
Floating point veri�cation: the exponential function 1
Floating point veri�cation:the exponential functionJohn HarrisonUniversity of Cambridge

� General introduction� The correctness statement we want� Our implementation language� Sketch of the algorithm� Organization of HOL proof� Formalizing IEEE arithmetic� Details of the proof� Conclusions
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 2
General introduction

� Floating point algorithms are fairly small, butoften complicated mathematically.� There have been errors in commercialsystems, e.g. the Pentium FDIV bug in 1994.� In the case of transcendental functions it'sdi�cult even to say what correctness means.� Veri�cation using model checkers is di�cultbecause of the need for mathematicalapparatus.� It can even be di�cult using theorem proverssince not many of them have good theories ofreal numbers etc.

John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 3
Floating point correctness

We want to specify the correctness according tothe following diagram:

a

v(a)

EXP (a)

exp(v(a))v(EXP (a))

-

-6 6

EXP

exp
v v

We measure the di�erence between v(EXP (a))and exp(v(a)) in `units in the last place' ofEXP (a).
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 4
Our implementation language

This includes the following constructs:command = variable := expression| command ; command| if expression then commandelse command| if expression then command| while expression do command| do command while expression| skip| f expressiongWe have a simple relational semantics in HOL,and derive weakest preconditions and totalcorrectness rules. We then prove total correctnessvia VC generation.The idea is that this language can be formallylinked to C, Verilog, Handel, . . .
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 5
Sketch of the algorithm

The algorithm we verify is taken from a paper byTang in ACM Transactions on MathematicalSoftware, 1989.Similar techniques are widely used for
oatingpoint libraries, and, probably, for hardwareimplementations.The algorithm relies on a table of precomputedconstants. Tang's paper gives actual values as hexrepresentations of IEEE numbers.We can split the operations into three steps:� Perform range reduction� Use polynomial approximation� Reconstruct answer using tables
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 6
Mathematics of the algorithm

First we obtain a reduced argument r such thatfor some integer n:
x = nln(2)32 + rand � ln(2)64 � r � ln(2)64 . This n is found byrounding x 32ln(2) to the nearest integer. Now wedecompose n into its quotient and remainderwhen divided by 32, i.e. n = 32m+ j with0 � j � 31. Hence

ex = e(32m+j) ln(2)32 +r = eln(2)me ln(2)j32 er = 2m2 j32 erValues of 2 j32 for 0 � j � 31 are prestoredconstants, and multiplication by 2m is fast. Hencewe just need to calculate er for r 2 [� ln(2)64 ; ln(2)64].This is done by a low-order polynomialapproximation p(r) � er � 1.John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 7
Code for the algorithmif Isnan(X) then E := Xelse if X == Plus_infinity then E := Plus_infinityelse if X == Minus_infinity then E := Plus_zeroelse if abs(X) > THRESHOLD_1 thenif X > Plus_zero then E := Plus_infinityelse E := Plus_zeroelse if abs(X) < THRESHOLD_2 then E := Plus_one + Xelse(N := INTRND(X * Inv_L);N2 := N % Int_32;N1 := N - N2;if abs(N) >= Int_2e9 thenR1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1elseR1 := X - Tofloat(N) * L1;R2 := Tofloat(--N) * L2;M := N1 / Int_32;J := N2;R := R1 + R2;Q := R * R * (A1 + R * A2);P := R1 + (R2 + Q);S := S_Lead(J) + S_Trail(J);E1 := S_Lead(J) + (S_Trail(J) + S * P);E := Scalb(E1,M))John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 8
Organization of HOL proofReal numbers/ \/ \/ \Programming / \language IEEE spec Real analysis| / | || / | || / | || / | Squarefree decomp &| / | Sturm's theorem| / | /| / | /Algorithm | /\ | /\ | /\ | /\ FP lemmas /\ | /\ | /\ | /\ | /\ | /VerificationJohn Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 9
Formalizing IEEE arithmetic

