
Decimal Transcendentals via Binary

John Harrison
Intel Corporation, JF1-13

2111 NE 25th Avenue
Hillsboro OR 97124, USA

Email: johnh@ichips.intel.com

Abstract

We describe the design and implementation of a compre-
hensive library of transcendental functions for the new IEEE
decimal floating-point formats. In principle, such functions
are very much analogous to their binary counterparts,
though with a few additional subtleties connected with
‘scale’ (preferred exponent). But our approach has been not
to employ direct techniques, but rather to re-use existing
binary functions as much as possible, both for greater
efficiency and ease of implementation. For some functions
the most straightforward approach (convert from decimal to
binary, perform binary operation, convert back) works well.
In many cases, however, these are insufficiently accurate,
and subtler approaches must be used.

1. Introduction

The latest revision of the IEEE 754 Standard for binary
floating-point arithmetic [5] includes new decimal formats.
Intel is supporting these formats using a comprehensive
open-source software library, written in portable ANSI C
and compatible with numerous architectures (not just In-
tel’s own), compilers and operating systems. It is avail-
able via the URL ‘http://software.intel.com/en-us/articles/
intel-decimal-floating-point-math-library’.

A significant requirement for this library is a set of deci-
mal transcendental functions (sin, log etc.). Except for scale,
which leads to multiple representations of most decimal
numbers (1.0 is distinct from 1.00 etc.), the specifications of
binary and decimal floating-point arithmetic are analogous.
So it would seem quite natural to take the well-established
techniques for binary floating-point special functions [6] and
transfer them, mutatis mutandis, to implement the decimal
version. However, there are two significant disadvantages to
this, one technical and one business-related:

• For most target platforms, basic decimal operations like
addition and multiplication that would be used in such
an implementation are implemented in software and
are substantially slower than their binary counterparts,
which are implemented in hardware. Even current dec-
imal hardware implementations we know about do not
yet match the speed of their binary counterparts [3]. Of

course, there are platforms without even binary floating-
point hardware, but these are increasingly unusual.

• Implementing the library from scratch would be a major
undertaking and difficult to do quickly, since all as-
pects (tables, polynomial coefficients, precise accuracy
needs) are different in detail from the binary designs.
It’s also not clear whether the importance yet justifies
the allocation of resources, since few transcendental
functions are used in most of the financial applications
at which decimal is aimed.

Both of these considerations motivate an alternative ap-
proach: simply implementing each decimal function in terms
of a corresponding binary one. We already have such binary
functions, often highly optimized, in our existing mathe-
matical libraries. We also already have conversions, and
correctly rounded ones at that, between the decimal and
binary floating-point formats [2]. So at the simplest we could
consider an almost trivial implementation:

1) Convert the input(s) from decimal to binary
2) Compute the binary transcendental function
3) Convert the result from binary to decimal

Since there are several decimal formats to be supported,
and several binary ones that we already have functions for,
we need to choose which binary format to use for a particular
decimal format. There are two main considerations in the
choice, precision and range. The precision issues are the
main subtlety to which this paper is devoted, and we will
discuss this in much greater detail later. In short, our choices
are motivated by the natural intuition that the binary format
should be at least as accurate as the decimal format if
we want to achieve reasonable accuracy, say of the order
of an ulp (unit in the last place). A similar desideratum
applies to range: the simple approach may break down
if the range of numbers in the decimal format exceeds
the range in the corresponding binary format. There are
two distinct problems, caused by a finite nonzero decimal
number either overflowing to infinity or underflowing to zero
when converted to binary. In some cases we are lucky, and
things will work out anyway even in the presence of overflow
and/or underflow, because of the standard behavior of the
binary functions on zeros or infinities. In general, however,
it is strongly desirable for the range of the binary format to

Formats Precision (bits) Ranges
decimal32 / binary64 23.25 / 53 10−101 . . . 1097 / 10−324 . . . 10308

decimal64 / binary80 53.15 / 64 10−398 . . . 10385 / 10−4951 . . . 104932

decimal128 / binary128 112.95 / 113 10−6176 . . . 106145 / 10−4966 . . . 104932

Table 1. Binary formats used to implement a given decimal format

at least match the range of the decimal format.
In brief, we use the correspondences indicated in Table

