
J Autom Reasoning (2015) 55:223–243
DOI 10.1007/s10817-015-9338-0

Formal Proofs of Hypergeometric Sums
Dedicated to the memory of Andrzej Trybulec

John Harrison1

Received: 23 August 2014 / Accepted: 10 July 2015 / Published online: 15 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Algorithmic methods can successfully automate the proof, and even the discov-
ery, of a large class of identities involving sums of hypergeometric terms. In particular, the
Wilf-Zeilberger (WZ) algorithm is a uniform framework for a substantial class of hypergeo-
metric summation problems. This algorithm can produce a rational function certificate that
can, on the face of it, be used to verify the result by routine algebraic manipulations, inde-
pendently of the working of the algorithm that discovered it. It is therefore very natural to
consider using this certificate to produce, by automated means, a rigorous deductive proof
in an interactive theorem prover. However, naive presentations of the WZ method tend to
gloss over trivial-looking but rather knotty questions about zero denominators, which makes
their rigorous formalization tricky and their ultimate logical justification somewhat obscure.
We describe how we have handled these difficulties to produce rigorous WZ proofs inside
the HOL Light theorem prover.
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1 Background

Symbolic algorithms have proven to be remarkably effective for verifying, or even finding,
the solutions of summation problems involving factorials, binomial coefficients and rational
functions, e.g.

∑n
k=0

(
n
k

) = 2n. Simple examples like this one, which is easy enough anyway
by considering the binomial expansion of (1 + 1)n, are just the tip of the iceberg of a wide
class of problems that can be tackled automatically or with very limited human intervention,
including many where any resolution at all (by a human mathematician or machine) was
originally considered challenging.
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One of the more mathematically significant applications is verifying Apéry’s proof of
the irrationality of ζ(3) = 1/13 + 1/23 + 1/33 + 1/43 + · · · , which involves showing that

the sequence an = ∑n
k=0

(
n+k
k

)2(n
k

)2 and another more complex variant both satisfy the
second-order recurrence

(n + 2)3an+2 − (2n + 3)(17n2 + 51n + 39)an+1 + (n + 1)3an = 0

When Apéry originally presented these claims [1], the justification was obscure. Apéry
quipped that such identities “grow in my garden”, and there was widespread skepticism
about his proof [9], until work by Cohen, Lenstra, van der Poorten and Zagier eventu-
ally justified the strange identities [20]. While Beukers [3] found a much more transparent
proof using double integrals, perhaps the simplest way to verify these recurrences is to use
symbolic methods along the lines we discuss here [16].1

There are actually several somewhat different algorithms in this general area with a
long and interesting history [15]. One very general result (see [18] for a proof) is the clo-
sure under summation, arithmetic operations etc. of so-called holonomic sequences, those
that satisfy a recurrence with polynomial coefficients (as with an above, which satisfies a
second-order recurrence). The use of such results in explicitly algorithmic form to tackle
summation problems was originally proposed by Zeilberger [22]. However, we will focus on
a more constrained algorithm [21] commonly called the WZ (for Wilf-Zeilberger) method,
which has two advantages. First of all, it is much more efficient in its domain of applica-
bility, and implementations are relatively straightforward and widely available. Second, its
workings can produce a simple algebraic ‘certificate’ that can be checked for correctness
routinely. Or so it seems . . .

2 The WZ Method

In what follows we use the notion of a hypergeometric sequence (or term, or series) an,
which is simply one where the ratio an+1/an of successive terms is a rational function of
n, i.e. can be represented as an+1/an = r(n) = p(n)/q(n) for some non-zero univariate
polynomials p and q. (As the name suggests, this generalizes the notion of a geometric
sequence where the ratio is constant an+1/an = c.) For example, the factorial function
is hypergeometric because (n + 1)!/n! = n + 1, as is the ‘power of 2’ function because
2n+1/2n = 2. We call a function of several variables hypergeometric if it is hypergeometric
for each argument separately. For instance, binomial coefficients

(
n
k

)
are hypergeometric

because we have:2 (
n + 1

k

)

= n + 1

n − k + 1

(
n

k

)

and (
n

k + 1

)

= n − k

k + 1

(
n

k

)

1At http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html, Bruno Salvy gives an elegant checking
of the entire logic of Apéry’s argument making extensive use of computerized symbolic tools.
2We will ignore the question of zero denominators in the rational functions for now, though it will be dis-
cussed extensively later. One often sees a function defined as hypergeometric if an+1/an = r(n) whenever
the rational function r(n) is well-defined. Alternative one may define it as hypergeometric if it is holonomic
with a recurrence of order 1, q(n)an+1 − p(n)an = 0.

http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html
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Since rational functions form a field, rational functions are themselves hypergeometric,
and the set of hypergeometric sequences is closed under multiplication and division. The
hypergeometric sequences are not in general closed under addition though.

2.1 Gosper’s Algorithm

A landmark in symbolic computation was Gosper’s algorithm [10] for indefinite hypergeo-
metric summation. Given a hypergeometric term tk , it is able either to find a hypergeometric
‘antidifference’ term sk such that sk+1 − sk = tk , or to conclude that no such hypergeo-
metric term exists. Note that if sk is hypergeometric, say sk+1/sk = r(k) for some rational
function r(k), then the antidifference property implies that (r(k) − 1)sk = tk , so sk and tk
are rational-function multiples of each other, and in particular the original tk must also be
hypergeometric. However, the converse is false: there are hypergeometric tk with no hyper-
geometric antidifference. In such cases Gosper’s algorithm will fail, but failure does at least
definitively show that there is no hypergeometric antidifference.

Such an antidifference sk plays a role for summations analogous to an indefinite integral
or antiderivative F ′(x) = f (x) for definite integrals, which allow us to conclude by the Fun-
damental Theorem of Calculus that

∫ b

a
f (x)dx = F(b) − F(a). In the case of summations

we get a ‘telescoping’ sum where most of the terms cancel:

b∑

k=a

tk =
b∑

k=a

(sk+1 − sk) = sb+1 − sa

Thus, when Gosper’s algorithm solves the ‘indefinite summation’ problem by finding an
antidifference, it also gives a solution to the corresponding ‘definite summation’ problem.

