
Floating point verification in HOL Light: the exponential

function

John Harrison (jrh@cl.cam.ac.uk)∗
University of Cambridge Computer Laboratory
New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

Abstract. Since they often embody compact but mathematically sophisticated
algorithms, operations for computing the common transcendental functions in float-
ing point arithmetic seem good targets for formal verification using a mechanical
theorem prover. We discuss some of the general issues that arise in verifications
of this class, and then present a machine-checked verification of an algorithm for
computing the exponential function in IEEE-754 standard binary floating point
arithmetic. We confirm (indeed strengthen) the main result of a previously published
error analysis, though we uncover a minor error in the hand proof and are forced to
confront several subtle issues that might easily be overlooked informally.

The development described here includes, apart from the proof itself, a formal-
ization of IEEE arithmetic, a mathematical semantics for the programming language
in which the algorithm is expressed, and the body of pure mathematics needed. All
this is developed logically from first principles using the HOL Light prover, which
guarantees strict adherence to simple rules of inference while allowing the user to
perform proofs using higher-level derived rules.

1. Introduction

Algorithms for performing floating point operations are often rather
complex. It is difficult to make sure they are correct — for example,
a bug in the floating-point division instruction of the Pentium1 gained
widespread publicity quite recently (Pratt, 1995). Indeed, it is some-
times difficult to say what it means for a floating point operation to be
‘correct’. We hope here to provide some answers to this question, and
show how we can guarantee the correctness of a realistic floating point
algorithm according to one of these criteria.

Traditional techniques for ensuring correctness rely on extensive
testing. Actually, in the case of unary functions over single precision
floating point numbers (of which there are ‘only’ 232 — actually slightly
fewer) it is possible to run completely exhaustive tests, though the
difficulty of efficiently generating correct results to act as the canon

∗ Supported by the EPSRC research grant ‘floating point verification’
1 Pentium is a registered trademark of Intel Corporation.

c© 2016 Kluwer Academic Publishers. Printed in the Netherlands.

fp.tex; October 13, 1999; 10:41; p.1

2

should not be minimized. For binary operations or for double or ex-
tended precision numbers, this kind of testing is hardly feasible. One
can still run very large test suites that try to exercise the cases felt to
be error-prone, but this can no longer guarantee correctness.

In order to do better, we advocate formal verification using a me-
chanical theorem prover. Such provers can encompass essentially all of
classical mathematics, including real numbers and real analysis, giving
two great advantages:

− We can specify the correctness of floating point operations in terms
of abstract real numbers. After all, the whole raison d’être of
floating point numbers is that they are approximations to reals.

− The correctness of many floating point algorithms depends on some
quite sophisticated mathematics. Using a theorem prover, one can
avoid errors either in the pure mathematics or in its incorrect
application to the problem in hand.

The idea of mathematical proofs of computer system correctness
has in the recent past attracted a certain amount of controversy —
see Barwise (1989) for a good discussion. So perhaps we should not
neglect to make the ritualistic disclaimer that our verification is of
an algorithm, expressed in a precise mathematical formalism, not of
any actual implementation. Nevertheless, as will be seen below, we
have taken some pains to express the algorithm in something close
to typical programming and hardware description languages, in the
hope of minimizing this semantic gap. Similarly, the results must be
understood in the context of the definitions on which they rest, and
these may fail to capture one’s intentions. We hope that we have not
used any faulty or even controversial definitions in what follows.

As for the relative value of a formalized proof of this kind compared
with an informal proof, we believe, pace DeMillo et al. (1979), that a
HOL proof such as ours should have greater persuasive power. This
is not to say that our HOL proof script is the most convenient way
of communicating the essence of the proof to people — if we believed
that we would emit our ASCII text verbatim rather than write this
article. But when the processes underlying the HOL proof script are
understood, we hope it will compel belief, and that is what we aim at
first and foremost. This property is quite orthogonal to the question
of a proof’s ‘surveyability’ and its susceptibility to the usual social
processes, just as the question of whether a computer can think is not
relevant to whether a particular program can beat one at chess. Having
said that, we do consider the surveyability of formal proof outlines

fp.tex; October 13, 1999; 10:41; p.2

3

important,2 and have recently (Harrison, 1996b) been experimenting
with more readable and declarative proof outlines inspired by the Mizar
system (Trybulec, 1978).

