
Fast and accurate Bessel function computation

John Harrison, Intel Corporation

ARITH-19 Portland, OR

Tue 9th June 2009 (11:00 – 11:30)

0

Bessel functions and their computation

Bessel functions are certain canonical solutions to the differential
equations

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

They often appear when analyzing physical systems with cylindrical
symmetry.

Bessel functions of the first kind Jn(x) are nonsingular at the origin;
those of the second kind Yn(x) are singular there.

Can be defined via power series, e.g.

Jn(x) =
∞
∑

m=0

(−1)m(x/2)n+2m

m!(n + m)!

1

Bessel functions of the first kind: J0(x) and J1(x)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

J0(x)
J1(x)

2

Bessel functions of the second kind: Y0(x) and Y1(x)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20

Y0(x)
Y1(x)

3

Why are they difficult?

There has been general pessimism about computing them even with
the usual relative/ulp error guarantee (let alone perfect rounding).

. . . because of the large number of zeros of these functions,
it is impractical to construct minimum relative error
subroutines, and the relative error is likely to be unbounded
in the neighborhood of the zeros. [Hart et al., “Computer
Approximations”]

4

Why are they difficult?

There has been general pessimism about computing them even with
the usual relative/ulp error guarantee (let alone perfect rounding).

. . . because of the large number of zeros of these functions,
it is impractical to construct minimum relative error
subroutines, and the relative error is likely to be unbounded
in the neighborhood of the zeros. [Hart et al., “Computer
Approximations”]

Our goal is to try to achieve the usual relative error guarantees
without sacrificing (much) performance.

• Just for fixed precision (double here, could generalize)

• For specific order n, not as binary functions

5

How to solve the problem?

The trigonometric functions suffer from analogous problems:

• They can in principle be computed via simple power series that
converge everywhere.

• In practice, that would be inefficient, and inaccurate in relative
terms near the zeros.

6

How to solve the problem?

The trigonometric functions suffer from analogous problems:

• They can in principle be computed via simple power series that
converge everywhere.

• In practice, that would be inefficient, and inaccurate in relative
terms near the zeros.

But the trig functions are much easier because the zeros are evenly
spaced. We know very well by now how to do accurate range
reduction by π/2 or whatever.

Can we do something analogous for Bessel functions?

In other words, move the inevitable cancellation back as much as
possible?

7

Small zeros of Bessel functions

J0 J1 Y0 Y1

2.404825 0.000000 0.893576 2.197141

5.520078 3.831705 3.957678 5.429681

8.653727 7.015586 7.086051 8.596005

11.791534 10.173468 10.222345 11.749154

14.930917 13.323691 13.361097 14.897442

18.071063 16.470630 16.500922 18.043402

21.211636 19.615858 19.641309 21.188068

24.352471 22.760084 22.782028 24.331942

27.493479 25.903672 25.922957 27.475294

8

Computation near small zeros

For each ‘small’ zero (|x| < 45 for double precision), we store:

• The zero itself in two pieces zk = zhi

k
+ zlo

k

• Coefficients for a power series expansion
∑nk

i=0
ai(x − zk)i.

Given an argument x in this range, we find roughly the closest zero,
then compute a reduced argument (x − zhi

k
) − zlo

k
and use the power

series.

In fact we use extrema as well as zeros for the zk, to make the
reduced argument smaller and avoid monotonicity worries.

9

Hankel expansions (1)

For larger arguments, the traditional approach uses Hankel’s
asymptotic expansions:

Jn(x) =

√

2

πx
(cos(x − [n/2 + 1/4]π) · Pn(x)−

sin(x − [n/2 + 1/4]π) · Qn(x))

and

Yn(x) =

√

2

πx
(sin(x − [n/2 + 1/4]π) · Pn(x)+

cos(x − [n/2 + 1/4]π) · Qn(x))

where Pn(x) and Qn(x) can be defined by integrals.

10

Hankel expansions (2)

For large arguments the functions Pn(x) and Qn(x) can be well
approximated by asymptotic expansions

Pn(x) ∼
∞
∑

m=0

(−1)m(n, 2m)

(2x)2m

Qn(x) ∼

∞
∑

m=0

(−1)m(n, 2m + 1)

(2x)2m+1

where the notation (n, m) denotes:

(n, m) =
(4n2 − 12)(4n2 − 32) · · · (4n2 − [2m − 1]2)

22mm!

11

Modified expansions

The Hankel expansions are still not a complete solution because the
sin and cos terms can cancel. We want to move the cancellation
forward into simpler expressions by writing

Jn(x) =

√

2

πx
· βn(x) cos(x − [n/2 + 1/4]π − αn(x))

Yn(x) =

√

2

πx
· βn(x) sin(x − [n/2 + 1/4]π − αn(x))

for some functions αn(x) and βn(x).