Gosper’s algorithm works over an arbitrary field of characteristic zero, which we may
consider as the field of rational functions in other variables, so it can tackle problems
containing other variables as parameters without any difficulty. For example [14], let us
prove the following that was originally proposed as Problem E 3088 in the “American
Mathematical Monthly”.

n∑

k=1

k · k!
nk

(
n

k

)

= n

Setting tk = k·k!
nk

(
n
k

)
, Gosper’s algorithm finds that sk = − n

k
tk = − n·k!

nk

(
n
k

)
is an

antidifference, i.e. sk+1 − sk = tk , and therefore

n∑

k=1

k · k!
nk

(
n

k

)

= sn+1 − s1 = −n · (n + 1)!
n(n + 1)

(
n

n + 1

)

− −n · 1!
n1

(
n

1

)

= 0 − −n = n

2.2 WZ Pairs

Appealing though that example was, there are many cases where Gosper’s algorithm finds
there is no hypergeometric antidifference, even though the definite sum has a hypergeo-
metric answer. This applies even to our initial example of

∑
k

(
n
k

)
, which certainly has a

hypergeometric definite sum (namely 2n), but where Gosper’s algorithm shows there is no
hypergeometric antidifference. The WZ method uses a variant of Gosper’s algorithm at its
core but can handle a much wider class of definite sums.

We will now make the parametrization by n explicit, considering summing series of the
form

∑
k F (n, k) where the summand is a hypergeometric function of two variables. We
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will be concerned with summing functions with finite support w.r.t. k, i.e. those that for any
fixed n are zero for k outside some finite set of integers; for example

(
n
k

) = 0 except for
0 � k � n. When we write sums without explicit ranges, we mean they are summed over
all integers, which is a well-defined notion because of this finite support property.

The key idea in the basic WZ algorithm is to find a hypergeometric antidifference not
directly for F(n, k) but for the difference F(n+1, k)−F(n, k). The antidifference G(n, k),
when it exists, yields a WZ pair, meaning that

F(n + 1, k) − F(n, k) = G(n, k + 1) − G(n, k)

Such a pair is interesting from the point of view of finding
∑

k F (n, k) because of a
similar telescoping phenomenon:

b∑

k=a

F (n + 1, k) −
b∑

k=a

F (n, k) =
b∑

k=a

(F (n + 1, k) − F(n, k))

=
b∑

k=a

(G(n, k + 1) − G(n, k))

= G(n, b + 1) − G(n, a)

Since we are assuming that our F and G are hypergeometric, we have F(n +
1, k)/F (n, k) = r(n, k) and G(n, k + 1)/G(n, k) = s(n, k) for some rational functions
r(n, k) and s(n, k). Therefore from the WZ-pair property we have (r(n, k) − 1)F (n, k) =
(s(n, k) − 1)G(n, k) and so

R(n, k) = G(n, k)/F (n, k) = (r(n, k) − 1)/(s(n, k) − 1)

is a rational function. Thus, we may assume that G(n, k) = R(n, k)F (n, k) for some
rational function R(n, k).

This observation also implies that each G(n, k) too (as a function of k for fixed n) has
finite support. So by making the limits of summation a, . . . , b sufficiently wide, we can
assume G(n, b+1) = G(n, a) = 0 and so conclude that

∑
k F (n+1, k)−∑

k F (n, k) = 0,
i.e. that

∑
k F (n, k) is independent of n. So we can simply evaluate the sum

∑
k F (n, k) at

some convenient value like n = 0, giving
∑

k F (0, k), which in practice we expect to be
easy. In particular, in the common case where the actual support of the function is contained
in {(k, n) | 0 � k � n} (which occurs whenever the summand is a multiple of

(
n
k

)
), the sum

is just F(0, 0).
The class of problems to which this technique is applicable is surprisingly wide. In

some cases one needs a further generalization to finding recurrences of finite order of the
following form, for polynomials a0(n), . . . , am(n):

a0(n)F (n, k) + a1(n)F (n + 1, k) + · · · + am(n)F (n + m, k) = G(n, k + 1) − G(n, k)

Summing over k (since each ai(n) is independent of k) we get a similar recurrence where the
terms F are replaced by

∑
k F . While in general this may not give a hypergeometric closed

form, finding this sort of recurrence is exactly the kind of thing we wanted for Apéry’s
recurrences, for example. Although in general we may need to use such recurrences, the
basic method (after some initial normalization we discuss next) succeeds remarkably often;
this is sometimes referred to as the ‘WZ phenomenon’ [15].
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2.3 The WZ Algorithm

The basic WZ algorithm, as presented in [15], is as follows, to verify a summation result of
the form

∑

k

F (n, k) = S(n)

1. Divide through by S(n) so that we may thereafter assume that we’re trying to verify just
the following special case (if the r.h.s. is 0 we skip this, but the rest of the algorithm is
essentially the same).

∑

k

F (n, k) = 1

2. Apply a Gosper-like algorithm to find a WZ-mate G(n, k) (which as noted above we
can suppose to be of the form R(n, k)F (n, k) for some rational function R(n, k)) such
that

F(n + 1, k) − F(n, k) = G(n, k + 1) − G(n, k)

3. Conclude as noted above that
∑

k F (n, k) is independent of n and so we just need to
check the following, which we expect to be easy

∑

k

F (0, k) = 1

2.4 An Example

Let us consider the sum of squares of binomial coefficients, following closely the presenta-
tion in [15]. Our goal here is to prove the following:

∑

k

(
n

k

)2

=
(

2n

n

)

1. We divide through by the right-hand side and so reduce the problem to verifying∑
k F (n, k) = 1 where

F(n, k) =
(
n
k

)2

(2n
n

) = n!4
k!2(n − k)!2(2n)!

2. We obtain the magic rational function

R(n, k) = −k2(3n − 2k + 3)

2(n − k + 1)2(2n + 1)

such that G(n, k) = R(n, k)F (n, k) satisfies the key property

F(n + 1, k) − F(n, k) = G(n, k + 1) − G(n, k)

Verifying this is just a routine algebraic manipulation.
3. We have therefore concluded that

∑
k F (n, k) is independent of n so we just need to

verify some convenient special case such as n = 0. Since then
(2n

n

) = (0
0

) = 1 and
(0
k

)2 = 0 for k �= 0, we get the result.
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3 Formally Certifying WZ Results

From now on, we will be showing a number of explicit theorems in HOL Light’s ASCII
syntax, and to read some of the notations the following little glossary may be helpful. First,
these are the ASCII representations of logical connectives etc.