While large ill-defined software systems are far from being verifiable,
at least at present, there is no doubt that present verification techniques
are applicable to some significant problems. In particular, basic floating
point operations seem to be a good target. They embody relatively
small but mathematically sophisticated algorithms. By focusing on
them with a high level of formality, we can provide a secure foundation
for higher level work in numerical analysis, even when that is itself out
of reach of a formal treatment.

2. HOL Light

HOL Light (Harrison, 1996a) is our own version of the HOL prover
(Gordon and Melham, 1993), which is itself descended from Edinburgh
LCF (Gordon et al., 1979) via Cambridge LCF (Paulson, 1987). HOL
Light maintains most of the general principles underlying its ancestors,
but attempts to be more logically coherent, elegant and usable. It is
written entirely in CAML Light (Weis and Leroy, 1993; Cousineau and
Mauny, 1998), giving it advantages of portability and low resource us-
age compared with its ancestors, which are based on LISP or Standard
ML.

HOL Light is simply a large CAML program that defines data struc-
tures to represent logical entities, together with a suite of functions to
manipulate them in a way guaranteeing soundness. The most important
data structures belong to one of the datatypes hol type, term and
thm, which represent types, terms (including formulas) and theorems
respectively. The user can write arbitrary programs to manipulate these
objects, and it is by creating new objects of type thm that one proves
theorems. HOL’s notion of an ‘inference rule’ is simply a function with
return type thm.

In order to guarantee logical soundness, however, all these types are
encapsulated as abstract types. In particular, the only way of creat-
ing objects of type thm is to apply one of a dozen or so very simple
primitive inference rules. Thus, whatever the circuitous route by which
one arrives at it, the validity of any object of type thm rests only on
the correctness of the rather simple primitive rules (and of course the

2 Pollack (1998) points out that even though a formal proof may not itself be
‘surveyable’, a computer program capable of surveying it might be. In a sense,
computers can furnish a form of leverage.

fp.tex; October 13, 1999; 10:41; p.3

4

correctness of CAML’s type checking etc.). For example, one of HOL’s
primitives is the rule of transitivity of equality:

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

This allows one to make the following logical step: if under assump-
tions Γ one can deduce s = t (that is, s and t are equal), and under
assumptions ∆ one can deduce t = u, then one can deduce that from all
the assumptions together, Γ ∪∆, that s = u holds. If the two starting
theorems are bound to the names th1 and th2, then one can apply the
above logical step in HOL and bind the result to th3 via:

let th3 = TRANS th1 th2;;

One doesn’t normally use such low-level rules much, but instead
interacts with HOL via a series of higher-level derived rules, using built-
in parsers and printers to write terms in a more natural syntax. For
example, if one wants to bind the name th6 to the theorem of real
arithmetic that when |c− a| < e and |b| ≤ d then |(a + b)− c| < d + e,
one simply does:

let th6 = REAL_ARITH
‘abs(c - a) < e ∧ abs(b) <= d
=⇒ abs((a + b) - c) < d + e‘;;

If the purported fact in quotations turns out not to be true, then
the rule will fail by raising an exception. Similarly, any bug in the
derived rule (which represents several dozen pages of code written by
the present author) would lead to an exception.3 But we can be rather
confident in the truth of any theorem that is returned, since it must
have been created via applications of primitive rules, even though the
precise choreographing of these rules is automatic and of no concern
to the user. What’s more, users can write their own special-purpose
proof rules in the same style when the standard ones seem inadequate
— HOL is fully programmable, yet retains its logical trustworthiness
when extended by ordinary users.