12

Asymptotic expansions for α(x) and β(x)

We can find asymptotic expansions for αn(x) and βn(x) from those
for Pn(x) and Qn(x) by formal power series manipulations.

The functions αn(x) were already used extensively by Stokes to
analyze zeros of the Bessel functions, though not as part of a
computational method. See also the ‘modulus’ and ‘phase’ functions
in Abramowitz and Stegun.

We have succeeded in moving cancellation back into a purely
algebraic expression.

We now only need to apply the correction αn(x) as an additional
tweak to a standard trigonometric range reduction.

13

Computation patterns using modified expansions

J0(x) ≈

√

2

πx
(1−

1

16x2
+

53

512x4
− · · ·) cos(x−

π

4
−

1

8x
+

25

384x3
− · · ·)

Y0(x) ≈

√

2

πx
(1−

1

16x2
+

53

512x4
− · · ·) sin(x−

π

4
−

1

8x
+

25

384x3
− · · ·)

J1(x) ≈

√

2

πx
(1+

3

16x2
−

99

512x4
+ · · ·) cos(x−

3π

4
+

3

8x
−

21

128x3
+ · · ·)

Y1(x) ≈

√

2

πx
(1+

3

16x2
−

99

512x4
+ · · ·) sin(x−

3π

4
+

3

8x
−

21

128x3
+ · · ·)

14

How much cancellation?

Even though we’ve moved the cancellation back into a simple
expression, we still need to understand how bad it can be, to decide
how much extra precision we must use.

Compare the analysis of standard trigonometric range reduction:
how small can x − Nπ get for floating-point x 6= 0? Answer: about
2−60.

We want to know how small x − Nπ/4 − αn(x) can get. The answer
is probably similar, but it would be better to prove that.

15

Finding the zeros

To find zeros of J0(x), recall

J0(x) =

√

2

πx
· β0(x) cos(x − π/4 − α0(x))

We seek values for which the cosine term here is zero, i.e. where for
some integer N we have

x − π/4 − α0(x) = (N − 1/2)π

Writing p = (N − 1/4)π, this is x − α0(x) = p, which we can revert to
get

x = p +
1

8p
−

31

384p3
+

3779

15360p5
−

6277237

3440640p7
+ · · ·

16

Analysis of zeros

We can analyze how close the zeros are to floating-point numbers:

• For small |x| < 45, we already have the small zeros accurately
tabulated.

• For |x| > 270, the α0(x) correction is negligible and we can take
existing results for ordinary trig range reduction.

• In between we use the Levèvre-Muller technique applied to the
asymptotic series for the zero in terms of p

17

Worst-case zeros for |x| 6 290

There are indeed no unpleasant surprises:

Approximate decimal value Distance from zero Function

1.08423572255 × 1020 2−58.438199858 Y1

8.67379045745 × 1026 2−58.4361612221 Y1

8.67379045745 × 1026 2−58.4361612218 J0

1.08423572255 × 1020 2−58.4356039989 J0

283411312348.0 2−57.4750503229 J0

6.04745635398 × 1022 2−57.2168697228 J1

6.04745635398 × 1022 2−57.216867725 Y0

2.26862308183 × 1024 2−57.1898493381 Y1

2.26862308183 × 1024 2−57.1898492858 J0

18

Implementation

We have written a simple reference implementation for the Intel
Itanium architecture. It exploits:

• Double-extended precision for internal calculations.

• Fused multiply-add (fma)

However, the same basic techniques could be used on other
architectures at a certain performance cost.

Our implementation runs in 160 cycles for all finite inputs. With more
aggressive scheduling we believe it should be possible to hit 100
cycles.

19

Outline of implementation

The implementation is based on a floating-point variant of traditional
Payne-Hanek range reduction using precomputed values stored in 3
pieces:

Pa = ((2a/π) mod 1)/2a

for each possible input exponent a, with a runtime computation of
(Pa · x) mod 1.

The series for the correction term αn(x) is accumulated in Horner
fashion using a double-double representation.

Each double-double Horner step takes 5 fma latencies, but it can be
pipelined to start a new step with a throughput of one step per fma
latency.

20

Conclusions

• If it’s considered important, it is quite feasible to get the usual
relative error for Bessel functions of fixed order with good
performance.

• Our approach makes systematic use of ‘moving cancellation
forwards’.

• The implementation shows that the ideas can work well, but we
have not yet implemented it in a completely portable way.

• Several avenues for future work not yet explored:

– Correctly rounded versions

– General multiple-precision versions

– Versions where the order is an additional argument.

21

