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Abstract. We describe the formalization of some of the basics of complex anal-
ysis in the HOL Light theorem prover. Besides being a beautiful area of mathe-
matics, this has many potential applications, e.g. in analytic number theory. We
have endeavoured to set up the kind of general analytic machinery that would
make such applications feasible.

0 Mizar and me: some personal recollections

The first time I saw mention of the Mizar project was in a message from Bob Boyer to
the QED mailing list in August 1993:1

Indeed, there have been a good number of QED-like efforts spread over at least
the last 27 years, both large scale and small. (I hear rumors that the Polish
MIZAR effort may be the largest so far.)

At the time, even though Mizar had a large and thriving user community all over the
world, I hadn’t heard of it at all, so my curiosity was piqued. The following summer,
the second QED Workshop was in Warsaw, and I had the opportunity to meet Andrzej
Trybulec in person for the first time. This was a memorable experience in many ways,
and immediately after the workshop a few participants travelled to Białystok where we
had the opportunity to try out Mizar for ourselves with Andrzej’s help.

I was impressed that Andrzej was willing to devote so much time to helping out
some complete beginners. But I was equally impressed how little his help was needed!
After a few hours, I was able to prove in Mizar the formula for the roots of a quadratic
equation. To someone with no experience of proof assistants, that might seem an un-
spectacular accomplishment, but Mizar seemed to be dramatically easier to use than the
other systems I’d tried, particularly HOL [3], with which I was most familiar.

Over the next few months, back in Cambridge (where I was supposed to be finish-
ing my PhD) and in Turku/Åbo in Finland (where I was doing a postdoc under the EU
Human Capital and Mobility scheme), I often thought about why Mizar’s proof lan-
guage seemed much easier to use. I became convinced that Andrzej’s design had many
key features that we should emulate in other systems, and at the TPHOLs conference in
1996, I presented a paper [4] where I described a simple ‘clone’ of some features of the

1 http://icml.stanford.edu/∼uribe/mail/qed.messages/105.html



Mizar proof language built on top of my own HOL Light prover. During the discussion
after my talk, Mike Gordon (the original inventor of HOL) coined the word declarative
to describe the Mizar approach to proof, in contrast to the procedural approach of HOL
and most other systems. Those terms, based on a natural analogy with declarative and
procedural programming languages, seem to be very appropriate and have stuck.

Before I had even finished coding my ‘Mizar Mode for HOL’, Don Syme had at-
tended a half-baked talk I gave on the subject in Cambridge and been inspired to write
his own declarative prover. Many of the ideas about proof style that Don and I discussed
found shape in a paper I gave at the TYPES meeting in Aussois in 1996 [5]. And next
year, declarative proof had become a hot topic, with three papers by different people at
the same conference [13, 14, 17].

Ironically, though I acted as a channel for Mizar’s ideas, I have been little occu-
pied with declarative over the subsequent decade. The most impressive line of work
derived from Mizar is Markus Wenzel’s “Isar” mode for the Isabelle prover [12]. This
has even become Isabelle’s default mode in place of the traditional ML tactic scripts,
and the structured proof language seems to have contributed to a much wider usage of
the Isabelle system. I have mostly continued to do proofs in the good old procedural
way in HOL Light. This is partly inertia, but also partly a recognition that this approach
has its advantages too. (Just as, for example, point-and-click interfaces and command
lines have their place.) Perhaps the ultimate dream is a smooth combination of both
procedural and declarative approaches [16].

As he approaches his 65th birthday, I hope Andrzej gains the deserved satisfaction
from seeing his ideas spread not just through the user community of Mizar itself, but
through the world of proof assistants generally. So far, the intellectual influence has
mainly concerned the logical structure of the proof language, but I would not be sur-
prised if other ideas from Mizar, such as its treatment of algebraic structures, begin to
propagate into other systems. I would have liked to talk about some of these questions,
but I lack the competence to do so. Instead, I draw inspiration from another of Andrzej’s
notable characteristics: while many people talk and dream about the formalization of
mathematics, he and his colleagues really do it. In the same spirit, I want to describe
some work I have done on the formalization of complex analysis using my HOL Light
prover.