1. It can be seen that we meet our desiderata comfortably
for both the decimal32 and decimal64 formats, where
the corresponding binary formats offer substantially higher
range and precision. In the case of decimal128, we use
binary128 (quad), the highest binary precision available
without using general-precision libraries like MPFR (http:
//www.mpfr.org/). Yet the precision of the binary format is
only marginally above that of the decimal format, and the
range of numbers that it can represent is actually markedly
smaller. This means that we will usually have to work
significantly harder to realize our decimal128 functions
than the others.

2. Error propagation

Consider implementing a unary transcendental function f
by converting to binary, performing a binary transcendental
operation and then converting back. Suppose that the initial
decimal-to-binary conversion gives a relative error of δ, that
the binary transcendental gives a relative error of ε and that
the final binary-to-decimal conversion gives a relative error
of η. The overall result is then

f(x[1 + δ])(1 + ε)(1 + η)

Some error with the same typical order as η is inevitable
when producing a result in our chosen decimal format, so
we are not concerned about that. As for ε, for good-quality
binary transcendentals this is typically going to be only a
little over 0.5 ulp for the intermediate binary format. Since
this is always more accurate than the decimal format, and
usually much more accurate, we also consider this error
acceptable. Our only worry is the way in which the initial
error in decimal-to-binary conversion propagates through the
function f . The relative error this causes in the result is
about:

f(x[1+δ])/f(x)−1 ≈ (f(x)+f ′(x)δx)/f(x)−1 =
xf ′(x)
f(x)

δ

In other words, the relative error δ in the conversion
into the binary format, at most 0.5 ulps in that format,
gets amplified by the condition number

∣∣∣xf ′(x)
f(x)

∣∣∣ as usual
in numerical methods [4].

The acceptability of the naive algorithm now depends on
whether this amplification is enough to overwhelm the gen-
erally higher accuracy of the intermediate binary format. We

will later consider this case-by-case for various important
functions and hence determine when the naive algorithm
does or does not work well. But there are certainly situations
where it does not, so let us consider how to refine the
approach when this happens.

We have been thinking of the initial decimal-to-binary
conversion as a black box. But it is actually rather easy
to write a variant that, given a decimal input x, returns a
two-part binary result (xhi, xlo) such that x ≈ xhi + xlo

to about twice the binary working precision. Our existing
implementation [2], in order to ensure correct rounding
according to the IEEE specification, already creates an
intermediate result of this sort of accuracy, and intercepting
the low part of this and returning it as a binary number
adds almost nothing to the runtime. (This also suggests that
in the cases where the naive approach does work well, we
could use a ‘quick and dirty’ version of the decimal-to-
binary conversion that is not correctly rounded but is only
slightly worse than that, and still monotonic. There would
be little net difference in the quality of the overall results,
but it could potentially be significantly faster. This is on our
list for future optimizations.)

Now that we have a much more accurate binary represen-
tation of the decimal input, we can try to compensate for
the error xlo in decimal-to-binary conversion. We have

f(x) ≈ f(xhi + xlo) ≈ f(xhi) + f ′(xhi)xlo

and so if we can compute the derivative f ′(xhi) effectively,
we can obtain a large improvement in the intermediate
accuracy, though we sometimes need a careful organization
to incorporate it into the decimal result.

In a few rare cases we have no simple expression for
the derivative (see the discussion of the Γ-function tgamma
below). In such cases we can sometimes evaluate the binary
function at two adjacent floating-point values that straddle
the decimal input and then use xlo to interpolate between
them, e.g. if xhi ≤ x ≤ x+

hi using

f(x) ≈ f(xhi) +
xlo

(x+
hi − xhi)

(f(x+
hi)− f(xhi))

We could even consider still more general methods with
nonlinear interpolation from several values of the binary
function, but this has never been useful in our applications.
In all but the most difficult cases, the basic collection of
tricks turns out to be enough for our purposes. We will note
below the relatively few cases where even all this seems

inadequate and we needed, at least in part, to produce a
custom decimal implementation.