Among the facilities provided by HOL is the ability to organize
proofs in a mixture of forward and backward steps, which users often
find more congenial. The user invokes so-called tactics to break down

3 Or possibly to a true but different theorem being returned, but this is easily
guarded against by inserting sanity checks in the rules.

fp.tex; October 13, 1999; 10:41; p.4

5

the goal into more manageable subgoals. For example, the standard
HOL proof of an elementary fact of number theory that addition of
natural numbers is commutative is written as follows (the symbol ∀
means ‘for all’):

let ADD_SYM = prove
(‘∀m n. m + n = n + m‘,
INDUCT_TAC THEN
ASM_REWRITE_TAC[ADD_CLAUSES]);;

The tactic INDUCT TAC uses mathematical induction to break the
original goal down into two separate goals, one for m = 0 and one
for m + 1 on the assumption that the goal holds for m. Both of these
are disposed of quickly simply by repeated rewriting with the current
assumptions and a previous, even more elementary, theorem about
the addition operator. The identifier THEN is a so-called tactical, i.e.
a function that takes two tactics and produces another tactic, which
applies the first tactic then applies the second to any resulting subgoals
(there are two in this case).

For another example, we can prove that there is a unique x such that
x = f(g(x)) if and only if there is a unique y with y = g(f(y)) using
a single standard tactic MESON TAC, which performs model elimination
(Loveland, 1968) to prove theorems about first order logic with equality.
As usual, the actual proof under the surface happens by the standard
primitive inference rules.

let WISHNU = prove
(‘(∃!x. x = f (g x)) ≡ (∃!y. y = g(f y))‘,
MESON_TAC[]);;

These and similar higher-level rules certainly make the construction
of proofs manageable whereas it would be almost unbearable in terms
of the primitive rules alone. Nevertheless, we want to dispel any false
impression given by the simple examples above: nontrivial proofs, as
are carried out in the work described here, often require long and
complicated sequences of rules. The construction of these proofs often
requires considerable persistence. Moreover, the resulting proof scripts
can be quite hard to read, and in some cases hard to modify to prove a
slightly different theorem. One source of these difficulties is that the
proof scripts are highly procedural — they are, ultimately, CAML
programs, albeit of a fairly stylized form. As mentioned above, we have

fp.tex; October 13, 1999; 10:41; p.5

6

recently been experimenting with declarative scripts, which promise to
be more readable, and more maintainable; perhaps even more writable.

In presenting HOL theorems below, we will use standard symbols
for the logical operators, as we have in the above examples, but when
actually interacting with HOL, ASCII equivalents are used:

Standard symbol ASCII version Meaning

⊥ F Falsity

> T Truth

¬ ~ Not

∧ /\ And

∨ \/ Or

=⇒ ==> Implies

≡ = If and only if

∀ ! For all

∃ ? There exists

ε @ Hilbert choice

λ \ Lambda abstraction

The term λx. t[x] means ‘the function that maps each x to t[x]’,
while ε P denotes ‘some x such that P (x)’. For more on the HOL
logic, see Gordon and Melham (1993), while for more details of the
exact axiomatization used in HOL Light as well as the development
of the HOL mathematical theories of real numbers, real analysis and
transcendental functions on which this verification rests, we refer the
reader to our PhD thesis (Harrison, 1998).4, Most of the operations
on real numbers should look familiar even in their HOL ASCII repre-
sentations, but here are some of the less obvious ones together with
renderings in standard mathematical notation and English:

4 The system itself together with some documentation is freely available for
download from http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html.

fp.tex; October 13, 1999; 10:41; p.6

7

HOL notation Standard symbol Meaning

SUC(n) n + 1 Successor operation on N

m EXP n mn Natural number exponentiation

& (none) Natural map N → R

--x −x Unary negation of x

inv(x) x−1 Multiplicative inverse of x

abs(x) |x| Absolute value of x

x pow n xn Real x raised to natural number power n

root n x n
√

x Positive nth root of x

Sum(n,d) f Σn+d−1
i=n f(i) Sum of d terms f(i) starting with f(n)

HOL’s type system distinguishes natural numbers and reals, so & is
used to map between them. It’s mainly used as part of real number
constants like &0, &1 etc. Note also that while one might prefer to
regard 0−1 as ‘undefined’ (in some precise sense), we set inv(&0) = &0
by definition.