1 Topological and analytical basics

Instead of defining a special type of complex numbers, we use the type R2 directly,
though we define complex as an accepted abbreviation for this type. In this way
we instantly inherit all the topological and analytic apparatus described in [8], with-
out needing explicit isomorphisms from one type to the other. Nevertheless, we add
various special things for the complex numbers, e.g. the mappings Re and Im for the
real and imaginary components of a complex number, the conjugation mapping cnj,
and multiplication and inversion of complex numbers. We have tried to keep notation
compatible with an earlier theory [7]. Readers unfamiliar with a simple type system
such as HOL will need to get used to seeing various type injections such as & : N → R



and Cx : R → C. Also, although the types R2 and C are synonymous, the types R and
R1 are not, so we use bijections lift : R → R1 and drop : R1 → R.

More interestingly, we also define the key concept of complex differentiability. The
general notion of differentiability for a function RM → RN is that there is a local linear
approximation, which is also a function RM → RN , e.g. for a simple limit at a point:

|- (f has_derivative f’) (at x) ⇔
linear f’ ∧
((λy. inv (norm (y - x)) % (f y - (f x + f’ (y - x)))) --> vec 0)
(at x)

As discussed in [6], we formalize many such concepts in this relational style. For
example, when proving things about limits we generally focus on assertions of the form
xn → a rather than the informal equivalent lim xn = a. In the HOL formalization
these are not equivalent: xn → a implies lim xn = a but not conversely. The trouble
is that because the limit function lim has some specific type, say (N → RN ) → RN ,
there is no way of encoding whether or not the limit exists; whether it does or not
there will be some object lim xn of type RN and the equation lim xn = a does not
furnish any information about whether it’s a “real” limit or just some other arbitrary
value. (This problem is less severe in untyped frameworks or those with more flexible
types like Mizar, since one can use subtyping to indicate definedness, e.g. setting lim
to return something not in RN when there is no limit.) Therefore, we quite consistently
formalize limiting concepts in the relational fashion, as with complex differentiability
and path integrability below.

Compared with general differentiability in RN , complex differentiability makes the
more stringent assumption that the linear mapping just amounts to multiplication by a
complex number:

|- (f has_complex_derivative f’) net ⇔
(f has_derivative (λx. f’ * x)) net

It is easy to prove this equivalent to another natural characterization:

|- (f has_complex_derivative f’) (at a) ⇔
((λx. (f(x) - f(a)) / (x - a)) --> f’) (at a)

Equally, one can derive the Cauchy-Riemann characterization (though we have had
no use for it so far):

|- f complex_differentiable (at z) ⇔
f differentiable (at z) ∧
jacobian f (at z)$1$1 = jacobian f (at z)$2$2 ∧
jacobian f (at z)$1$2 = --(jacobian f (at z)$2$1)

where:

|- f complex_differentiable net ⇔
∃f’. (f has_complex_derivative f’) net



We also define complex differentiability throughout a set. We use a restricted notion
of limit considering points inside the set only. This is more in line with the general ap-
proach to limits within subspaces in topology, and in any case the distinction disappears
when, as is usually done, we consider open sets. However, it is important to keep this in
mind, since often analyticity on a set is taken to imply analyticity in an open set around
each point. (Our motivation in taking the chosen course is that in the past we sometimes
found it tedious handling such things as 1-sided limits at the endpoints of intervals with
a separate argument.)

|- f analytic_on s ⇔
∀x. x ∈ s ⇒ ∃f’. (f has_complex_derivative f’) (at x within s)

The usual theorems about composing limits and derivatives extend easily from gen-
eral differentiability to this special case. Properties of complex multiplication are de-
rived from general properties of bilinear mappings, though the complex inverse uses a
more explicit and tedious argument. (Could this be avoided?)

We also define complex versions of the usual transcendental functions (starting with
the Taylor expansion for the exponential function) and derive real versions from them.
These are not much used in the first part of this development, but we do need the com-
plex exponential function and its periodicity when we later come to talk about winding
numbers. Note that HOL Light already has a theory of real analysis [6], but our long-
term goal is to subsume it under this more general analytical theory in RN and C.