We formalize the main parts of the IEEE-754standard in HOL. This is tedious butstraightforward; it's all been done before in Z andPVS.� Floating point formats� Categorization of numbers (zero, denormal,normal, in�nity, NaN)� Bit encodings and real number valuation� Directed roundings to reals and integers� Operations, including exceptional argumentsWe do not consider the distinction between quietand signalling NaNs, exception generation andtrap handlers. This would be di�cult withoutspecifying the ambient computing environment.John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 10
Floating point lemmas (1)

We de�ne the error resulting from rounding a realnumber to a
oating point value:|- error(x) =Val(float(round(float_format) To_nearest x)) - xBecause of the regular way in which theoperations are de�ned, all the operations thenrelate to their abstract mathematicalcounterparts according to the same pattern:|- Finite(a) ^ Finite(b) ^abs(Val(a) + Val(b)) < threshold(float_format)=) Finite(a + b) ^(Val(a + b) = (Val(a) + Val(b)) +error(Val(a) + Val(b)))The comparisons are even more straightforward:|- Finite(a) ^ Finite(b)=) (a < b = Val(a) < Val(b))
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 11
Floating point lemmas (2)

We have several lemmas quantifying the error, ofwhich the most useful is the following:|- abs(x) < threshold(float_format) ^abs(x) < (&2 pow j / &2 pow 125)=) abs(error(x)) <= &2 pow j / &2 pow 150There are many important situations, however,where the operations are exact, because the resultis exactly representable. Trivially, for example,the negation and absolute value functions arealways exact:|- Finite(a)=) Finite(abs(a)) ^ (Val(abs(a)) = abs(Val(a)))Also, if a result only has 24 signi�cant digits(modulo some care in the denormal case), then itis exactly representable:|- (abs(x) = (&2 pow e / &2 pow 149) * &k) ^k < 2 EXP 24 ^ e < 254=) 9a. Finite(a) ^ (Val(a) = x)John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 12
Floating point lemmas (3)

Any calculation whose result is exactlyrepresentable has an error of zero:|- Finite(a) ^ Finite(b) ^Finite(c) ^ (Val(c) = Val(a) * Val(b))=) Finite(a * b) ^(Val(a * b) = Val(a) * Val(b))Another important case of exact operations issubtraction of nearby values with the same sign:|- Finite(a) ^ Finite(b) ^&2 * abs(Val(a) - Val(b)) <= abs(Val(a))=) Finite(a - b) ^(Val(a - b) = Val(a) - Val(b))This is a classic result in
oating point erroranalysis.We also have a type of machine integers, andprove various obvious results about how thearithmetic operations on those work.
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 13
Error in range reductionThis part is quite di�cult, as the code is verydelicately written to ensure that R1 is calculatedexactly. The stored values L1 and L2 have enoughtrailing zeros that multiplication by small enoughintegers is exact; this is a fairly straightforwardapplication of earlier lemmas.More di�cult is establishing that the subsequentsubtractions are exact by virtue of cancellation.We can't quite use the previous lemmas and weend up using this ad hoc lemma, which says thatsubtraction of NL1 from any value within 188 of itis exact.|- (L1 = float (0,(121,3240448))) ^Finite(X) ^Finite(Tofloat(N) * L1) ^(Val(Tofloat(N) * L1) = Ival(N) * Val(L1)) ^abs(Val(X) - Val(Tofloat(N) * L1)) <= inv(&88)=) Finite(X - Tofloat(N) * L1) ^(Val(X - Tofloat(N) * L1) =Val(X) - Val(Tofloat(N) * L1))John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 14
Error in polynomial approximation