Standard symbol ASCII version Meaning

⊥ F falsity
� T truth
¬p ˜p not p

p ∧ q p/\ q p and q

p ∨ q p \/ q p or q

p ⇒ q p ==> q if p then q

p ⇔ q p= q p if and only if q

∀x. p !x. p for all x, p

∃x. p ?x. p there exists x such that p

λx. t \x. t the function x �→ t

while these are some other mathematical notations that might otherwise be obscure.
(For example ‘Cx(&0)’ is the rather verbose representation of the complex constant 0.)

Standard symbol ASCII version Meaning

−x --x Unary negation
n! FACT(n) Factorial function
|x| abs(x) absolute value function
◦ o function composition
N/A & type cast N → R

N/A Cx type cast R → C

(juxtaposition) %% scalar-matrix multiplication

In general, results given by powerful tools like computer algebra systems can be diffi-
cult to prove in a formal, rigorous way inside a foundational theorem prover. However, it
may be very easy when those tools can produce some kind of easily checkable certificate.
For example in [12], Maple is used to perform polynomial factorization and transcendental
function integration. In each case the checking process (respectively multiplying polynomi-
als and taking derivatives) is substantially easier than the process of finding the certificate,
and rather easy to implement foundationally. Similarly, some certificates of primality can
be checked quite easily even though the process of finding them requires complicated and
difficult processes like factorization of large integers [5, 11, 19]. On the face of it the WZ
algorithm also belongs in this ‘easy’ category, because we can rely on an existing imple-
mentation to provide the magical rational function R(n, k), and all we need to do is check
some routine algebraic manipulations. Indeed, there are readily available implementations
of Gosper’s algorithm and the WZ method. We’ll use the one developed by Fabrizio Caruso
in maxima:
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Maxima 5.20.1 http://maxima.sourceforge.net

using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

Distributed under the GNU Public License. See the file
COPYING.

Dedicated to the memory of William Schelter.

The function bug report() provides bug reporting
information.

We start by loading the zeilberger package:

(%i1) load(zeilberger);

We can easily use this to find the antidifference in our Gosper example tk = k·k!
nk

(
n
k

)
, which

gets presented as sk = −k!n1−k
(
n
k

)
:

(%i2) AntiDifference(k * k! * binomial(n,k) / nˆk,k);
1 - k

(%o2) - k! n binomial(n, k)

and we can also solve our WZ problem, resulting in exactly the rational function certificate

R(n, k) = −k2(3n−2k+3)

2(n−k+1)2(2n+1)
we gave above. (The additional [−1, 1] in the output means that this

gives an antidifference for −1 ·F(n, k)+ 1 ·F(n+ 1, k) = F(n+ 1, k)−F(n, k); in general the
algorithm can find antidifferences for more complicated recurrence combinations as mentioned
above.)

(%i3) Zeilberger(binomial(n,k)ˆ2 / binomial(2 * n,n),k,n);
2

k (3 n - 2 k + 3)
(%o3) [[- ------------------------, [- 1, 1]]]

2 2 (n - k + 1) (2 n + 1)

Thus, it seems we just need to solve the straightforward engineering issues about linking
maxima and HOL Light, and we can obtain formal proofs pretty easily. The basic ‘telescoping’
argument is simple, and there are already corresponding formal theorems, e.g.

SUM DIFFS ALT =
|- !m n.

sum (m..n) (\k. f (k + 1) - f k) =
(if m <= n then f (n + 1) - f m else &0)

The only other requirement is to formalize the algebraic simplifications involved in checking
the antidifference or WZ-pair properties, as well as the equivalence between the end result and
the purported answer. In the case of the Gosper example the antidifference property is

−(k + 1)!n1−(k+1)

(
n

k + 1

)

− −k!n1−k

(
n

k

)

= k · k!
nk

(
n

k

)
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and the end result to check is

−(n + 1)!n1−(n+1)

(
n

n + 1

)

− −1!n1−1
(

n

1

)

= n

while for the WZ example, we need to check the WZ-pair property
(
n+1
k

)2

(2(n+1)
n+1

) −
(
n
k

)2

(2n
n

) = −[k + 1]2(3n − 2[k + 1] + 3)

2(n − [k + 1] + 1)2(2n + 1)

(
n

k+1

)2

(2n
n

) − −k2(3n − 2k + 3)

2(n − k + 1)2(2n + 1)

(
n
k

)2

(2n
n

)

and the end result
∑

k

(0
k

)2

(2·0
0

) = 1

verifications that are described by [15] in the following terms:

Well, at this point we have arrived at a situation that will be referred to throughout this book
as a “routinely verifiable” identity. That phrase means roughly that your pet chimpanzee
could check out the equation. More precisely it means this. First cancel out all factors that
look like cn or ck [. . . ] that can be cancelled. Then replace every binomial coefficient in
sight by the quotient of factorials that it represents. Finally, cancel out all of the factorials
by suitable divisions, leaving only a polynomial identity that involves n and k. After a
few more strokes of the pen, or keys on the keyboard, this identity will reduce to the
indisputable form 0 = 0, and you’ll be finished with the “routine verification”.

However, if we examine our examples in more detail — which an attempt to formalize them
forces one to do — this starts to look somewhat too glib. For a start, we have assumed that we are
summing over all integers, relying on the finite support property. In this case, we need a priori
to justify the WZ-pair property for arbitrary k, and it’s not at all obvious that the equation that
was nonchalantly asserted by [15] in their presentation of the WZ example (assumed implicitly
in ‘replace every binomial coefficient in sight by the quotient of factorials’)

(
n
k

)2

(2n
n

) = n!4
k!2(n − k)!2(2n)!

is true in the case k > n when the LHS collapses to zero, or indeed even meaningful (how
do we define factorials of negative integers?) Similarly, when k = n or k = n + 1 one of the
denominators in the expression on the right of the WZ-pair property becomes zero, which makes
the whole interpretation of the formula questionable — at the very least we seem to be cancelling
terms of the form 0/0. (Ignoring division by zero is a staple trick in ‘proofs’ of 1 = 2, so concern
doesn’t seem entirely unwarranted.) And even if we are less casual about summing over ‘all
integers’ and just consider the k we really need, we do still apparently need to prove the WZ-pair
property in the problematic case k = n + 1 to justify the reasoning. All in all, it is difficult to
take these plausible-looking presentations at face value.