3. Correctness criteria for floating point operations

Suppose we have a set F of floating point numbers. For the purposes of
this general discussion, we will ignore special cases such as infinities and
NaNs,5 and suppose that each member of F has a corresponding real
number value. We will use v to denote the valuation function F → R.

We intend to specify the correctness of a floating point operation
by comparing its output with the true mathematical result, using the
valuation function v to mediate between the realms of floating point and
real numbers. For example, the correctness of a floating point operation
EXP is specified by comparing it with its ideal counterpart exp. That is,
for each floating point number a, we compare exp(v(a)) and v(EXP(a));
in algebraist’s jargon, we are interested in how closely the following
diagram ‘almost commutes’:

5 NaN = Not a Number, a special value to represent the result of an erroneous
calculation such as taking the square root of a floating point number with negative
value.

fp.tex; October 13, 1999; 10:41; p.7

8

a

v(a)

EXP(a)

exp(v(a))
v(EXP(a))

-

-

6 6

EXP

exp

v v

Analogously, for a binary function, say multiplication, we can con-
sider the relationship between v(a)v(b) and v(MUL(a, b)). But just
what relationship are we to demand between the exact and computed
values (e.g. exp(v(a)) and v(EXP(a))) as our criterion for correctness?
This is a delicate question, and we examine it at length.

3.1. Round to nearest

It seems that the most stringent specification we can give is that no
floating-point number is closer to the true mathematical answer. For
example, in the case of a multiplication operation MUL this means:

∀a, b ∈ F. ¬∃c ∈ F. |v(c)− v(a)v(b)| < |v(MUL(a, b))− v(a)v(b)|

Actually, though, this is too lax to specify the result of a floating
point operation completely, since it may happen that there are two
floating point values equally close to the exact result. Humans working
in decimal are usually taught to round 0.5000 . . . up to 1, but the
IEEE (1985) standard for binary floating point arithmetic mandates
a (default) rounding mode of ‘round to even’:

An implementation of this standard shall provide round to nearest
as the default rounding mode. In this mode the representable value
nearest to the infinitely precise result shall be delivered; if the two
nearest representable values are equally near, the one with its least
significant bit zero shall be delivered.

Fixing the choice between such alternatives has the merit that oper-
ations will behave identically on all implementations, even if they use
quite different (correct!) algorithms. The IEEE Standard demands that
the operations of addition, subtraction, multiplication, division, and
square root be performed as if done with full accuracy then rounded
using this scheme or whichever of the others is in force (see later).

fp.tex; October 13, 1999; 10:41; p.8

9

This approach based on the exact mathematical result ensures that the
operations share important characteristics of the abstract counterparts.
For example, multiplication is:

− Symmetric, i.e. MUL(a, b) = MUL(b, a)

− Monotone, i.e. if 0 ≤ v(a) ≤ v(a′) and 0 ≤ v(b) ≤ v(b′) then we
also have v(MUL(a, b)) ≤ v(MUL(a′, b′)).

Empirical studies suggest that ‘round to even’ avoids a tendency
for floating point results to drift systematically. Using the ‘human
style’ rounding, there is a tendency to drift upwards under succes-
sive operations, presumably because the situation of being midway
between two representable values happens quite often. For example,
when adding normalized numbers with the same sign and identical
exponents, exactly one bit, which is often 1, must be discarded. (By
contrast, subtraction of such pairs of numbers is always exact.)

3.2. Bounded error

The above correctness criterion is sometimes unrealistically stringent
for other functions such as the transcendentals sin, cos, exp, ln etc; this
is probably why the IEEE standard does not discuss such functions at
all. The difficulty is known as the ‘table maker’s dilemma’, and arises
because being able to approximate a real number arbitrarily closely
does not in general mean that one can decide the correctly rounded
digits in a positional expansion. For example, a value x one is approx-
imating may be exactly the rational number 3.15. This being the case,
knowing for any given n ∈ N that |x − 3.15| < 10−n does not help to
decide whether 3.1 or 3.2 is the correctly rounded result to one decimal
place.