2 Paths

Cauchy’s theorem and related results depend on integration of a complex function over
a path (sometimes known as a line, road, curve or contour). A path is considered to be
a mapping γ : [0, 1] → C out of some canonical real interval, and the path integral is
then defined as ∫

γ

f =
∫ 1

0

f(γ(t))γ′(t) dt

or in our HOL relational formulation:

|- (f has_path_integral i) g ⇔
((λx. f(g x) * vector_derivative g (at x)) has_integral i)
(interval[vec 0,vec 1])

For most purposes, we want to forget the details of the parametrization using the
arbitrary interval [0, 1], so we define various natural abbreviations:

|- pathstart g = g(vec 0)

|- pathfinish g = g vec 1)

|- closed_path g ⇔ pathstart g = pathfinish g

|- path_image g = IMAGE g (interval[vec 0,vec 1])



It’s often convenient to stick together two new paths to make a new path. To re-
tain the canonical parametrization we allocate the two intervals [0, 1/2] and [1/2, 1] to
scaled versions of the the two components; formally:

|- g1 ++ g2 = (λx. if drop x <= &1 / &2
then g1(&2 % x)
else g2(&2 % x - vec 1))

where vec is a direct injection N → R1 and the infix operator ‘%’ is scalar-vector
multiplication. (We could have written ‘Cx(&2) * x’ but the present definition is
valid for any RN as well as C.) Similarly we often want to consider a path in reverse:

|- reversepath g = (λx. g(vec 1 - x))

For a path integral as defined above to exist, some restrictions on the functions
allowed as paths are needed. The functions f we are concerned with are normally well-
behaved, certainly continuous and usually analytic, so it is the nature of γ that is critical.
The usual assumption in complex analysis texts is that a path γ should be piecewise
continuously differentiable, which ensures that the path integral exists at least for any
continuous f , since all piecewise continuous functions are integrable. However, our
notion of validity is weaker, just piecewise differentiability:

|- valid_path f ⇔ f piecewise_differentiable_on interval[vec 0,vec 1]

where piecewise differentiability is continuity plus differentiability except on a finite
set:

|- f piecewise_differentiable_on i ⇔
f continuous_on i ∧
(∃s. FINITE s ∧ (∀x. x ∈ i DIFF s ⇒ f differentiable at x))

This choice is influenced by the fact that our underlying theory of integration is the
Kurzweil-Henstock theory [9, 10]. In contrast to the Riemann or Lebesgue theory (but
in common with a simple notion based on antiderivatives), this can integrate all deriva-
tives. Using the Riemann or Lebesgue theory we would be unable even to integrate
a constant function along an exotic non-rectifiable path like γ(t) = t + t2 sin(1/t3),
which is differentiable everywhere but with unbounded variation in a neighbourhood
of 0, and so we could prove little of interest about general paths. With our integration
theory, it is only when we need to consider bounds on integrals that we may need to
impose stronger restrictions.

Of course, it is easy to establish various basic results about our combinators for
paths, such as the following. Once these have been proved (often quite laborious, though
intellectual trivial), one does not often have to return to the basic definition of path
integral.



|- reversepath(reversepath g) = g

|- pathstart(reversepath g) = pathfinish g

|- valid_path(reversepath g) ⇔ valid_path g

|- pathfinish g1 = pathstart g2
⇒ (valid_path (g1 ++ g2) ⇔

valid_path g1 ∧ valid_path g2)

|- (f has_path_integral i1) g1 ∧
(f has_path_integral i2) g2 ∧
valid_path g1 ∧ valid_path g2
⇒ (f has_path_integral (i1 + i2)) (g1 ++ g2)

Two particularly common paths that we use in what follows are a straight-line path
from a to b:

|- linepath(a,b) = λx. (&1 - drop x) % a + drop x % b

and a circular path, traversed counterclockwise, with centre z and radius r (here ii
denotes the imaginary unit i):

|- circlepath(z,r) = λx. z + Cx(r) * cexp(Cx(&2) * Cx pi * ii * Cx(drop x))

where cexp is the complex exponential function.