One solution to this problem is to explicitly exclude the troublesome points k from our sum,
and add those values of the summand back in separately. This approach is workable, and we have
managed to formalize a few examples in HOL Light in this way. However in more complicated
instances, the troublesome singularities occur not just at the upper limit of summation, but at
multiple points in between. This makes automation tricky in many ways, not only in the way
the size of the formula expands, but because we actually need to be able to determine where
the singularities are, which for a general bivariate polynomial is not a trivial matter. In a similar
way, the formalization of Apéry’s proof reported in [4], which uses related techniques, required
considerable semi-manual intervention to handle such special cases. Moreover, it is unsatisfying
to depart so radically from the plausible-looking informal counterpart, even if it is not obvious
how to make it completely rigorous.
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4 Limits to the Rescue?

If we seek a really rigorous proof, even some of the other casual assumptions that we made
earlier need to be re-examined. For example, we observed that a hypergeometric antidifference
must be a rational function of the original term, in our example − n

k
k·k!
nk

(
n
k

) = − n·k!
nk

(
n
k

)
. On the

face of it, this is problematic when k = 0. (As it happens we didn’t really need this for k = 0 in
our example, but it would have arisen if we’d started the sum at k = 0, which we could perfectly
well have done as the summand vanishes.)

If we could work systematically not over values with free parameters but rather rational func-
tions as syntactic objects, then manipulations like x/x = 1 become unobjectionable. However,
doing so in a formal context adds a lot of complications, and it’s not at all clear how to bring bino-
mial coefficients and factorials into this worldview. Instead, we will consider a slightly different
approach using limits. For motivation, consider the formal proof in HOL Light of Sylvester’s
determinant identity,3 which states that for an m × n matrix A and an n × m matrix B, we have
the following, I representing any identity matrix of the appropriate dimension:

det(I + AB) = det(I + BA)

A nice simple intuitive proof is as follows. By the multiplication law for determinants

det(I + AB) det(A) = det([I + AB]A)

= det(A + ABA)

= det(A[I + BA])
= det(A) det(I + BA)

and the result then follows by cancelling det(A) from both sides. Delightfully simple as this is,
there are two problems. First, if A is not square, det(A) has no obvious meaning — however
it is rather easy and dull to get round this objection by padding the matrices out so we can
assume them square. More interestingly, the proof collapses if det(A) = 0, i.e. if A is singular
(non-invertible).

One approach is to work over a ‘generalized’ polynomial ring.4 A somewhat different
approach that we take, which has a similar net effect but seems simpler, is to argue by continu-
ity; often this style of argumentation is referred to as ‘generic’. It is not too hard to prove that
for every square matrix A (whether itself invertible or not) there is some ε > 0 such that for
0 < |x| < ε the perturbed matrix A + xI is invertible.

NEARBY INVERTIBLE MATRIX =
|- !A:realˆNˆN.

?e. &0 < e /\
!x. ˜(x = &0) /\ abs x < e ==> invertible(A + x %% mat 1)

Since f (x) = det(I +(A+xI)B)−det(I +B(A+xI)) is a continuous function (indeed,
it’s a polynomial in x), it suffices to prove that f (x) = 0 in a neighbourhood of 0 (which
the proof for the invertible case does) and we can also conclude f (0) = 0. This, wrapped
up in a more general ‘assume without loss of generality that a matrix is invertible’ theorem,
is how the HOL Light proof of Sylvester’s determinant identity works.

It is using reasoning of this form that we propose to understand the WZ method, inter-
preting the various formulas involved as limits. In order to interpret binomial conditions and

3In http://code.google.com/p/hol-light/source/browse/trunk/Multivariate/topology.ml with the name
SYLVESTER DETERMINANT IDENTITY.
4See http://math.stackexchange.com/questions/17831/sylvesters-determinant-identity

http://code.google.com/p/hol-light/source/browse/trunk/Multivariate/topology.ml
http://math.stackexchange.com/questions/17831/sylvesters-determinant-identity
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factorials as limits, we will use the gamma function, which extends the factorial in a natural
way into a function of a real variable, or indeed a complex one. We will take up the for-
malization of the gamma function in HOL Light in the next section and then describe how
it can be used to formalize the kind of reasoning we were struggling with above. Note that
this is not really an original idea: if one looks carefully, one can find presentations of WZ
using gamma function limits [8]

This enables us to verify [. . . ] without having to worry about the domain of definition
of F and G. We may then take a limit, where necessary, to deal with cases in which
the formulas for F and G may be ambiguous (and these cases often arise in interesting
identities).

This may even be exactly how the people using the WZ method actually think intu-
itively about factorials. Still, one struggles to find any such explanation or justification in
the popular expositions, and as far as we know it has never been machine-formalized before.

5 The Gamma Function

The gamma function �(z) is a natural extension of the factorial function to real and com-
plex arguments. In fact, the functions are offset by 1: for natural numbers n we have
n! = �(n + 1). The complex gamma function is holomorphic (complex differentiable) in
the entire complex plane with the exception of the nonpositive integers {0, −1,−2, −3, . . .}
where it has poles. (Actually the reciprocal �−1(z) = 1/�(z) of the gamma function, set-
ting �−1(−n) = 0 at �’s poles, is entire, i.e. holomorphic in the whole complex plane.)
Likewise, the real gamma function is differentiable everywhere except at the nonnegative
integers where it shoots off to ±∞, as shown in the following picture:

The gamma function can be defined in various different ways. The first formalization
in a mechanical theorem prover was the development of the real gamma function in HOL4
by Siddique and Hasan [17] using Euler’s integral �(x) = ∫ ∞

0 tx−1e−t dt . We elect to start
by developing the complex gamma function and then we can fairly straightforwardly derive
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properties of the real function from it. As it happens, for present purposes the real gamma
function is entirely adequate, but the definitions and proofs for the complex gamma function
are a fairly straightforward generalization of their real counterparts, and it seemed a good
investment for the future. One can just as well use the Euler integral �(z) = ∫ ∞