3. Easy cases

We will first consider some easy cases where the ‘naive’
algorithm, perhaps supplemented by some simple special-
case code, suffices.

Arctangent

Here the condition number is
xf ′(x)
f(x)

=
x

(1 + x2) atan(x)
This is perfectly well-behaved, peaking at 1 around x = 0

and elsewhere being < 1 in magnitude, as shown in Figure
1. This means that a “naive” algorithm is almost entirely
satisfactory. For decimal128 we still need to confront
the fact that the range of quad is more limited than that
of decimal128, and take some special measures:

• For very small arguments (we use this for |x| < 10−40)
we have atan(x) ≈ x− x3/3. We could simply return
x, but for a touch more refinement in directed rounding
modes we actually perform a decimal fma calculation
x−10−40 ·x which will round exactly as x−x3/3 and
is somewhat more efficient. Of course, our function is
by no means correctly rounded in the main part of the
range, so it is not unreasonable to neglect this issue
here, and we sometimes do for other functions.

• For very large arguments, no special measures are
needed. We just rely on the main path, which when
the decimal-to-binary conversion overflows will return
atan(±∞) = ±π/2, a value that will then convert back
correctly. This will likewise work in the best way in
directed rounding modes provided that the underlying
binary function is rounded to nearest, as we presently
assume, for this binary rounding and the exact value
are not separated by a decimal rounding boundary. We
anticipate in the future having common rounding modes
for binary and decimal, in which case a little more
refinement would be needed in this calculation. Besides,
it may be more efficient to intercept and deal specially
with very large inputs instead of going through the main
path.

Error function

The error function is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt

so its derivative is

erf′(x) =
2√
π

e−x2

and therefore the condition number is

x erf′(x)
erf(x)

=
2xe−x2

√
πerf(x)

This is a well-behaved function, peaking at 0 with abso-
lute magnitude ≤ 1, so we can afford the naive algorithm,
modulo special cases. The binary function has erf(±∞) =
±1, so as with the arctangent, inputs that overflow in quad
work by default. This time, however, we need more care
over underflow in the decimal128 case when the input is
converted to quad. For x very small in magnitude, we have

erf(x) =
2√
π

∫ x

0

e−t2dt ≈ 2√
π

∫ x

0

1dt =
2√
π

x

so we just perform a decimal multiplication of the input by
a pre-stored decimal rounding of 2√

π

Hyperbolic tangent

Here again we have a well-behaved function, with

xf ′(x)
f(x)

=
x sech(x)2

tanh(x)

having a peak of 1 at x = 0 and being < 1 in magnitude
elsewhere. In fact, this function is remarkably close to erf
in its general behavior, and their graphs could easily be
mistaken at a quick glance. For very small x, however, the
limiting behavior is just tanh(x) ≈ x − x3/3, so we deal
with it as with the arctangent.

4. Moderate cases

We now consider some cases where more non-trivial
processing of the input is needed, at least in some parts
of the domain.

Inverse sine and cosine

For inverse sine, the condition number is

xf ′(x)
f(x)

=
x√

1− x2 asin(x)

and for inverse cosine:

xf ′(x)
f(x)

=
x√

1− x2 acos(x)

Both these values are moderate for most |x| � 1, and in
particular are ≤ 1.5 in magnitude for |x| ≤ 0.7. However,
in each case there is a singularity at x = ±1 around which
the condition is unbounded, and this is particularly steep in
the case of acos(x) for x = 1; see Figure 2. Thus, at least
in the case of the decimal128 format, we need to take
special measures for inputs close to ±1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

(x / (atan(x) * (1 + x * x)))

Figure 1. Condition of atan(x)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

abs(x / (sqrt(1 - x * x) * asin(x)))
abs(x / (sqrt(1 - x * x) * acos(x)))

Figure 2. Condition of asin(x) and acos(x)

For such inputs we exploit some relationships between
the functions. The simplest such relationship is asin(x) +
acos(x) = π/2, but this is not all that useful for the control
of numerical errors. Instead we use the relationships

asin(x) =
{

acos
√

1− x2 if x ≥ 0
− acos

√
1− x2 if x ≤ 0

and

acos(x) =
{

asin
√

1− x2 if x ≥ 0
π − asin

√
1− x2 if x ≤ 0

We can compute 1 − x2 with good relative error using
a single decimal fma, and the rest of the computation can
then be done in a straightforward way since we are back in
the well-conditioned region of the function on the right-hand
side.