3 Cauchy’s theorem

The cornerstone of the usual approach to complex analysis is the Cauchy-Goursat inte-
gral theorem, although there are ingenious approaches that avoid integration [15]. Our
first step is a straightforward corollary combining the 1-dimensional Fundamental The-
orem of Calculus and the general chain rule for composition of derivatives:

|- (∀x. x ∈ s ⇒ (f has_complex_derivative f’(x)) (at x within s)) ∧
valid_path g ∧ (path_image g) SUBSET s
⇒ (f’ has_path_integral (f(pathfinish g) - f(pathstart g))) g

This shows that if a function has a primitive (usual terminology for a complex an-
tiderivative) within a set, the integral round any closed curve in that set is zero. Note
that as when defining analyticity, we carefully consider limits within the set s, so this is
a little sharper than the most common variant where the set s is assumed open.

|- (∀x. x ∈ s ⇒ (f has_complex_derivative f’(x)) (at x within s)) ∧
valid_path g ∧ (path_image g) SUBSET s ∧
pathfinish g = pathstart g
⇒ (f’ has_path_integral Cx(&0)) g

In order to make progress, we need to establish the existence of line integrals for
a more general class of functions. However, we only need to consider integrals along
straight-line segments, and in this case the integrability of continuous functions follows
from an analogous result for the reals:



|- f continuous_on segment(a,b) ⇒ f path_integrable_on (linepath(a,b))

Our goal is now to prove the Cauchy-Goursat theorem, which states that if a function
is analytic in a set with suitable topological properties, its line integral round any closed
path in that set is zero. For the time being, we just aim to prove this for a triangular
path, on and inside which the function is analytic. The key argument is a quadrisection
step, showing that if the integral were ≥ eK2 where K is a bound on the sides, then
one of the four triangles obtained by joining all pairs of midpoints would have the same
property, and the corresponding K would be halved. Note that we use the notion of
convex hull as an easy way of talking about the inside and outside of the triangle.

|- f continuous_on (convex hull a,b,c) ∧
dist (a,b) <= K ∧
dist (b,c) <= K ∧
dist (c,a) <= K ∧
norm(path_integral(linepath(a,b)) f +

path_integral(linepath(b,c)) f +
path_integral(linepath(c,a)) f) >= e * K pow 2

⇒ ∃a’ b’ c’. a’ ∈ convex hull a,b,c ∧
b’ ∈ convex hull a,b,c ∧
c’ ∈ convex hull a,b,c ∧
dist(a’,b’) <= K / &2 ∧
dist(b’,c’) <= K / &2 ∧
dist(c’,a’) <= K / &2 ∧
norm(path_integral(linepath(a’,b’)) f +

path_integral(linepath(b’,c’)) f +
path_integral(linepath(c’,a’)) f)

>= e * (K / &2) pow 2

This means that if the path integral round a triangle is nonzero, we could generate a
decreasing nest of triangles, which by completeness must all contain a common point.
(It is easy to see that there is exactly one.) But then from complex differentiability at
that point, we obtain the following upper bound on the integral:

|- x ∈ s ∧ f continuous_on s ∧
f complex_differentiable (at x within s) ∧
&0 < e
⇒ ∃k. &0 < k ∧

∀a b c. dist(a,b) <= k ∧ dist(b,c) <= k ∧ dist(c,a) <= k ∧
x ∈ convex hull a,b,c ∧ convex hull a,b,c SUBSET s
⇒ norm(path_integral(linepath(a,b)) f +

path_integral(linepath(b,c)) f +
path_integral(linepath(c,a)) f)

<= e * (dist(a,b) + dist(b,c) + dist(c,a)) pow 2

and for sufficiently small triangles, this is a contradiction, so we obtain our first version
of Cauchy’s theorem. We use the notion of integration on a ‘chain’, which is just a list
of paths. We could express this directly using the path-combining operator ‘++’, but
this proof was designed before we introduced that combinator. It is a trivial corollary
that the integral is zero round a closed path (a singleton chain).

|- f analytic_on (convex hull a,b,c)
⇒ (f has_chain_integral Cx(&0))

[linepath (a,b); linepath(b,c); linepath(c,a)]

Before proceeding to more general regions, we generalize this in two directions.
First, by a simple but slightly laborious limiting argument, we can see that the assump-
tion of analyticity can be weakened to continuity on the boundary:



|- f continuous_on (convex hull a,b,c) ∧
f analytic_on interior (convex hull a,b,c)
⇒ (f has_chain_integral Cx(&0))

[linepath (a,b); linepath(b,c); linepath(c,a)]

and then we can permit a finite number of exceptional points inside, using a process of
trisection at those points:

|- f continuous_on (convex hull a,b,c) ∧
FINITE s ∧
(∀x. x ∈ interior(convex hull a,b,c) DIFF s

⇒ f complex_differentiable (at x))
⇒ (f has_chain_integral Cx(&0))

[linepath (a,b); linepath(b,c); linepath(c,a)]

We will eventually be able to show that in such a case the function is differentiable at
these interior points anyway, but the weak hypothesis is useful to develop the machinery
that will allow us to reach this result.