0 tz−1e−t dt

to define the complex function, where the integral is over the reals but the parameter z

and hence the integrand is complex. We eventually derive that as a consequence of our
definition; the disadvantage of taking it as the definition is that it’s only valid for �(z) > 0
(or x > 0 in the real case), so some additional measures are needed to extend it to the
negative half of its domain. As we shall see, we do make essential use of �’s behaviour
close to negative integers, so we find it more convenient to define �(z) once and for all by
the limit

�(z) = lim
n→∞

nzn!
�n

m=0(z + m)

or in HOL Light:

|- cgamma(z) =
lim sequentially (\n. (Cx(&n) cpow z * Cx(&(FACT n))) /

cproduct(0..n) (\m. z + Cx(&m)))

Note that this HOL formulation inherits the effects of our definition 0−1 = 0, so at the
poles the function receives the concrete value 0. These limit definitions can be reformulated
in various equivalent ways, e.g.5

�(z + 1) = lim
n→∞ nz 1

(z + 1)

2

(z + 2)

3

(z + 3)
· · · n

(z + n)

We find it convenient to perform the convergence and holomorphy proofs first on the
logarithm of the Gamma function using the additive analog:

log �(z) = lim
n→∞ z log(n) − log(z) − �n

m=1 log((m + z)/m)

Although we write this function informally as log �(z), it is not just the result of apply-
ing the usual (principal value) complex logarithm to the Gamma function,6 In the formal
HOL development it is a distinct function lgamma defined as follows:7

|- lgamma z = lim sequentially
(\n. z * clog(Cx(&n)) - clog z -

vsum(1..n) (\m. clog((Cx(&m) + z) / Cx(&m))))

By expanding log(n) as a telescoping sum
∑n

m=2(log(m)− log(m−1)), one can express
the limit mainly as a sum of terms like z log(1 − 1/m) − log(1 + z/m), and since the
linear terms of those Taylor series cancel nicely, it’s easy to show convergence, even locally
uniform convergence for z bounded away from negative integers. This not only implies

5The nth elements of these sequences differ by a factor of n/(n + 1) so they have the same limit.
6Lang’s complex analysis book [13] confusingly seems to imply on p423 that it is, though presumably it is
not intended to. Exercise 35 of Chapter 9 (p. 125) of [6] gives an explicit estimate for the imaginary part of
log �(z).
7This function has applications of its own, which is one motivation for giving it a distinct definition, given
the difficulties in recovering it from the gamma function with the right imaginary part. For example, it is
implemented in Mathematica as LogGamma, in MATLAB as gammaln.
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that the limit does indeed exist except at negative integers, but that it defines a holomorphic
function there:

|- !z. (Im z = &0 ==> &0 < Re z)
==> lgamma complex differentiable at z

Now it is easy to demonstrate the key properties of the gamma function that we need,
that the limit does indeed exist for all z, the function is zero only in the degenerate case
where z is a negative integer, and except at these points it is the exponential of the lgamma
function.

|- !z. cgamma z = Cx(&0) <=> (?n. z + Cx(&n) = Cx(&0))

|- !z. cgamma(z) = if ?n. z + Cx(&n) = Cx(&0) then Cx(&0)
else cexp(lgamma z))

This last property easily implies that � is holomorphic except at negative integers.

|- !z. (!n. ˜(z + Cx(&n) = Cx(&0)))
==> cgamma complex differentiable at z

We derive numerous elementary theorems relatively easily, such as �(1) = 1 and the
fact that � commutes with complex conjugation

|- !z. cnj(cgamma z) = cgamma(cnj z)

That implies in particular that when applied to real arguments it gives real results, and
hence the corresponding real function defined as

|- gamma(x) = Re(cgamma(Cx x))

has the following key property:

|- !x. Cx(gamma x) = cgamma(Cx x)

This allows all the required properties of the real gamma function to be derived straight-
forwardly from those of the complex function. The most important properties for us in what
follows are the recurrence formulas, which extend the basic property (n + 1)! = (n + 1)n!
of factorials. Note that the second one needs no case analysis because 0−1 = 0 and so it
works degenerately in that case.

|- !x. gamma(x + &1) = if x = &0 then &1 else x * gamma(x)

|- !x. gamma(x) = gamma(x + &1) / x

The proof (for the complex function first) is almost immediate just by rearranging the
limit that defines �. Legendre’s duplication formula �(z)�(z + 1/2) = 21−2z�(1/2)�(2z)

is also relatively easy just by following one’s nose:

|- !x. gamma(x) * gamma(x + &1 / &2) =
&2 rpow (&1 - &2 * x) * gamma(&1 / &2) * gamma(&2 * x)
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The only really non-trivial proof is involved in the so-called reflection formula
�(z)�(1 − z) = π/ sin πz; we use a complex-analytic variant of a nice proof for the real
gamma function due to Artin [2])

|- !x. gamma(x) * gamma(&1 - x) = pi / sin(pi * x)

This implies easily that �(1/2) = √
π , which we can use to rewrite the duplication

formula as �(z)�(z + 1/2) = 21−2z
√

π�(2x). Another interesting property of the real
gamma function (considered as a function with domain {x ∈ R | x > 0}) is that it is
log-convex (i.e. its logarithm is a convex function)

|- !s. (!x. x IN s ==> &0 < x) ==> gamma real log convex on s

and is in fact uniquely characterized by just a few properties including the recurrence and
log-convexity:

|- !f. f(&1) = &1 /\
(!x. &0 < x ==> f(x + &1) = x * f(x)) /\
(!x. &0 < x ==> &0 < f x) /\
f real log convex on {x | &0 < x}
==> !x. &0 < x ==> f x = gamma x

We are also finally able to justify the definition via the Euler integral in a suitable
domain. Interestingly, Euler originally seems to have used �(x) = ∫ 1

0 (− log t)x−1dt , which
can be related to the more common integral by a change of variables. Another change of
variables and the fact that �(1/2) = √

π yields as a nice piece of mathematical collateral
the value of the Gaussian integral

∫ ∞
−∞ e−x2

dx = √
π .

|- ((\x. exp(--(x pow 2))) has real integral sqrt pi) (:real)

We also derive various forms of Stirling’s approximation, but since the formalization of
the gamma function is not the main topic of this paper we will not dwell on this development
any more.

6 Real Generalizations of Operations

In order to realize the idea of a limit-based formulation of the WZ method, we need two
pieces of mathematical infrastructure:

1. Real-number generalizations of the basic functions involved in the problem
2. A proof that one can approach the limit avoiding ‘troublesome’ values.

