Floating point verification: the exponential function

Floating point verification:
the exponential function

General introduction

The correctness statement we want
Our implementation language
Sketch of the algorithm
Organization of HOL proof
Formalizing IEEE arithmetic
Details of the proof

Conclusions

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

General introduction

Floating point algorithms are fairly small, but
often complicated mathematically.

There have been errors in commercial
systems, e.g. the Pentium FDIV bug in 1994.

In the case of transcendental functions it’s

difficult even to say what correctness means.

Verification using model checkers is difficult
because of the need for mathematical

apparatus.

It can even be difficult using theorem provers
since not many of them have good theories of

real numbers etc.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Floating point correctness

We want to specify the correctness according to

the following diagram:

v(a) _exp(v(a)

- EXP(a)

EXP

We measure the difference between v(EX P(a))
and exp(v(a)) in ‘units in the last place’ of
EXP(a).

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Our implementation language

This includes the following constructs:

command = variable := expression
| command ; command
| if expression then command
else command
if expression then command
while expression do command

|
|
| do command while expression
| skip

|

{ expression}

We have a simple relational semantics in HOL,
and derive weakest preconditions and total
correctness rules. We then prove total correctness

via VC generation.

The idea is that this language can be formally
linked to C, Verilog, Handel, ...

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Sketch of the algorithm

The algorithm we verify is taken from a paper by

Tang in ACM Transactions on Mathematical
Software, 1989.

Similar techniques are widely used for floating
point libraries, and, probably, for hardware

implementations.

The algorithm relies on a table of precomputed
constants. Tang’s paper gives actual values as hex
representations of IEEE numbers.

We can split the operations into three steps:
e Perform range reduction
e Use polynomial approximation

e Reconstruct answer using tables

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Mathematics of the algorithm

First we obtain a reduced argument r such that

for some integer n:

32
< ln(Q) . This n is found by

rounding =55 (2) to the nearest integer. Now we

decompose n into its quotient and remainder
when divided by 32, i.e. n = 32m + j with
0 <7 <31 Hence

In(2)j g
e +r _ 6ln(2)m6 55 ol — 9M933 o7

Values of 23z for 0 < 7 < 31 are prestored

constants, and multiplication by 2™ is fast. Hence
In(2) In(2)
51 6d -

we just need to calculate e for r € [—
This is done by a low-order polynomial
approximation p(r) ~ e" — 1.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Code for the algorithm

if Isnan(X) then E := X
else if X == Plus_infinity then E := Plus_infinity

else if X == Minus_infinity then E := Plus_zero
else if abs(X) > THRESHOLD_1 then
if X > Plus_zero then E := Plus_infinity
else E := Plus_zero
else if abs(X) < THRESHOLD_2 then E := Plus_one + X
else
(N := INTRND(X * Inv_L);
N2 := N 7 Int_32;
N1 := N - N2;
if abs(N) >= Int_2e9 then
R1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1
else
:= X - Tofloat(N) * L1;
:= Tofloat(--N) * L2;
N1 / Int_32;
N2;
R1 + R2;
R * R *x (Al + R * A2);
R1 + (R2 + Q);
S_Lead(J) + S_Trail(J);
:= S_Lead(J) + (S_Trail(J) + S * P);
Scalb(E1,M)

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Organization of HOL proof

Real numbers

/ \
/ \
/ \

Programming / \

language IEEE spec Real analysis
I /| |

/ |

|

Squarefree decomp &

Sturm’s theorem

I
I
I
I
I /
I

Algorithm
\
\

I
I
I
I
|
I
|
I
|
\ I

\ FP lemmas
|
|
|
|
|
Verification

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Formalizing IEEE arithmetic

We formalize the main parts of the IEEE-754
standard in HOL. This is tedious but

straightforward; it’s all been done before in Z and
PVS.

e Floating point formats

e Categorization of numbers (zero, denormal,

normal, infinity, NaN)
Bit encodings and real number valuation
Directed roundings to reals and integers

Operations, including exceptional arguments

We do not consider the distinction between quiet
and signalling NaNs, exception generation and
trap handlers. This would be difficult without

specifying the ambient computing environment.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Floating point lemmas (1)

We define the error resulting from rounding a real

number to a floating point value:

|- error(x) =
Val(float (round(float_format) To_nearest x)) - X

Because of the regular way in which the
operations are defined, all the operations then
relate to their abstract mathematical
counterparts according to the same pattern:
|- Finite(a) A Finite(b) A
abs(Val(a) + Val(b)) < threshold(float_format)
—> Finite(a + b) A

(Val(a + b) = (Val(a) + Val(b)) +
error(Val(a) + Val(b)))

The comparisons are even more straightforward:

|- Finite(a) A Finite(b)
—> (a < b =Val(a) < Val(b))

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Floating point lemmas (2)

We have several lemmas quantifying the error, of

which the most useful is the following:

|- abs(x) < threshold(float_format) A
abs(x) < (&2 pow j / &2 pow 125)
—> abs(error(x)) <= &2 pow j / &2 pow 150

There are many important situations, however,
where the operations are exact, because the result
is exactly representable. Trivially, for example,
the negation and absolute value functions are
always exact:

|- Finite(a)

— Finite(abs(a)) A (Val(abs(a)) = abs(Val(a)))

Also, if a result only has 24 significant digits
(modulo some care in the denormal case), then it

is exactly representable:

|- (abs(x) = (&2 pow e / &2 pow 149) * &k) A
k < 2 EXP 24 N e < 2564
—> da. Finite(a) A (Val(a) = x)

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Floating point lemmas (3)

Any calculation whose result is exactly

representable has an error of zero:

|- Finite(a) A Finite(b) A
Finite(c) A (Val(c) = Val(a) * Val(b))
—> Finite(a * b) A
(Val(a * b) = Val(a) * Val(b))

Another important case of exact operations is
subtraction of nearby values with the same sign:
|- Finite(a) A Finite(b) A
&2 * abs(Val(a) - Val(b)) <= abs(Val(a))

— Finite(a - b) A
(Val(a - b) = Val(a) - Val(b))

This is a classic result in floating point error

analysis.