Now, given any convex set with f analytic on the interior except at a finite number
of points, we can fix a point a of the set and define a function g(x) by the line integral
of f along linepath(a, x). Cauchy’s theorem for a triangle is exactly what we need to
show that this is a primitive for f , i.e. g′(x) = f(x). For we have

g(x + h)− g(x) =
∫

linepath(a,x+h)

f −
∫

linepath(a,x)

f =
∫

linepath(x,x+h)

f

and letting h → 0 we see (g(x + h) − g(x))/h → f(x). So we can conclude that if a
function is analytic at almost all interior points of a convex set, it has a primitive there:

|- convex s ∧ FINITE k ∧ f continuous_on s ∧
(∀x. x ∈ interior(s) DIFF k ⇒ f complex_differentiable at x)
⇒ ∃g. ∀x. x ∈ s

⇒ (g has_complex_derivative f(x)) (at x within s)

Combining this with the first result for line integrals of a function with a primitive,
we obtain our main version of Cauchy’s theorem:

|- convex s ∧ FINITE k ∧ f continuous_on s ∧
(∀x. x ∈ interior(s) DIFF k ⇒ f complex_differentiable at x) ∧
valid_path g ∧ (path_image g) SUBSET s ∧
pathfinish g = pathstart g
⇒ (f has_path_integral Cx(&0)) g

We can prove this under the slightly weaker assumption that the set is starlike, i.e.
there is some point a such that for any x in the set, the line segment from a to x lies
entirely in the set. However in that case we do seem to need the traditional hypothesis
of openness. In any case, though this is far from the most topologically general version
of Cauchy’s theorem, it is enough to deduce many interesting and non-trivial results.



4 Winding numbers

So far, we haven’t described results guaranteeing the existence of path integrals for a
general path unless the function has a primitive throughout the path. (Of course, we can
get results for the special case of paths that are continuously differentiable.) However,
by chopping up the path sufficiently, it’s easy to generalize this to require the existence
only of a local primitive in a small neighbourhood of each point:

|- (∀x. x ∈ s
⇒ ∃d h. &0 < d ∧

∀y. norm(y - x) < d
⇒ (h has_complex_derivative f(y)) (at y within s)) ∧

valid_path g ∧ (path_image g) SUBSET s
⇒ f path_integrable_on g

Thanks to our ‘local’ version of Cauchy’s theorem, this implies that path integrals
of analytic functions always exist:

|- open s ∧ f analytic_on s ∧ valid_path g ∧ path_image g SUBSET s
⇒ f path_integrable_on g

In particular, we can define the winding number by the usual integral W (γ, z) =
1

2πi

∫
γ

dw/(w− z), and deduce that this is welldefined provided z is not on the path γ:

|- valid_path g ∧ ¬(z ∈ path_image g)
⇒ ((λw. Cx(&1) / (w - z)) has_path_integral

(Cx(&2) * Cx(pi) * ii * winding_number(g,z))) g

It follows immediately from our simple Cauchy theorem that if a path γ is inside a
convex set, the winding number is zero about all points outside the set, because in that
case 1/(w − z) is analytic throughout:

|- valid_path g ∧ convex s ∧ pathfinish g = pathstart g ∧
¬(z ∈ s) ∧ path_image g SUBSET s
⇒ winding_number(g,z) = Cx(&0)

and so in particular this means that the winding number must be zero for sufficiently
large z:

|- valid_path g ∧ pathfinish g = pathstart g
⇒ ∃B. ∀z. B <= norm(z) ⇒ winding_number(g,z) = Cx(&0)

It is usual to consider the notion of winding number only in the case of closed
paths. However, the definition does not preclude applying it to general paths, and we
find this potentially useful. For example, we might want to compute winding numbers
for composite paths using additivity:

|- valid_path g1 ∧ valid_path g2 ∧
¬(z ∈ path_image g1) ∧ ¬(z ∈ path_image g2)
⇒ winding_number(g1 ++ g2,z) =

winding_number(g1,z) + winding_number(g2,z)



