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Introduction

Floating point algorithms are fairly small, but
often complicated mathematically.

There have been errors in commercial
systems, e.g. the Pentium FDIV bug in 1994.

In the case of transcendental functions it’s

difficult even to say what correctness means.

Verification using model checkers is difficult
because of the need for mathematical

apparatus.

It can even be difficult using theorem provers
since not many of them have good theories of

real numbers etc.
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Floating point correctness

We want to specify the correctness according to

the following diagram:

v(a) ~exp(v(a)

- EXP(a)
EXP

We measure the difference between v(EX P(a))
and exp(v(a)) in ‘units in the last place’ of
EXP(a).
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Our implementation language

This includes the following constructs:

command = variable := expression
|  command ; command
| if expression then command
else command
if expression then command
while expression do command
do command while expression
skip

| { expression}

We define a simple relational semantics in HOL,
and derive weakest preconditions and total
correctness rules. We then prove total correctness

via VC generation.

The idea is that this language can be formally
linked to C, Verilog, Handel, ...
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The algorithm

The algorithm we verify is taken from a paper by

Tang in ACM Transactions on Mathematical
Software, 1989.

Similar techniques are widely used for floating
point libraries, and, probably, for hardware

implementations.

The algorithm relies on a table of precomputed
constants. Tang’s paper gives actual values as hex
representations of IEEE numbers.

The algorithm works in three phases:

e Perform range reduction
e Use polynomial approximation

e Reconstruct answer using tables

The correctness proof reflects this.
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Code for the algorithm

if Isnan(X) then E := X
else if X == Plus_infinity then E := Plus_infinity

else if X == Minus_infinity then E := Plus_zero
else if abs(X) > THRESHOLD_1 then
if X > Plus_zero then E := Plus_infinity
else E := Plus_zero
else if abs(X) < THRESHOLD_2 then E := Plus_one + X
else
(N := INTRND(X * Inv_L);
N2 := N 7 Int_32;
N1 := N - N2;
if abs(N) >= Int_2e9 then
R1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1
else
:= X - Tofloat(N) * L1;
:= Tofloat(--N) * L2;
N1 / Int_32;
N2;
R1 + R2;
R xR *x (A1 + R x A2);
:= R1 + (R2 + Q);
:= S_Lead(J) + S_Trail(J);
:= S_Lead(J) + (S_Trail(J) + S * P);
Scalb(E1,M)
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Structure of the HOL proof
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Floating point lemmas (1)

We define the error error(x) resulting from

rounding a real number x to a floating point

value.

Because of the regular way in which the
operations are defined, all the operations then
relate to their abstract mathematical
counterparts according to the same pattern:
|- Finite(a) A Finite(b) A
abs(Val(a) + Val(b)) < threshold(float_format)
— Finite(a + b) A

(Val(a + b) = (Val(a) + Val(b)) +
error(Val(a) + Val(b)))

The comparisons are even more straightforward:

|- Finite(a) A Finite(b)
— (a < b = Val(a) < Val(b))
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Floating point lemmas (2)

We have several lemmas quantifying the error, e.g.

|- abs(x) < threshold(float_format) A
abs(x) < (&2 pow j / &2 pow 125)
—> abs(error(x)) <= &2 pow j / &2 pow 150

There are many important situations, however,
where the operations are exact, because the result
is exactly representable, e.g. subtraction of
nearby values with the same sign:
|- Finite(a) A Finite(b) A
&2 * abs(Val(a) - Val(b)) <= abs(Val(a))

— Finite(a - b) A
(Val(a - b) = Val(a) - Val(b))

This is a classic result in floating point error

analysis.
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Informal error analysis

Tang’s error analysis translates quite directly into
HOL. One needs to:

1. Prove that clever implementation tricks
ensure certain remainder terms are calculated

exactly. This relies on cancellation, and the

fact that pre-stored constants have trailing

Z€roes.

. Prove that the polynomial approximation
obeys the appropriate error bounds.

. Prove that the rounding errors when
reconstructing the final answer do not get too

large.

In Tang’s paper, 1 is quite brief, 2 is dismissed in
a few lines, while 3 is given a long and detailed

proof.
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HOL error analysis

In the HOL version, this order of difficulty is

reversed!

1. The first part is not fundamentally difficult,
but quite tricky because it involves a lot of

special cases and low-level proofs.

. The second part involves numerical
approximation, which needs a lot of work to
translate into a formal proof (e.g. Taylor
series, Sturm’s theorem ...). In fact Tang
makes a small mistake here, though it doesn’t
affect the final result.

. The last part is quite routine, and we can
program HOL to compose the rounding errors
automatically. Actually, we derive better
bounds than Tang does since we avoid
making simplifying assumptions to cut down
the work.
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The final result

Under the various ‘definitional’ assumptions, we

confirm Tang’s bottom-line result:

(Isnan(X) = Isnan(E)) A

(X == Plus_infinity V

Finite(X) A

exp(Val X) >= threshold(float_format)

— E == Plus_infinity) A

(X == Minus_infinity =— E == Plus_zero) A
(Finite(X) A exp(Val X) < threshold(float_format)
—> Isnormal(E) A

abs(Val(E) - exp(Val X)) < (&54 / &100) * Ulp(E)
V (Isdenormal(E) V Iszero(E)) A

abs(Val(E) - exp(Val X)) < (&77 / &100) * Ulp(E))

In fact, this specification is a bit more precise

than Tang’s, e.g. we are explicit about the
overflow threshold.
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Conclusions

We confirm (and strengthen) the main results

of the hand proof. But we detect a few slips
and uncover subtle issues. This class of proofs

is a good target for verification.

The proof was very long (over 3 months of
work), but most of this was devoted to

general results that could be re-used.

It’s a mistake to believe that only ‘trivial’
mathematics is needed for verification
applications. HOL Light’s mathematical

theories are essential.

Automation of linear arithmetic is practically
indispensable. Better tools for nonlinear

reasoning are needed.

The proof runtimes are very long owing to the

extensive use of arithmetic done by inference.

University of Cambridge, December 1997