Logarithm

The condition number here is 1/ log(x):

xf ′(x)
f(x)

=
xx−1

log(x)
= 1/ log(x)

This has a singularity at x = 1 near which it is unbounded.
Admittedly, floating-point numbers cannot come all that
close to 1, but with d decimal digits the closest approach
is 1 − 10−d in which case the condition number is about
10d.

• Implementing decimal32 via double precision, the
condition number is < 107. Since |δ| ≤ 2−53, the net
relative error is ≤ 107 · 2−53 · 107 ≈ 0.011 ulps, well
within acceptable limits.

• Implementing decimal64 via double-extended preci-
sion, the condition number is < 1016. Since |δ| ≤ 2−64,
the net relative error is ≤ 1016 ·2−64 ·1016 ≈ 1013 ulps,
almost certainly unacceptable.

• Implementing decimal128 via quad precision, the
condition number is < 1034. Since |δ| ≤ 2−113, the
net relative error is ≤ 1034 · 2−113 · 1034 ≈ 1034 ulps,
clearly unacceptable.

Thus, while we can implement the decimal32 version
‘naively’, we need special measures near x = 1 for the
wider formats. The special measures consist in tracking more
carefully the error when converting the decimal input x to
its binary approximation x∗. We do this for inputs where
|x − 1| < 0.5 by computing both y = x − 1 as a decimal
operation and y∗ = x∗ − 1 as a binary operation. By the
usual cancellation properties, these are both exact, so we can
convert y to binary and subtract y∗ to get a binary correction
term e so that x ≈ x∗+e to extra precision. We then correct
the naive computation by e/x∗, exploiting

log(x∗ + e) = log(x∗(1 + e/x∗)) ≈ log(x∗) + e/x∗

In the case of decimal128, we also have to worry about
overflow or underflow when converting to the input to quad.
Those, however, we deal with straightforwardly by a decimal
multiplication of the input by 10±4464 and a subsequent
correction of the result by ∓4464 log 10. The value 4464
was chosen because the error from storing 4464 log 10 in
quad is particularly small.

An alternative approach to the problems near x = 1,
pointed out by one of the reviewers, would be to compute
y = x− 1 in decimal as now but then convert y to a binary
counterpart y∗ and use the log1p function to compute
log(1 + y∗). This is certainly somewhat simpler and may
well be more efficient.

5. Relatively difficult cases

We now consider cases where the naive algorithm needs
quite elaborate precautions, and we therefore find it easier
to use the 2-part conversion from decimal to binary.

Exponential function

The condition number here is x:
xf ′(x)
f(x)

=
xex

ex
= x

Thus, the relative error swells by a factor of x, which may
be quite large. On the other hand, the range of x is quite
limited because the function overflows fairly quickly, so the
results are not completely catastrophic:

• Implementing decimal32 via double precision,
the maximal x before overflow in decimal32 is
log(1097) < 224. Since |δ| ≤ 2−53, the net relative
error is ≤ 224 · 2−53 · 107 ≈ 2.49× 10−7 ulps, almost
negligible.

• Implementing decimal64 via double-extended preci-
sion, the maximal x before overflow in decimal64
is log(10385) < 887. Since |δ| ≤ 2−64, the net relative
error is ≤ 887 · 2−64 · 1016 ≈ 0.481 ulps, almost
certainly within acceptable limits.

• Implementing decimal128 via quad precision, the
maximal x before overflow in decimal128 is
log(106145) < 14150. Since |δ| ≤ 2−113, the net
relative error is ≤ 14150 · 2−113 · 1034 ≈ 13626 ulps.
We do not consider this acceptable.