Of course, it is important to know that the winding number for a closed path is
always an integer. The proof we use, apparently due to Ahlfors, is based on the obser-
vation that

e−
R b

a
γ′(t)/(γ(t)−z) dt(γ(b)− z) = γ(a)− z

or in our formalization:

|- g piecewise_differentiable_on interval[a,b] ∧
drop a <= drop b ∧ (∀x. x ∈ interval[a,b] ⇒ ¬(g x = z))
⇒ (λx. vector_derivative g (at x) / (g(x) - z))

integrable_on interval[a,b] ∧
cexp(--(integral (interval[a,b])

(λx. vector_derivative g (at x) / (g(x) - z)))) *
(g(b) - z) = g(a) - z

The proof is fairly straightforward, although it needs some care because of the gen-
erality of our paths. At all points where γ is differentiable, the derivative of the ex-
pression e−

R y
a

γ′(t)/(γ(t)−z) dt(γ(y) − z) with respect to y is zero, using the Funda-
mental Theorem of Calculus. And at all points this is continuous as a function of y
(the Kurzweil-Henstock integral in one dimension is always a continuous function of
its upper limit whenever the integral exists). Therefore it is constant on the interval
[a, b] and so the values at a and b are equal; since e−

R a
a

γ′(t)/(γ(t)−z) dt(γ(a) − z) =
e0(γ(a)− z) = γ(a)− z the result follows. From this lemma, we can deduce as usual
that if the path is closed, i.e. γ(b) = γ(a), we must have e−

R b
a

γ′(t)/(γ(t)−z) dt = 1, so∫ b

a
γ′(t)/(γ(t) − z) dt is a multiple of 2πi and thus the winding number is an integer.

In fact, this equivalence works equally well in either direction: the winding number is
an integer if and only if the path is closed:

|- valid_path g ∧ ¬(z ∈ path_image g)
⇒ (complex_integer(winding_number(g,z)) ⇔

pathfinish g = pathstart g)

In what follows, we will often want to consider integrals round simple circular paths.
It follows immediately from results above that the winding number is zero for points
outside the circle. To show that it is 1 for points inside, the most satisfactory approach
might be to prove it is clearly positive by considering the integrand, and must be at
most 1 because the path is a simple curve. However, we haven’t actually proved that
the winding number cannot exceed 1 in magnitude for a simple closed curve, so we
use a more direct approach. Explicit evaluation of the integral easily yields the winding
number for a circle about the centre:

|- ¬(r = &0) ⇒ winding_number(circlepath(z,r),z) = Cx(&1)

Also, the winding number is a continuous function of the point, assuming it is off
the curve. This could be proved for general paths, except that since we need to bound
the integral, we may finally need to make a stronger assumption about our paths than
piecewise differentiability. We just proved it for circles:

|- &0 < r ∧ ¬(norm(w - z) = r)
⇒ (λw. winding_number(circlepath(z,r),w)) continuous (at w)



Since the winding number is an integer, it must therefore be constant on connected
components:

|- connected s ∧ (s INTER path_image (circlepath(z,r)) = ) ∧
&0 < r ∧ w1 ∈ s ∧ w2 ∈ s
⇒ winding_number(circlepath(z,r),w1) =

winding_number(circlepath(z,r),w2)

and so we deduce as we wanted:

|- norm(w - z) < r ⇒ winding_number(circlepath(z,r),w) = Cx(&1)

5 Cauchy’s integral theorem

We deduce Cauchy’s integral formula for a convex set by applying Cauchy’s theorem
to the function

g(w) =
{

f(w)−f(z)
w−z if w 6= z

f ′(z) if w = z

Note that here it is useful to be able to assume only that g is continuous at z, while
being analytic everywhere else. On the other hand, this result can eventually be used to
deduce that in such a case the function is in fact differentiable at z anyway. (We have
not actually proved such results about removable singularities yet, but this would be
one natural next step.)