We also have a type of machine integers, and
prove various obvious results about how the

arithmetic operations on those work.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Error in range reduction

This part is quite difficult, as the code is very

delicately written to ensure that R is calculated
exactly. The stored values L and Lo have enough
trailing zeros that multiplication by small enough
integers is exact; this is a fairly straightforward

application of earlier lemmas.

More difficult is establishing that the subsequent
subtractions are exact by virtue of cancellation.
We can’t quite use the previous lemmas and we
end up using this ad hoc lemma, which says that

subtraction of VL from any value within % of it

1s exact.

|- (L1 = float (0,(121,3240448))) A
Finite(X) A
Finite(Tofloat(N) * L1) A
(Val(Tofloat(N) * L1) = Ival(N) * Val(L1)) A
abs(Val(X) - Val(Tofloat(N) * L1)) <= inv(&88)
—> Finite(X - Tofloat(N) * L1) A
(Val(X - Tofloat(N) * L1) =
Val(X) - Val(Tofloat(N) * L1))

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Error in polynomial approximation

This part is also tricky; I've discussed this part in

a previous AR talk. In brief, these are the steps:

e Prove that the error in a high-order Taylor
series 1s much better than we need.

Consider the difference between this and the

minimax polynomial actually used.

Locate the zeros of (the squarefree

decomposition of) its derivative.

Prove using Sturm’s theorem that these are
all the zeros.

Hence get a bound on the error by evaluation
at the endpoints of the interval and the
points of zero derivative, using some

elementary real analysis.

Tang makes a small slip over the necessary

interval.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Error in reconstruction

This consists of adding up rounding errors
together with the fact that the table entries for

J_
232 are not exact (these errors are much smaller

than the rounding errors, though).

We exploit HOL’s programmability to
add /multiply and bound the dozens of error
terms automatically.

Although we make no simplifying assumptions, as
Tang does, we actually end up with a sharper

E€Irror.

Tang derives bounds of 0.5267ulp and 0.5378ulp
in 1, depending on the binary interval in which
it lies, [%, 1) or [1,2). Our bounds are 0.5125ulp
and 0.5338ulp respectively.

The better bound for the second results purely
from HOL’s mechanical application of the

theorems about error bounds.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Overflow and underflow

Ensuring that the real and approximate
exponentials have the same overflow behaviour is
nontrivial. If there is a disparity in the overflow
behaviours, then 2 Val(E1) and eV *X) lie on

opposite sides of the overflow threshold.

This means that 2V al(E1) is at least as close to
the overflow threshold as it is to eV %(X) that is,

within about 0.54 2™ /223, Thus
threshold/eV " X) — 1| < 0.55/222. Hence by

appealing to the following theorem:

|- abs(x - &1) <= e A e <= inv(&4)
—> abs(In(x)) <= e + e pow 2

we find that |In(threshold) — Val(X)| < 2722,
However we can prove this is impossible because
In(threshold) is further away than that from any

representable number (the closest is
float (0,133,3240472)).

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Checking of prestored constants

The final correctness result is given under the
assumption that various constants have the hex
values Tang says they do. From these, we need to

derive mathematical properties.

Many of them are related to In(2), so we can get

all those from a highly accurate rational
approximation to [n(2) obtained from Taylor’s
theorem:

|- abs(1n(&2) - &544531980202654583340825686620847 /
&785593587443817081832229725798400)
< inv(&2 pow 51)

We can justify the table entries for ke using the
following theorem, easily derived in HOL from the

Mean Value Theorem for derivatives:

|- &0 < x A x <= &2
—> abs(x - root 32 (&2 pow j))
<= abs(x pow 32 - &2 pow j) /
(if x pow 32 <= &2 pow j
then &32 * x pow 32 / x
else &16 * &2 pow j)

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

The final result

Under the various ‘definitional’ assumptions, we

confirm Tang’s bottom-line result:

(Isnan(X) = Isnan(E)) A

(X == Plus_infinity V

Finite(X) A

exp(Val X) >= threshold(float_format)

— E == Plus_infinity) A

(X == Minus_infinity =— E == Plus_zero) A
(Finite(X) A exp(Val X) < threshold(float_format)
—> Isnormal(E) A

abs(Val(E) - exp(Val X)) < (&54 / &100) * Ulp(E)
Finite(E) A

abs(Val(E)) <= inv(&2 pow 126) A
abs(Val(E) - exp(Val X)) < (&77 / &100) * Ulp(E))

This differs marginally from Tang’s result, which
doesn’t consider the fact that even though the
exact result may underflow, the rounded form

might be exactly the smallest normalized number,
2—126.

University of Cambridge, 5 June 1997

Floating point verification: the exponential function

Conclusions

We confirm (and strengthen) the main results

of the hand proof. But we detect a few slips
and uncover subtle issues. This class of proofs

is a good target for verification.

The proof was very long (over 3 months of
work), but most of this was devoted to

general results that could be re-used.

The necessary infrastructure for the proof
exists only in HOL Light; the most plausible
alternative would be PVS.

Automation of linear arithmetic is practically
indispensable. Better tools for nonlinear

reasoning are needed.

The proof runtimes are very long owing to the
extensive use of arithmetic done by inference.

Some support for the ACL2 worldview.

University of Cambridge, 5 June 1997