Special measures are certainly needed in the case of
decimal128. Using only a ‘black box’ decimal-to-binary
conversion, the best approach we can think of involves
separating the input into two pieces x = h + l where h can
be converted exactly to binary. (One approach is simply to
let h be the rounding of x to the nearest integer, but it’s more
accurate to let h be of the form N/2k for moderate k that
ensures exact representability in both binary and decimal
formats.) However, using the accurate 2-part conversion
from decimal to binary, things are reasonably straightforward
since we already get a decomposition x = h+ l where both
h and l are binary numbers with l � h, and we can compute

ex = eh+l = ehel ≈ eh(1 + l)

The only additional complication for decimal128
comes in the fact that for inputs that are reasonably large in
magnitude, the quad exponential function may suffer over-
flow or underflow in its results. We avoid this by checking
the size of h first, and either adding or subtracting 11000
if necessary, postcorrecting the result in a final decimal
multiplication by e11000.

Complementary error function

The complementary error function is defined as

erfc(x) = 1− erf(x)

so its derivative is

erfc′(x) = −erf′(x) =
−2√

π
e−x2

and therefore the condition number is

x erfc′(x)
erfc(x)

=
2xe−x2

√
πerfc(x)

Despite the fact that erf(x) and erfc(x) have such a close
relationship, the difference that erfc(x) → 0 as x → ∞
means that the condition becomes very large as x becomes
large and positive (Figure 3). We note the asymptotic for-
mula [1]:

erfc(x) ≈ e−x2

√
π

(
1
x
− 1

2x3
+

3
4x5

− 15
8x7

+ · · ·)

This implies that for large x, the condition is about 2x2,
which is quite bad. On the other hand, x doesn’t have to be
all that large before e−x2

is so tiny that it will underflow to
zero, so the whole range needn’t be tackled:

• For decimal32, we underflow for e−x2

√
πx

< 10−101,
i.e. for about x ≥ 16, at which point the condi-
tion is about 832, nowhere near enough to erase the
binary64-decimal32 advantage.

• For decimal64, we underflow for e−x2

√
πx

< 10−398,
i.e. for about x ≥ 31, at which point the condition is
about 1922. Since 1922·2−64 ≈ 10−16, this is probably
just about acceptable.

• For decimal128, we underflow for e−x2

√
πx

< 10−6176,
i.e. for about x ≥ 120, at which point the condition
is about 28322. This would not be acceptable with the
naive algorithm.

However, the condition for decimal128 is moderate
enough that we can use the 2-part conversion x = h+ l and
make a postcorrection where necessary using the derivative
erfc′(x) = −2√

π
e−x2

via erfc(x) = erfc(h)− 2√
π
e−x2

l.
We actually split the domain into four different cases. First

of all, if x ≤ 0 the naive computation is well-conditioned
and we just proceed that way. Otherwise, if 0 ≤ x ≤ 105, we
just correct the naive result using the derivative computed
in binary by erfc(x) = erfc(h)− 2√

π
e−h2

l. If x ≥ 120, the
result always underflows to zero, though as usual we do a
dummy calculation for the sake of the directed rounding
modes. The most difficult case is for 105 ≤ x ≤ 120,
where the binary exponential would underflow; in this case
we essentially use the asymptotic expansion noted above.
(We truncate at the twelfth term.) To add to the difficulty,
even the computation of e−x2

itself is illconditioned, and we
need to keep extra precision when squaring, again using the
decimal fma operation to get a 2-part product. However, the
main terms of the asymptotic expansion can be done fairly
directly using quad.

6. Difficult cases

We now come to the cases where all our tricks seem
inadequate and we need, at least to some degree, a custom
implementation.

Trigonometric functions

The trigonometric functions are all highly ill-conditioned
near various large multiples of π/2, so we did not even
explore the possibility of using the full binary function as a
subroutine. Instead we have a 2-part structure:

• A custom decimal implementation of trigonometric
range reduction to give x = Nπ/2 + r with |r| ≤
π/4 + ε.