The major part of the answer to (1) is the gamma function that we described above.
To keep a convenient relationship between the real generalizations and their original
natural number counterparts we define real variants of the factorial function and bino-
mial coefficient; see [7] for some discussion of the latter. Note that we use the names
n and k but these are variables of type R not Z and the subtraction is true subtraction
over R.
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|- rfact x = gamma(x + &1)

|- rbinom(n,k) = rfact n / (rfact k * rfact (n - k))

These functions generalize their natural number counterparts and behave quite well
with respect to limits. For example, the following expresses the fact that if some function
nn tends to a natural number limit (according to some convergence net ‘net’), then the
corresponding factorial tends to the expected limit:

|- !net nn n.
(nn ---> &n) net
==> ((\a. rfact (nn a)) ---> &(FACT n)) net);

The real factorial function, for example, is continuous except at negative integers,
and its reciprocal is actually continuous everywhere (with value 0 at negative integers).
(Here ‘o’ is function composition and ‘inv’ is the multiplicative inverse function on reals.)

|- !x. ˜(integer x /\ x <= -- &1)
==> rfact real continuous atreal x

|- !x. inv o rfact real continuous atreal x

As a little thought shows, the real binomial function has the correct limit as the argument
tends to (n, k) for any nonnegative integers n and k, so in some sense it ‘builds in’ the fact
that

(
n
k

) = 0 for k > n.

|- !net nn kk n k.
(nn ---> &n) net /\ (kk ---> &k) net
==> ((\a. rbinom (nn a,kk a)) ---> &(binom (n,k))) net

Moreover, if k ∈ Z with n � 0 and k < 0 it tends to zero at (n, k). This means that we
can safely sum (in our limit-based formulation)

(
n
k

)
over all integers k, positive or negative,

provided n is nonnegative (integer or not).

|- !net nn kk n k.
(nn ---> n) net /\ (kk ---> k) net /\
integer k /\ &0 <= n /\ k < &0
==> ((\a. rbinom (nn a,kk a)) ---> &0) net

So much for factorials and binomial coefficients. All the basic arithmetic operations like
addition and multiplication are mapped to their real counterparts, and the power function
is mapped to the standard ‘real to the power real’ power function in the HOL Light library
rpow. In fact, this last identification proves a little troublesome since the behavior of xy

when x < 0 is not trivial and is often left undefined. The HOL Light rpow function is
defined for negative x in a rather intricate way to make at least some intuitive laws of

exponents work for arbitrary rational exponents (for example (−2)
1
3 = − 3

√
2). However,

this definition results in a function that is not continuous, making it quite unsuitable for use
in our limit-based formulation because yn → y does not in general imply xyn → xy for x <

0. For the most part, as we shall see, we can assume x > 0 in common examples, but one
outstanding exception is that many problems involve alternating signs expressed as (−1)k ,
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and we do need to generalize these. Our solution8 is to use the function x �→ cos(πx),
which has all the required properties:

– For x an integer, it gives the intuitively expected answer cos(πx) = (−1)x , so the
original problem mapping works correctly.

– It is continuous everywhere, so it can be used in a limit-based argument
– It satisfies cos(π(x + 1)) = − cos(πx) for all real x, which is the key property needed

in the algebraic identities.

7 Safely Approaching the Limit

In order to justify the ‘naive’ rearrangements we want to be able to approach the limit (n, k)

via pairs of reals (n + δ, k + ε) that avoid various problematic issues where the simple
rearrangements break down. For example, we certainly want to avoid any poles of the
rational function, any points where other denominators are zero, and places where the naive
expansion formulas like (x + 1)! = (x + 1)x! cease to be valid. All the difficult pairs of
values have something in common: they are of the form (x, y) where for some polynomial
p ∈ Q[x, y] (i.e. one with rational coefficients in two variables x and y) the pair satisfies
p(x, y) = 0. Given any polynomial p ∈ R[x1, . . . , xn], its set of roots, the algebraic variety
it defines in the language of algebraic geometry, {(x1, . . . , xn) ∈ R

n | p(x1, . . . , xn) = 0}
is a ‘small’ subset of R

n except in the degenerate case where p is the zero polynomial.
More precisely, it has Lebesgue measure zero:

|- !f c. real polynomial function f /\ ˜(!x. f x = c)
==> negligible {x | f x = c}

and (consequently, since it is also closed, being the preimage of a singleton set under a
continuous function) is nowhere dense:

|- !f c. real polynomial function f /\ ˜(!x. f x = c)
==> interior (closure {x | f x = c}) = {})

Because these two notions of ‘small’ are preserved under finite unions, it is easy to see
that we can make (x, y) → (n, k) avoiding any particular finite set of polynomial con-
straints. In fact, we can do what for most purposes is even more convenient: we can avoid
all possible polynomial constraints with rational coefficients, because our ‘smallness’
properties (measure zero, or closed set with empty interior) are also preserved by countable
unions. The latter is a Baire-type result, which in HOL looks like this:

|- !g. COUNTABLE g /\ (!s. s IN g ==> closed s /\ interior s = {})
==> interior(UNIONS g) = {}

8In an earlier version of this work we used an ad hoc triangle wave function, but changed to cos(πx) at the
suggestion of one of the referees.
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We make a somewhat ad hoc definition of the set of bivariate rational polynomial func-
tions, where ‘(:num#num) CROSS rational’ just means N × N × Q:

|- ratpolyfun p <=>
?s. FINITE s /\

s SUBSET (:num#num) CROSS rational /\
p = \(x,y). sum s

(\((i,j),c). c * x pow i * y pow j)

and prove without difficulty that it has various expected closure properties, so it’s easy to
check that a specific expression is indeed such a function. For example, this is the HOL
theorem that the set is closed under pointwise addition:

|- !p q. ratpolyfun (\(n,k). p n k) /\ ratpolyfun (\(n,k). q n k)
==> ratpolyfun (\(n,k). p n k + q n k));

Critical for us is that there are only countably many polynomials with rational coeffi-
cients (this is almost immediate from the definition), and hence we will be able to avoid
them all in the passage to the limit.

|- COUNTABLE ratpolyfun

We define a pair of real numbers t = (x, y) to be ratty (the name is meant to suggest
rational numbers as well as undesirability) if it is a zero of a non-trivial rational polynomial
function

|- ratty t <=> ?p. ratpolyfun p /\ p t = &0 /\ ˜(!w. p w = &0)

It is now easy to see that we can approach a pair (n, k) arbitrarily closely by non-ratty
pairs (x, y). In fact, we can choose the approach to satisfy various other constraints, in par-
ticular so that it approaches from above (x > n and y > k), which turns out to be somewhat
convenient. We are now ready to prove the main theorems underlying our implementation.