In the case of the common transcendental functions like exp, there
are results of number theory assuring us that for nontrivial rational
arguments the result is irrational. In fact for nonzero algebraic x ∈ C it
follows from a classic theorem of Lindemann (1882) that all the follow-
ing are not just irrational but transcendental:6 exp(x), sin(x), cos(x),
tan(x), sinh(x), and cosh(x), and for x 6= 1 too, cos−1(x) and ln(x) —
Baker (1975) gives a proof. And all floating-point values are rational
of course, at least in conventional representations, though not in novel
schemes like the exponential towers proposed by Clenshaw and Olver
(1984). However the appropriate bounds on the evaluation accuracy

6 A number is said to be algebraic if it is the root of a polynomial with integer
coefficients, e.g.

√
2 is a root of x2−2, and to be transcendental otherwise. Rational

numbers are roots of polynomials of degree 1.

fp.tex; October 13, 1999; 10:41; p.9

10

required to ensure correct rounding in all cases may be impractically
hard to find analytically. Exhaustive search is hardly an option for
double precision, though perhaps more systematic ways are feasible.7

Even if the evaluation accuracy bounds are found, they may be very
much larger than the required accuracy in the result. Goldberg (1991)
gives the illustrative example of:

e1.626 = 5.083499996273 . . .

To round the result correctly to 4 decimal places, one needs to
approximate it to about 10−9. Insisting on exact rounding therefore
tends to imply a commitment to substantially longer-than-usual com-
putations in special cases. This is possible, but it is costly in hardware
(so is most likely to be implemented via software traps) and means
that execution times and space usage can no longer be guaranteed, or
at least so sharply bounded.

In summary then, it is usually appropriate to settle for a weaker
criterion. Notably, we can simply insist that the error is within some
bound. One is seldom interested in absolute error, since floating point
numbers vary widely in magnitude, so in practice one measures the
error in a value relative to the value itself. Either one can consider the
relative error, i.e. the ratio of the error to the value, or the error in
terms of ‘units in the last place’ (ulp). One ulp is the magnitude of
the least significant bit of the value concerned.8 (When making formal
statements we will follow our HOL formalization and regard ulp as a
function of the relevant floating point number, writing ulp(a) or ulpa

for one unit in the last place of a.) Note that perfect rounding would
ensure that the error in the output was always ≤ 0.5 ulp.

3.3. Error commensurate with likely input error

Even guaranteeing small relative errors, while quite possible, can be
rather difficult. For example, consider the evaluation of sin(x) where x
is just below the largest representable number in IEEE double precision,
about 21024 ≈ 1.8 × 10308. Most underlying algorithms for sin, e.g.
Taylor series, only work, or only converge reasonably quickly, for fairly

7 There are results in transcendental number theory, e.g. those due to Mahler
(1953), that can bound the distance between a transcendental and a rational ap-
proximation. However these tend to be very general — for example we are only
concerned with rationals of the form p

2q rather than general rationals — and would
probably need substantial further work to give bounds sharp enough for practical
purposes.

8 Unfortunately there are several variant notions of what an ‘ulp’ is; our definition
follows Goldberg (1991). See Harrison (1999) for a more recent formalization.

fp.tex; October 13, 1999; 10:41; p.10

11

small arguments. Therefore the usual first step in calculating sin(x) is
to perform an appropriate range reduction, e.g. finding an x′ with −π ≤
x′ < π and x′−x = 2nπ for n ∈ Z. However in this case, performing the
range reduction accurately is not straightforward. Simply evaluating
x/(2π), rounding this to an integer n and then evaluating x′ = x −
2nP , where P approximates π to roughly machine precision, is going to
return wildly inaccurate results. Even if n could be represented exactly,
which is unlikely, any error |P − π| in the representation of π will be
blown up by a huge multiple. So if accurate rounding is required, it’s
necessary to store 1

π or some such number to over a thousand bits, and
perform the range reduction calculation to that accuracy (Payne and
Hanek, 1983).