• A naive use of the underlying binary algorithm to
compute the trigonometric function of the reduced
argument r.

The argument reduction is a variant of the traditional
approach [7], implemented in decimal. The latter part, and
the subsequent reconstruction of the final result, presents no
great difficulties. For example

sin(x) =

sin(r) if N ≡ 0 (mod 4)
cos(r) if N ≡ 1 (mod 4)
− sin(r) if N ≡ 2 (mod 4)
− cos(r) if N ≡ 3 (mod 4)

Since the underlying trigonometric functions sin(r), cos(r)
and tan(r) are well-conditioned for |r| ≤ π/4+ε, everything
beyond the range reduction can be done ‘naively’. The
reduced argument r is directly extracted from the large-
integer arithmetic in the decimal range reduction as a single
binary128 number and the usual binary function and
binary-to-decimal conversion are applied.

The power function

Since the power function has two arguments, both of
which may be perturbed when converting decimal arguments
to binary, we analyze the condition separately for each
argument.

• For x we have:

d(xy)/dx = d(ey log(x))/dx

= ey log(x)d(y log(x))/dx

= xyy/x

so the condition number is:

x(xyy/x)/xy = y

• For y we have:

d(xy)/dy = d(ey log(x))/dy

= ey log(x)d(y log(x))/dy

= xy log(x)

so the condition number is:

y(xy log(x))/xy = y log(x)

-2

0

2

4

6

8

10

12

14

16

18

20

-3 -2 -1 0 1 2 3

(2 * x * exp(-(x*x))) / (sqrt(3.14159) * erfc(x))

Figure 3. Condition of erfc(x)

As expected, in the case x = e we get y, as with the
exponential function.

If we use ∆ to denote relative change, we therefore have
roughly

∆(xy) = y∆(x) + y log(x)∆(y)

Thus, things are worse when y is large, as with the expo-
nential function. The range of y is limited by the overflow
threshold B: we must have xy < B, i.e. y < log(B)/ log(x).
This limit is weakest when x ≈ 1 since then log(x) is
close to zero; in this case the relative error is dominated
by y∆(x) = (log(B)/ log(x))∆(x). Thus, the effects are
similarly bad to the case of the logarithm, but with the
additional scaling by log(B). This is even enough to cause
appreciable inaccuracy in the case of decimal32:

• Consider (1 + 10−6)237166383, which is just below the
overflow threshold. The actual relative error in rounding
1 + 10−6 to double precision is about 8.227 × 10−17.
The relative error in the result is about (1 + 8.227 ×
10−17)237166383 − 1 ≈ 2 × 10−8. This is of the order
of 0.2 ulps.

Despite extensive investigation, we have not been able to
arrive at a truly satisfactory way of exploiting existing binary
functions. Instead, we have produced a custom implemen-
tation that roughly uses xy = ±ey log |x|. The determination
of the sign takes some care, looking at the sign of x and
whether y is an odd or even integer. There are also a large
number of special cases to deal with, some of them a little
surprising; for example the standard behavior is that 1y = 1
even if y is a NaN. Underlying the computation of ey log |x|

is our own custom implementation of a decimal logarithm
function in extra-high precision. This returns a 2-part result

lhi + llo and we likewise compute y(lhi + llo) accurately in
two pieces using fairly standard fma tricks. The net effect is
that the power function, while accurate, is markedly slower
than most of the other functions in our library.

7. Unsolved problems

The only functions that we have not got completely
accurate implementations for are the two Γ-family functions
tgamma and lgamma. In the case of decimal128, we
simply cannot rely on the quad implementations that we have
otherwise used, because they are themselves not accurate.
Otherwise, tgamma presents only moderate difficulties in
principle. The lgamma function, however, seems essentially
to require some custom implementation work near its irreg-
ular zeros.