|- convex s ∧ FINITE k ∧ f continuous_on s ∧
(∀x. x ∈ interior(s) DIFF k ⇒ f complex_differentiable at x) ∧
z ∈ interior(s) DIFF k ∧
valid_path g ∧ (path_image g) SUBSET (s DELETE z) ∧
pathfinish g = pathstart g
⇒ ((λw. f(w) / (w - z)) has_path_integral

(Cx(&2) * Cx(pi) * ii * winding_number(g,z) * f(z))) g

For a circular path and an analytic function, we have the simple instance:

|- convex s ∧ f analytic_on s ∧ z ∈ interior s ∧ &0 < r ∧
path_image (circlepath(z,r)) SUBSET s
⇒ ((λw. f(w) / (w - z)) has_path_integral

(Cx(&2) * Cx(pi) * ii * f(z))) (circlepath(z,r))

Even this is already enough to deduce a weak version of Liouville’s theorem, that an
entire function that tends to zero for all sufficiently large values of the argument must
be zero everywhere. This is already enough to obtain an easy proof of the Fundamental
Theorem of Algebra, by applying it to the inverse of a polynomial without a zero,
though this is something which has already been proved by the more direct ‘minimum
modulus’ proof [7].

|- f analytic_on (:complex) ∧ (f --> Cx(&0)) at_infinity
⇒ ∀z. f(z) = Cx(&0)



However, most further results depend on formulas for derivatives in terms of path
integrals. The basic lemma that allows us to pass from an expression for values of a
function g as an integral to a similar expression for its derivative g′ is as follows. Note
that we have two a priori different functions g and f , one defined in terms of a path
integral of the other; this extra generality makes this quite a flexible lemma. (Here pow
is the power function C → N → C.)

|- ¬(k = 0) ∧
(f continuous_on path_image(circlepath(z,r))) ∧
(∀w. w ∈ ball(z,r)

⇒ ((λu. f(u) / (u - w) pow k) has_path_integral g w)
(circlepath(z,r)))

⇒ ∀w. w ∈ ball(z,r)
⇒ (λu. f(u) / (u - w) pow (k + 1)) path_integrable_on

(circlepath(z,r)) ∧
(g has_complex_derivative
(Cx(&k) * path_integral(circlepath(z,r))

(λu. f(u) / (u - w) pow (k + 1))))
(at w)

In particular, setting k = 1 and f and g to be the same, we obtain a formula for the
first derivative:

|- f continuous_on cball(z,r) ∧
f analytic_on ball(z,r) ∧
w ∈ ball(z,r)
⇒ (λu. f(u) / (u - w) pow 2) path_integrable_on circlepath(z,r) ∧

(f has_complex_derivative
(Cx(&1) / (Cx(&2) * Cx(pi) * ii) *
path_integral(circlepath(z,r)) (λu. f(u) / (u - w) pow 2)))

(at w)

6 Consequences of the integral formula

Our versions of Cauchy’s theorem and Cauchy’s integral formula are restricted to con-
vex sets. However, even this special case allows us to prove some significant conse-
quences. First of all, the derivative formula immediately yields the existence of higher
derivatives on an open set, since we can integrate round a sufficiently small circle:

|- open s ∧ f analytic_on s
⇒ (complex_derivative f) analytic_on s

Also, we easily obtain the full version of Liouville’s theorem, because the integral∫
γ

f(w)/(w−z)2 dw must tend to zero as the size of the circle increases if f is bounded.

|- f analytic_on (:complex) ∧ bounded (IMAGE f (:complex))
⇒ ∃c. ∀z. f(z) = c

A slightly more involved application is Weierstrass’s convergence theorem: if a se-
quence of analytic functions (fn) with derivatives (f ′n) tends uniformly to a limit f ,
then the limit is also analytic and f ′n → f ′. Note that an analogous result fails for
differentiability of a function RM → RN even for M = N = 1, where the series of



derivatives may not even converge. (For example, by the Weierstrass approximation the-
orem, every continuous function, not necessarily differentiable anywhere, is a uniform
limit of analytic functions, viz. polynomials.) In our context, however, it is easy to see
that the integral formulas defining higher derivatives converge, and we can conclude:

|- open s ∧
(∀n x. x ∈ s ⇒ ((f n) has_complex_derivative f’ n x) (at x)) ∧
(∀x. x ∈ s