Since this sort of super-accurate computation need only be kicked
in when the argument is large, a situation that one hopes will, in the
hands of a good numerical programmer, be exceptional, it need not
affect average performance. However in a hardware implementation in
particular, there may be a significant cost in chip area which might
be put to better use. It seems that many designers do not make the
required effort. Ng (1992) shows the huge disparities between (then)
current computing systems on sin(1022): only a very few systems, no-
tably the VAX and SPARC floating point libraries and certain HP
calculators, give the right answer.

One can certainly defend the policy of giving inaccurate answers
in such situations, and this leads us to a new notion of correctness.
Floating point calculations are generally not performed in number-
theoretic applications. The inputs to floating point calculations are
usually inexact, because they are necessarily approximate measures
of physical quantities, because they are exact quantities that don’t
have an exact floating point representation (e.g. 1

10 in IEEE binary
arithmetic), or because they are the rounded results of previous floating
point calculations. One might expect that the average floating point
value is inaccurate, compared with some abstract ideal, by at least
0.5ulp. Accordingly, we may say that a function is correct if the dis-
parity between its output and the true mathematical answer could be
explained by a very small (say 0.5ulp) perturbation of the input:

∃η. |η| ≤ 0.5 ulpx ∧ f(v(x) + η) = v(F (x))

There is an obvious analogy between this approach and backward error
analysis (Wilkinson, 1963). Nevertheless, as pointed out by Kahan,9

9 See, e.g. the notes for CS 267, available on the Web as
http://HTTP.CS.Berkeley.EDU/~wkahan/ieee754status/cs267fp.ps.

fp.tex; October 13, 1999; 10:41; p.11

12

one sometimes wants the appropriate ‘input perturbations’ for various
functions to be correlated in some way. For example, when calculating:

f(x) =

1
2 if x = 1
−atn(ln(x))/acos(x)2 if x < 1
atn(ln(x))/acos(x)2 if x > 1

replacing ln(x) and acos(x) by ln(x′) and acos(x′′) for close but uncor-
related x′ and x′′ can lead to grave inaccuracy as x → 1, even though
the function as a whole is well-behaved there.

3.4. Probabilistic and mixed criteria

One can always modify any of the above criteria, most naturally the
one demanding perfect rounding, in a probabilistic way. That is, one
may say that a function is correct if the correctness criterion is met in
a sufficient proportion, e.g. 99.9%, of cases. Strictly speaking, this isn’t
a probabilistic measure because the applications of the operations are
unlikely to be evenly distributed, but the probabilistic interpretation
is natural. This can easily be formalized using cardinalities of sets, e.g:

card {a ∈ F | |exp(v(a))−v(EXP(a))| > 0.5ulp(EXP(a))} < card(F)/1000

This might be considered a bit unsatisfactory, since it sanctions wild
inaccuracy in exceptional cases. One can however combine this with a
definite but worse than 0.5ulp bound on the accuracy in all cases. See
Gal (1986) for an example of this kind of correctness result for a floating
point logarithm function not dissimilar in structure to the algorithm
we are concerned with here.

4. Our implementation language

In early versions of this work (Harrison, 1995), floating point algorithms
were expressed directly by primitive recursive functions in the HOL
logic. However such a formalization has only an indirect relationship
with any actual implementation of the algorithm, either in hardware or
software. Now we opt to express the algorithms in a simple imperative
‘while language’. Using a recognizable programming language in this
way offers two benefits.

First, the language corresponds quite closely to the typical pseu-
docodes often used to describe algorithms. In fact, there is a view,
expressed for example by Dijkstra (1976), that a programming language
should be thought of first and foremost as an algorithm-oriented system

fp.tex; October 13, 1999; 10:41; p.12

13

of mathematical notation, and only secondarily as something to be run
on a machine. Our HOL embedding fits nicely with this principle since
programming constructs are given a simple semantics using objects in
the HOL logic.