This part is also tricky; I've discussed this part ina previous AR talk. In brief, these are the steps:� Prove that the error in a high-order Taylorseries is much better than we need.� Consider the di�erence between this and theminimax polynomial actually used.� Locate the zeros of (the squarefreedecomposition of) its derivative.� Prove using Sturm's theorem that these areall the zeros.� Hence get a bound on the error by evaluationat the endpoints of the interval and thepoints of zero derivative, using someelementary real analysis.Tang makes a small slip over the necessaryinterval.John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 15
Error in reconstructionThis consists of adding up rounding errorstogether with the fact that the table entries for2 j32 are not exact (these errors are much smallerthan the rounding errors, though).We exploit HOL's programmability toadd/multiply and bound the dozens of errorterms automatically.Although we make no simplifying assumptions, asTang does, we actually end up with a sharpererror.Tang derives bounds of 0:5267ulp and 0:5378ulpin E1, depending on the binary interval in whichit lies, [12 ; 1) or [1; 2). Our bounds are 0:5125ulpand 0:5338ulp respectively.The better bound for the second results purelyfrom HOL's mechanical application of thetheorems about error bounds.

John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 16
Over
ow and under
ow

Ensuring that the real and approximateexponentials have the same over
ow behaviour isnontrivial. If there is a disparity in the over
owbehaviours, then 2MV al(E1) and eV al(X) lie onopposite sides of the over
ow threshold.This means that 2MV al(E1) is at least as close tothe over
ow threshold as it is to eV al(X), that is,within about 0:54 2M=223. Thusjthreshold=eV al(X) � 1j < 0:55=222. Hence byappealing to the following theorem:|- abs(x - &1) <= e ^ e <= inv(&4)=) abs(ln(x)) <= e + e pow 2we �nd that jln(threshold)� V al(X)j � 2�22.However we can prove this is impossible becauseln(threshold) is further away than that from anyrepresentable number (the closest isfloat(0,133,3240472)).
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 17
Checking of prestored constants

The �nal correctness result is given under theassumption that various constants have the hexvalues Tang says they do. From these, we need toderive mathematical properties.Many of them are related to ln(2), so we can getall those from a highly accurate rationalapproximation to ln(2) obtained from Taylor'stheorem:|- abs(ln(&2) - &544531980202654583340825686620847 /&785593587443817081832229725798400)< inv(&2 pow 51)We can justify the table entries for 2 j32 using thefollowing theorem, easily derived in HOL from theMean Value Theorem for derivatives:|- &0 < x ^ x <= &2=) abs(x - root 32 (&2 pow j))<= abs(x pow 32 - &2 pow j) /(if x pow 32 <= &2 pow jthen &32 * x pow 32 / xelse &16 * &2 pow j)John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 18
The �nal result

Under the various `de�nitional' assumptions, wecon�rm Tang's bottom-line result:(Isnan(X) =) Isnan(E)) ^(X == Plus_infinity _Finite(X) ^exp(Val X) >= threshold(float_format)=) E == Plus_infinity) ^(X == Minus_infinity =) E == Plus_zero) ^(Finite(X) ^ exp(Val X) < threshold(float_format)=) Isnormal(E) ^abs(Val(E) - exp(Val X)) < (&54 / &100) * Ulp(E) _Finite(E) ^abs(Val(E)) <= inv(&2 pow 126) ^abs(Val(E) - exp(Val X)) < (&77 / &100) * Ulp(E))This di�ers marginally from Tang's result, whichdoesn't consider the fact that even though theexact result may under
ow, the rounded formmight be exactly the smallest normalized number,2�126.
John Harrison University of Cambridge, 5 June 1997

Floating point veri�cation: the exponential function 19
Conclusions

� We con�rm (and strengthen) the main resultsof the hand proof. But we detect a few slipsand uncover subtle issues. This class of proofsis a good target for veri�cation.� The proof was very long (over 3 months ofwork), but most of this was devoted togeneral results that could be re-used.� The necessary infrastructure for the proofexists only in HOL Light; the most plausiblealternative would be PVS.� Automation of linear arithmetic is practicallyindispensable. Better tools for nonlinearreasoning are needed.� The proof runtimes are very long owing to theextensive use of arithmetic done by inference.Some support for the ACL2 worldview.
John Harrison University of Cambridge, 5 June 1997