⇒ ∃d. &0 < d ∧ cball(x,d) SUBSET s ∧
∀e. &0 < e

⇒ eventually (λn. ∀y. y ∈ cball(x,d)
⇒ norm(f n y - g y) < e)

sequentially)
⇒ ∃g’. ∀x. x ∈ s ⇒ (g has_complex_derivative g’(x)) (at x) ∧

((λn. f’ n x) --> g’(x)) sequentially

This allows us to prove the following, which is a convenient ‘one-stop-shop’ for
defining an analytic function in terms of a series (including but not limited to power
series). If the sequence of functions (fn) are all analytic on a set s with derivatives f ′n,
and |fn(x)| is bounded on s by a summable real series h, then we can conclude that the
series (fn) converges to a function g and (f ′n) converges to its derivative, throughout
f . (The set k restricts the terms of the infinite sum, e.g. to allow us to sum just from 1,
only for even n or only for prime p.)

|- open s ∧
(∀n x. n ∈ k ∧ x ∈ s ⇒ (f n has_complex_derivative f’ n x) (at x)) ∧
(∃l. (lift o h sums l) k) ∧
(∃N. ∀n x. N <= n ∧ n ∈ k ∧ x ∈ s ⇒ norm(f n x) <= h n)

⇒ ∃g g’. ∀x. x ∈ s
⇒ ((λn. f n x) sums g x) k ∧

((λn. f’ n x) sums g’ x) k ∧
(g has_complex_derivative g’ x) (at x)

7 Conclusions and future work

Generally, the sequence of results here have been developed without much difficulty,
more or less following the usual informal plan. However, they rest on some other the-
ories that were occasionally quite hard work to formalize. For example, even an affine
change-of-variables theorem for the Kurzweil-Henstock integral (admittedly for inte-
grals on RN not just R1) was quite hard work to formalize, despite the straightforward
underlying intuition that all the concepts like interval, partition, gauge and so on scale
in an obvious way. We also found it very convenient to have a good library of results
about convex sets to rely on, but it was occasionally remarkable how much work it was
to prove complete trivialities. One amusing (or depressing) example is the following,
which actually took many dozens of lines to prove!

|- ¬(a ∈ interior(convex hull a,b,c))

We have found it very convenient that HOL Light’s programmability lets us set up
quite powerful automated proof procedures for special tasks, e.g. a COMPLEX_FIELD
rule for simple algebraic manipulations like the following, which would also be tedious
by hand:



|- ¬(x = u) ∧ ¬(x = w)
⇒ Cx(&1) / (x - u) - Cx(&1) / (x - w) =

(u - w) / ((x - u) * (x - w))

The most annoying gap in HOL Light’s automation concerns ‘triangle law’ reason-
ing, which crops up all the time. We ended up proving a lot of trivial lemmas like the
following:

|- abs(norm(w - z) - r) = d ∧
norm(u - w) < d / &2 ∧
norm(x - z) = r
⇒ d / &2 <= norm(x - u)

Thanks to a vector-space quantifier elimination procedure due to Bob Solovay [8],
we can in principle prove such results automatically. In practice, using this method is
not a complete answer because even linear problems like the above give rise to nonlinear
problems over the reals, which though decidable are often quite slow. Recently we have
observed that almost all the triangle law reasoning we use relies only on the basic norm
properties and nothing specific to the Euclidean norm |x| =

√
x · x. Using this fact, a

more efficient decision procedure is possible, and it would have saved us some work if
we’d come up with this sooner.

We have only scratched the surface of the extensive and beautiful theory of complex
functions, and there are many future avenues to explore. One obvious idea would be to
generalize Cauchy’s theorem to simply connected regions and beyond, perhaps to a
global version stated in terms of homotopy or homology of paths. Dixon’s proof of
the global Cauchy theorem [11] should be relatively easy to prove using the existing
machinery.

Another interesting idea is to seek applications to other areas of mathematics. One
notable possibility would be a proof of the Prime Number Theorem based on the usual
complex-analytic machinery and the nonvanishing of the Riemann zeta function ζ(s)
for Re(s) ≥ 1. The “elementary” Erdös-Selberg proof has already been formalized
[1], but Solovay has suggested the usual analytical proof as a significant challenge for
formal verification. We hope to take up this challenge in a future paper.
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