Secondly, our little language can naturally be seen as a subset either
of programming languages like C or Ada, or of high-level hardware
description languages such as Verilog, VHDL and Hardware C; hence
it corresponds quite directly to implementations either in software or
hardware. There are projects at the University of Cambridge Computer
Laboratory looking at formal HOL-based semantics for the C program-
ming language (Norrish, 1998) and the Verilog hardware description
language (Gordon, 1995), as well as a new project concerned with
Handel (Page, 1996), and it would be natural to consider a link to
either or both of these.

The language is given a simple operational semantics, and from that,
weakest preconditions, total correctness rules and verification condition
generators are derived. This is not novel in any significant detail, being
based on work of Gordon (1989), Wright et al. (1993) and Nipkow
(1996).10 We expect that the few constructs we use in this work are
quite familiar without any formal treatment. Note that expressions
map down to terms in the HOL logic, and so in the concrete syntax,
parentheses may be used to enforce grouping, just as one uses braces
in C and begin . . . end in Pascal. Program fragments can be parsed
and prettyprinted in a readable form, enclosed within ‘var variables
. . . end’. The var construct declares those variables that are to be
treated as program variables. Any other identifiers are regarded as
logical ‘variables’ in the usual sense.

The special command ‘{expression}’ is called an assertion. It checks
a condition, and if it is true, does nothing, while if it is false, it goes
into an infinite loop. The user can specify properties that should hold
at a point in the code using assertions, and these are used by HOL to
generate verification conditions (see below). As well as these assertions,
the user can annotate while-loops and do-loops with an ‘invariant’,
which should be preserved round each iteration of the loop, and a nat-
ural number ‘measure’ that decreases round each iteration; the latter
ensures that the loop terminates. The example below illustrates how
these annotations are inserted in the concrete syntax.

10 One unusual feature is that verification conditions are generated forward from
the precondition P for assignment statements that, viewed as state mappings, do
not affect the precondition (p◦f = p) and are idempotent (f ◦f = f). For programs
like the present one with many variables assigned just once, this tends to make the
verification conditions more intuitive.

fp.tex; October 13, 1999; 10:41; p.13

14

A HOL term ‘correct p C q’ means that, if started in any state
satisfying p, the command (program fragment) C will terminate in a
state satisfying q. It is assertions of this form that we want to prove.
In order to make this process easier, we use the standard technique of
verification condition generation. The user presents a program together
with loop annotations and possibly other assertions.11 HOL automati-
cally processes this and produces a series of proof obligations. All these
are purely concerned with facts in the underlying theories, and have
no explicit connection with programming constructs. When they are
all proved, HOL will reconstruct a proof that the program, stripped of
its annotations if desired, obeys the required correctness criteria. For
example, the following is a correctness assertion for a trivial program
to calculate factorials:12

correct
T
var x,y,n;
x := 0;
y := 1;
while x < n do [invariant x <= n ∧ (y = FACT x);

measure n - x]
(x := x + 1;
y := y * x)

end
y = FACT n

The assertion is that whatever the initial state (‘T’ is always true),
the program will terminate in a state with y = n!. Setting this as the
current goal and applying the HOL verification condition generation
tactic VC TAC gives rise to three VCs:

?- x <= n ∧ (y = FACT x) ∧ x < n ∧ (X = n - x)
=⇒ x + 1 <= n ∧ (y * (x + 1) = FACT (x + 1)) ∧

n - (x + 1) < X

?- ¬(x < n) ∧ x <= n ∧ (y = FACT x) =⇒ (y = FACT n)

?- (x = 0) ∧ (y = 1) =⇒ x <= n ∧ (y = FACT x)

11 HOL can automatically create verification conditions given only loop anno-
tations (thanks to Tobias Nipkow via Mike Gordon for pointing this out to me),
but sometimes the VCs are more perspicuous if the user provides guidance using
assertions.

12 This program uses abstract mathematical natural numbers, but our later
examples use actual floating point numbers and finite integers.

fp.tex; October 13, 1999; 10:41; p.14

15

These are all easy to prove (one or two lines of HOL tactic script),
and when that is done, HOL automatically proves the initial correctness
goal.