Our first version, inspired directly by the way the WZ method is usually presented, used
summation of the limit function over all integers. In some sense this is the most conve-
nient approach, because we can assume the range of summation to be wide enough that it
properly includes the support of the function and that the endpoints are not poles of the
rational function (since a non-trivial polynomial only has finitely many roots). However,
this approach requires us (at least prima facie) to show that the limit as (n, k) is approached
is always zero for k < 0 and n � 0. As we noted, for the binomial coefficient

(
x
y

)
itself, this

is indeed the case. But for composite expressions in general it becomes more complicated.

For example, to show that the limit form of the Apéry’s summand
(
n+k
k

)2(n
k

)2 tends to 0 for

n, k ∈ Z, k < 0 � n is not quite trivial: although we know
(
x
y

)2 → 0 as (x, y) → (n, k), we

need to show that
(
x+y

y

)
doesn’t approach ±∞ so fast that it overwhelms it. It so happens

that in this case it doesn’t, but that is only by virtue of the fact that we approach the limit
from above, and in more complicated examples it’s not in general the case at all. On the
other hand, we noticed that cases where the rational function has a pole at k = 0 are almost
unknown, and it therefore seemed simpler to just consider summation over all natural num-
bers, which completely obviates these difficulties. Thus, our main theorem is as follows:
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|- !P f h ff hh p q.
((!n. FINITE {k | ˜(f n k = &0)}) /\
(!n. FINITE {k | ˜(h n k = &0)})) /\

((!n k. P n ==> (ff ---> f n k) (at (complex(&n,&k)))) /\
(!n k. P n ==> (hh ---> h n k) (at (complex(&n,&k))))) /\

(ratpolyfun p /\ ratpolyfun q) /\
(!n. P n ==> ˜(q (&n,&0) = &0)) /\
(!n k.

˜ratty (n,k) /\ &0 < n
==> hh (complex (n,k)) =

p (n,k + &1) / q (n,k + &1) * ff (complex(n,k + &1)) -
p (n,k) / q (n,k) * ff (complex(n,k)))

==> (!n. P n
==> sum (:num) (\k. h n k) =

--(p (&n,&0) / q (&n,&0) * f n 0))

The idea is that we have some functions f : N → N → R and h : N → N → R that are
(subject to some general constraint P that we carry around) limits of corresponding functions
ff : C → R and hh : C → R. In actual use, the function h is always a linear combination
of offset versions of f, which allows us to handle the basic WZ method where h(n, k) =
f(n+1, k)−f(n, k) as well as more general ones, but from the point of view of stating this
theorem it is better to keep it generic. We suppose there are bivariate rational polynomials p

and q with q(n, 0) �= 0 such that, ignoring some type distinctions in the formal counterpart,
we have hh(x, y) = G(x + 1, y) − G(x, y) where G(x, y) = (p(x, y)/q(x, y))ff(x, y)

for all non-ratty (x, y) with x > 0. Then by a simple telescoping sum and limit argument
we can conclude that the sum

∑
k h(n, k) is given by the limit of −G(n, 0).

8 Implementation

We have implemented a derived rule in HOL Light for proving Zeilberger-type results
using the rational function certificates provided by the Maxima implementation. The inputs
(ignoring some identifying the actual variables used in place of n and k in our generic
examples) are as follows:

– A term specifying the main sum to be analyzed, e.g. Sn = ∑n
k=0

(
n
k

)(
m

k+p

)
/
(
n+m
n+p

)
, or as

a HOL term:

‘sum (0..n) (\k. (&(binom(n,k)) * &(binom(m,k + p))) /

&(binom(n + m,n + p)))’

– The linear combination to be considered, e.g. the list [1; −1] being short for Sn − Sn+1
as in the WZ method (in general these terms can be polynomials in n)

[‘&1‘; ‘-- &1‘]

– Any additional assumptions about n or the other parameters, here p � m:

‘&p <= &m‘

– The rational function certificate, e.g. k(p + k)/[(n − k + 1)(n + m + 1)]:
‘(&k * (&p + &k)) / ((&n - &k + &1) * (&n + &m + &1))‘
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Note that if one uses an actual interface to Maxima, the linear combination and the ratio-
nal function are returned automatically by Zeilberger; all the user needs to provide is
the term to be summed and the assumptions. However, it is convenient to have this ‘manual’
version to make it independent of Maxima and allow manual tweaking of its results.

The function automatically proves various required conditions on the sum, in particular
that it has finite support and that the support is contained in the actual set used for summa-
tion, and instantiates the main theorem above appropriately. It then attempts to eliminate the
five conjuncts of the antecedent:

– It proves that the functions have finite support. This was already done as part of the
setup process so not much is needed at this stage except to lift the result to linear
combinations.

– It proves that the real counterpart does indeed have the appropriate limit. This is
normally proved by routine backchaining through limit composition theorems, but
occasionally (for example when division is involved) this throws up additional proof
obligations that certain terms are nonzero. These are themselves disposed of by some
fairly simple ad hoc tactics.

– It proves that the numerator and denominator of the rational function are indeed rational
polynomial functions. This is trivial by backchaining through composition theorems.

– It proves that q(n, 0) �= 0 for arbitrary n, which collapses to proving various polyno-
mials in n are nonzero. Fortunately, the denominators usually split into (and indeed are
presented as) a product of linear factors, which can be analyzed separately. These in
turn can usually be disposed of automatically either by linear arithmetic reasoning (e.g.
n + 1 �= 0 for n ∈ N) or divisibility reasoning (e.g. 2m + 2n − 1 �= 0 for m, n ∈ Z

because 2m + 2n is divisible by 2 but 1 is not).
– It proves the core algebraic rearrangement. Since it can assume that the real number

pairs (n, k) are not ratty and that n > 0, this is indeed quite routine. First any argu-
ments to factorials and binomial coefficients, and right-hand arguments of powers, are
normalized into ‘higher-order-term plus or minus iterated 1’, e.g. 2(n + 1) becoming
(2n + 1) + 1. Then ‘stepping’ theorems are applied to simplify these in the expected
way like (n − 1)! = n!/n — any side-conditions arising are trivialized because of non-
rattiness while powers of n are easy to handle since we can also assume n > 0. The
resulting expression is sometimes large and ugly but can invariably be solved quickly
by a slightly specialized variant of HOL Light’s existing REAL FIELD tactic.

