:

http://software.intel.com/en-us/articles/

intel-decimal-floating-point-math-library

Most transcendental functions are not widely used in financial
applications for which decimal arithmetic is intended. But

• Some transcendentals are used in financial applications, e.g.
computing compound interest.

• Some envisage wider use of decimal as a universal number
format for typical users.

• We should have them anyway for complete IEEE-754R support.

2

Why via binary?

We could implement all the decimal transcendentals from scratch by
modifying existing algorithms for binary functions. But:

• The underlying ‘basic’ decimal operations we would use in such
an implementation are (even in current hardware) typically much
slower than their binary counterparts.

• It would represent a huge amount of work: the existing binary
functions have been developed and honed over many years.

This motivates the alternative approach: re-use the binary functions.

Ideally, we’d like to implement all the C99 (ISO/IEC 9899)
transcendentals in this way, all of which already exist for binary.

3

Our plan

Roughly, the plan is to convert from decimal to binary, use the
corresponding binary transcendental, then convert the result back to
decimal.

x

B(x) fB(B(x))

D(fB(B(x)))
≈ fD(x)-

-

6

?

Decimal fD

Binary fB

Decimal
to binary

(B)

Binary to
decimal

(D)

4

Decimal and binary formats

Use a wider binary format than the required decimal format:

Decimal format Binary format Precision increase

decimal32 double 53 - 23.25 = 29.75

decimal64 double-extended 64 - 53.15 = 10.85

decimal128 quad 113 - 112.95 = 0.05

5

Range and accuracy issues

Are there any obstacles to this “naive” approach?

• In most cases the binary range is greater, but
decimal128/quad is an exception.

• In each case the binary format is wider, but only marginally in the
case of decimal128/quad.

The range issue for decimal128/quad can be a bit tedious, but
extremely large or small inputs are usually easy to handle anyway.

The question of accuracy is more subtle.

6

Accuracy issues

We accumulate three errors in total:

x

x(1 + δ) f(x(1 + δ))(1 + ǫ)

f(x(1 + δ))(1 + ǫ)(1 + η)
≈ f(x)-

-

6

?

Decimal fD

Binary fB

Decimal
to binary

(B)

Binary to
decimal

(D)

Here ǫ and η are of the order of an ulp in the result for the binary and
decimal formats respectively, and so are acceptable.

7

Blowup in initial conversion error

The potential problem is the error arising from the initial conversion
from decimal to binary.

f(x(1 + δ)) = f(x + xδ) ≈ f(x) + f ′(x)xδ = f(x)

(

1 +
xf ′(x)

f(x)
δ

)

Potential trouble arises when the condition number is much more
than 1:

∣

∣

∣

∣

xf ′(x)

f(x)

∣

∣

∣

∣

≫ 1

If the condition number is never much more than 1, we’re OK.

8

What if the naive approach doesn’t work?

We’ve been considering the initial decimal-to-binary conversion as a
black box.

However, since this already computes a doubly accurate
intermediate result to ensure perfect rounding, it adds very little to
the runtime to create a 2-part translation x → xhi + xlo.

Can use this to correct:

• If we can calculate the derivative of the function, use
f(x) ≈ f(xhi + xlo) ≈ f(xhi) + f ′(xhi)xlo

• Use it to interpolate between results on two adjacent binary
numbers if we can’t. (Could in principle use higher-order
interpolation, but this never seems useful.)

9

Arctangent (1)

An easy case is the arctangent function:

f(x) = atan(x)

Here the condition number is

xf ′(x)

f(x)
=

x

(1 + x2)atan(x)

This is perfectly well-behaved, peaking at 1 around x = 0 and
elsewhere being < 1 in magnitude.

The range issue is trivial as well: we can even be lazy and propagate

atan(B(±large)) = atan(±∞) = ±π/2

10

Arctangent (2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

(x / (atan(x) * (1 + x * x)))

11

Logarithm (1)

A more interesting case is the log function, where the condition is

xf ′(x)

f(x)
=

xx−1

log(x)
= 1/ log(x)

This can get very large for x ≈ 1. For a decimal format with d digits,
we can get 1/ log(x) = 1/ log(1 − 10−d) ≈ 10d.

For decimal32 and decimal64 this is acceptable, though in the
latter case it’s marginal.

For decimal128, it’s completely unacceptable, giving almost no
valid bits in the worst case.

12

Logarithm (2)

Our implementation still uses a ‘naive’ path (after some special
treatment of extreme inputs). We perform a decimal-to-binary
conversion:

x∗ = B(x)

and compute
y∗ = log(x∗)

But in the case of inputs x ≈ 1, we perform a decimal subtraction

y = x − 1

and a binary subtraction:

y∗ = x∗ − 1

both of which will be exact.

13

Logarithm (3)

Now computing e = B(y)− y∗ we get an accurate low-order part, i.e.

x ≈ x∗ + e

Now we correct the original logarithm as follows:

log(x) = log(x∗ + e)

= log(x∗(1 + e/x∗))

= log(x∗) + log(1 + e/x∗)

≈ y∗ + e/x∗

We thus obtain an accurate answer throughout the range.

14

Exponential

The condition number here is:

xf ′(x)

f(x)
=

xex

ex
= x

For decimal32 and decimal64 this is acceptable, but not for
decimal128.

But we can easily use a 2-part conversion, and use a linear
approximation to the derivative:

ex = exhi+xlo = exhiexlo ≈ exhi(1 + xlo)

15

The power function

This is a rather nasty one since it’s ill-conditioned in various parts of
its domain

∆(xy) = y∆(x) + y log(x)∆(y)

We spent a long time trying to find ingenious ways of re-using binary,
but it seems very difficult.

In the end, we based an implementation around

xy = ±ey log(x)

using a custom decimal logarithm function providing extra precision.

This represents the first failure of the approach of re-using binary
functions.

16

Trigonometric functions

These are in general severely ill-conditioned close to multiples of
π/2.

There seems no alternative to implementing custom range reduction
in decimal.

We have implemented a slight variant of Payne-Hanek range
reduction for decimal.

17

Decimal Payne-Hanek

For an input of x = 10em we get

r[e] = (10e/2π) mod 1

out of a table as a binary fraction and multiply:

p = (m · r[e]) mod 1

Now shift p left two places to get the parity, and multiply the tail by
π/2 to give a remainder mod π/2.

This is constructed directly as a binary floating-point number and we
then apply the “naive” algorithm.

18

Unsolved problems

The only functions where we’ve failed to produce an accurate version
are tgamma (Γ(x)) and lgamma (log |Γ(x)|).

The main problem is that in neither case is our binary function
accurate enough.

However, the case of lgamma is fundamentally harder: it has a few
irregular zeros where |Γ(x)| ≈ 1. Even with an accurate binary
function, there’s no way to get an accurate decimal one directly.

Note that this is the unique function for which the OpenCL Standard
does not give an ulp bound!

19

Conclusions

• For quick implementation of a wide range of transcendentals,
re-using binary seems an effective approach.

• In many cases, the “naive” approach, possibly in concert with
some special tricks, gives good accuracy.

• For some difficult cases, we need to program more of the
function directly in decimal.

• Nevertheless, we have a solution for all the C99 functions that is
as good as binary.

• It would be interesting to optimize by using a ‘quick and dirty’
initial decimal-to-binary conversion.

20