Gamma function

We can reduce things to positive arguments using the
reflection formula:

Γ(x) =
π

Γ(1− x) sin(πx)

This presents no numerical problems since it is mul-
tiplicative and the exact decimal argument reduction for
πx is straightforward, essentially just integer rounding. For
decimal128, the possibility of overflow in the underlying
quad function is problematic. The quad function overflows
around x = 1756, whereas the decimal128 version only
overflows around x = 2125. So we use the duplication

formula to avoid inputs where this problem would strike:

Γ(2x) =
22x−1

√
π

Γ(x)Γ(x + 1/2)

The condition number for Γ is similar to the exponential
function, and seems to be bounded by a moderate multiple of
x. So correction using the low part after a 2-part decimal-to-
binary conversion is satisfactory. This time, it seems difficult
to use the derivative since this function (also called the
‘digamma’ function) isn’t a standard part of binary math
libraries. Instead we simply call the binary function twice
on adjacent quad values and use the correction term to
interpolate between them.

Log-gamma (lgamma) function

At first sight this looks simpler than Γ, but in fact it’s
somewhat harder because we also have to worry about the
various cases where log |Γ(x)| ≈ 0, i.e. |Γ(x)| ≈ 1. There
are some such crossover points at the negative end. So if
we naively take the logs of Γ(1− x) and π/ sin(πx) when
dealing with negative cases, we get cancellation to a degree
we can’t really afford. Even using sophisticated interpolation
based on the binary functions, our analysis indicates that this
could not in principle give accurate results. In fairness, it
may well be the case that few binary functions are accurate
in relative terms in such cases; as we have noted, our own
are certainly not.

8. Conclusions

By taking advantage of the existing binary implementa-
tions we have been able, in the space of just a few months,
to produce a complete set of functions offering reasonable
performance, and comparable accuracy to the binary ones. In
only a relatively few cases have we needed elaborate custom
implementations, and our accuracy is roughly as good as the
binary functions we are using. The only case where we do
not meet our accuracy goals are for the two gamma family
functions, and in these cases our binary functions are not
accurate either. So it is fair to say that our implementation, in
accuracy terms, is not much worse than our binary functions.
With the exception of the power function, we also see
solid performance numbers. All in all, this is a solid first
version of the decimal transcendental functions, but there
is plenty of scope for further improvements. It would be
interesting to compare the performance and accuracy of our
approach against a ‘custom’ approach, if and when such an
implementation becomes available.

The initial justifications we claimed for our approach were
twofold: efficiency and ease of implementation. We think the
results of this paper generally bear this out. However, in the
case of the decimal128 functions the first justification is
less obviously applicable, since the binary128 functions

are also just a software library, albeit a well-established
and quite efficient one. Moreover, not all platforms support
the binary80 type, at least efficiently, so one might
want to contemplate using binary64, sacrificing some
accuracy and facing similar issues to those we dealt with
for binary128 where the underlying binary format has
comparable precision to the target decimal format.

Acknowledgements

The author would like to thank Marius Cornea for origi-
nally suggesting the use of the existing binary functions to
implement decimal transcendentals, as well as the anony-
mous reviewers for ARITH whose comments significantly
improved the final version of this paper.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables,
volume 55 of Applied Mathematics Series. US National Bureau
of Standards, 1964.

[2] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schnei-
der, and E. Gvozdev. A software implementation of the
IEEE 754R decimal floating-point arithmetic using the binary
encoding format. IEEE Transactions on Computers, 58:148–
162, 2009.

[3] L. Eisen, J. W. Ward, H.-W. Tast, N. Mading, J. Leenstra, C. J.
S. M. Mueller, J. Preiss, E. M. Schwarz, and S. R. Carlough.
IBM POWER6 accelerators: VMX and DFU. IBM Journal of
Research and Development, 51(6):1–21, 2007.

[4] N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, 1996.

[5] IEEE. Standard for binary floating point arithmetic.
ANSI/IEEE Standard 754-2008, The Institute of Electrical and
Electronic Engineers, Inc., 2008. Revised version of original
754-1985 Standard.

[6] J.-M. Muller. Elementary functions: Algorithms and Imple-
mentation. Birkhäuser, 2nd edition, 2006.

[7] M. Payne and R. Hanek. Radian reduction for trigonometric
functions. SIGNUM Newsletter, 18(1):19–24, 1983.