We can then draw the conclusion as in the main theorem, and after a little automatic
simplification the RHS often collapses to 0 (as required in the WZ method) or some other
constant. For example, in the present case we get the following:

|- !n. &1 * sum (0..n)
(\k. (&(binom(m,k)) * &(binom(n,k))) /

&(binom(m + n,m))) +
-- &1 * sum (0..n + 1)

(\k. (&(binom(m,k)) * &(binom(n + 1,k))) /
&(binom(m + n + 1,m))) =

&0

All this is totally automatic and the final result is proved with the usual HOL Light rigour.
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9 Status

Our current code has been tested on about 50 examples drawn from various sources with an
almost perfect success rate. Of course, sometimes we refined some of the automated tactics
as a result of the fact that an interesting example failed, which gives our code a slightly ad
hoc flavour. But on the whole it is quite robust. For example, it can easily handle the Apéry
example, producing the following theorem

|- !n. --((&n + &1) pow 3) *
sum (0..n)

(\k. &(binom(n + k,k)) pow 2 *
&(binom(n,k)) pow 2) +

((&2 * &n + &3) * (&17 * &n pow 2 + &51 * &n + &39)) *
sum (0..n + 1)

(\k. &(binom((n + 1) + k,k)) pow 2 *
&(binom(n + 1,k)) pow 2) +

--((&n + &2) pow 3) *
sum (0..n + 2)

(\k. &(binom((n + 2) + k,k)) pow 2 *
&(binom(n + 2,k)) pow 2) =

&0

as well as the following, which gives a WZ proof that
∑

k(−1)n−k4k
(
n+k+1
2k+1

) = n + 1

|- !n. -- &1 *
sum (0..n)
(\k. (cos (pi * (&n - &k)) *

&4 rpow &k *
&(binom(n + k + 1,2 * k + 1))) /
(&n + &1)) +

&1 *
sum (0..n + 1)
(\k. (cos (pi * (&(n + 1) - &k)) *

&4 rpow &k *
&(binom((n + 1) + k + 1,2 * k + 1))) /
(&(n + 1) + &1)) =

&0

We also have convenient front-ends to perform the initial WZ normalization and to trans-
form sums of functions with values in N to R, which is used in the core implementation.
Usually we can handle additional parameters without much difficulty, provided they are
integers (this was already done in the running example above with m). But a slight short-
coming is that we cannot currently handle general real parameters, because they don’t a
priori give us polynomials with rational coefficients. However, it would be easy to gener-
alize our approach to allow rational functions based on any finite set of other parameters.
There are also a very few cases where our method fails because of a pole in the rational
function at 0, but these can always be fixed by reindexing the sum k → k + 1 and adding in
the zero term separately.

The only really difficult cases to handle are those where in some sense the function
being summed does not have finite support. The precise definition of finite support is
delicate. One might, from the discrete point of view, consider

(
n
k

)
k!2 to have finite support
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because
(
n
k

)
does, but it does not have finite support as a limit of the corresponding real

functions. Similarly, we cannot handle cases like
∑

k(−1)k
(4n

2k

)
/
(2n

k

)
because the denomina-

tor vanishes, even though the numerator does too. On the whole these are cases where one
would not normally consider the WZ method applicable, since even informally it clearly
assumes finite support. But informally one often applies such methods to problems using

subtraction inside the binomial coefficients, such as
∑

k

(
n
k

)2(3n−k
2n

)
/
(2n

n

)2
. Intuitively, one

is only ‘really’ summing over 0 � k � n because
(
n
k

)
vanishes elsewhere. But as limits this

summand is in general problematic because for k > 3n the
(3n−k

2n

)
features singularities.

One could of course use related techniques with a specific range of summation, or make a
more careful analysis of the singularities, but either approach loses the attractively ‘routine’
nature of the procedure. Another approach is to make the change of variable k → n − k,

which since
(

n
n−k

) = (
n
k

)
gives us an equivalent

(
n
k

)2(2n+k
2n

)
/
(2n

n

)2
which we can handle with

our automated setup:

|- !n. -- &1 *
sum (0..n)
(\k. (&(binom(n,k)) pow 2 * &(binom(2 * n + k,2 * n))) /

&(binom(2 * n,n)) pow 2) +
&1 *
sum (0..n + 1)
(\k. (&(binom(n + 1,k)) pow 2 *

&(binom(2 * (n + 1) + k,2 * (n + 1)))) /
&(binom(2 * (n + 1),n + 1)) pow 2) =

&0

10 Conclusion

On the face of it, the WZ method is simple and transparent, but considerable subtlety lurks
inside it. We believe that our setup represents a reasonable interpretation that is provably
effective at producing really rigorous formal proofs with minimal human intervention on
a wide range of examples. As noted, it is not perfect and perhaps some future refinements
would make it even better. In any case, we think this is an excellent illustration of how
formalization may not be merely a routine matter of crossing ‘t’s and dotting ‘i’s, but can
provide really interesting insights. I hope that the great pioneer of formalization Andrzej
Trybulec would have found this a worthwhile exercise.
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11. Grégoire, B., Théry, L., Wener, B.: A computational approach to Pocklington certificates in type theory.
In: Proceedings of the 8th International Symposium on Functional and Logic Programming, volume
3945 of Lecture Notes in Computer Science, pp. 97–113. Springer-Verlag (2006)
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14. Nemes, I., Petkovṡek, M., Wilf, H., Zeilberger, D.: How to do your monthly problems with your

computer. Am. Math. Mon. 104, 505–519 (1997)
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19. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K., Brandt, J. (eds.) Proceed-

ings of the 20th International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007,
volume 4732 of Lecture Notes in Computer Science, pp. 319–333. Springer, Kaiserslautern, Germany
(2007)

20. van der Poorten, A.J.: A proof that Euler missed: Apéry’s proof of the irrationality of ζ(3), an informal
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