While we consider verification condition generation to be a reason-
able way to perform code verification, the underlying HOL theory does
not force one to work in this way. For example, those who prefer to
use stepwise refinement to develop programs from specifications (Back,
1980) are free to do so.

5. Formalizing IEEE arithmetic

Increasingly, manufacturers are trying to make their floating point
hardware (and software, where relevant) correspond to the IEEE (1985)
standard 754 for binary floating point arithmetic. (This is to be dis-
tinguished from the IEEE standard 854, which is radix-independent,
albeit in a weak sense, allowing radix 2 or 10.) We will therefore assume
that our ultimate goal is to deal with IEEE floating point numbers,
and moreover, that where we use subsidiary floating point arithmetic
operations such as addition and multiplication, they conform to the
IEEE standard. Therefore, an important preliminary step in our work
is to translate key parts of IEEE-754 into formal HOL specifications.
We do not attempt an exhaustive exegesis of the standard — for some
parts, e.g. the specification of trap handlers, this would be possible
only as part of a more general specification of an ambient computing
environment. We just aim to formalize enough to make it clear that
any implementations we verify do in fact conform to the standard in
the essential details. Our effort can be compared to a Z specification by
Barratt (1989) and a PVS specification of IEEE-854 by Miner (1995).
We have found the latter particularly valuable in our work; it is easy
to read and the underlying logic is similar to HOL’s.

5.1. Format parameters

We parametrize floating point formats by a pair of two natural numbers:
the width in bits of the exponent field (expwidth), and the width in
bits of the significand field (fracwidth). From these basic parameters
we derive four other characteristic numbers:

− The total word length wordlength = expwidth + fracwidth + 1
(one bit is used for the sign of the fraction).

− The maximum exponent value emax = 2expwidth − 1.13

13 Note that what the standard calls Emax is emax− bias− 1.

fp.tex; October 13, 1999; 10:41; p.15

16

− The bias in the exponent bias = 2expwidth−1 − 1. The exponent is
stored as an unsigned number e but then treated as e− bias.

In HOL, we define functions to extract the primitive and derived
parameters from an arbitrary format X:

|- expwidth (ew,fw) = ew

|- fracwidth (ew,fw) = fw

|- wordlength(X) = expwidth(X) + fracwidth(X) + 1

|- emax(X) = 2 EXP expwidth(X) - 1

|- bias(X) = 2 EXP (expwidth(X) - 1) - 1

This approach, which coincides with Barratt’s, certainly covers the
single and double precision formats. Strictly speaking, the exponent
range and bias may be defined in some other way for the two extended
formats. We could use more independent parameters to specify formats.
But anyway we are only concerned in what follows with single and
double precision.

5.2. Floating point numbers

The actual floating point numbers in a given format are represented
by triples of natural numbers, interpreted as a sign, an exponent and
a fraction. We define predicates partitioning the numbers into NaNs
(NaN = not a number), infinities, normalized numbers, denormalized
but nonzero numbers, and zeros. We are following the terminology of
the standard in excluding zeros from the class of denormalized numbers.

|- is_nan(X) (s,e,f) = (e = emax(X)) ∧ ¬(f = 0)

|- is_infinity(X) (s,e,f) = (e = emax(X)) ∧ (f = 0)

|- is_normal(X) (s,e,f) = 0 < e ∧ e < emax(X)

|- is_denormal(X) (s,e,f) = (e = 0) ∧ ¬(f = 0)

|- is_zero(X) (s,e,f) = (e = 0) ∧ (f = 0)

Two useful derived predicates test whether a triple is valid for a given
format, and if so, whether it is a finite number, i.e. not an infinity or a
NaN.

fp.tex; October 13, 1999; 10:41; p.16

17

|- is_valid(X) (s,e,f) =
s < 2 ∧ e < 2 EXP expwidth(X) ∧ f < 2 EXP fracwidth(X)

|- is_finite(X) a =
is_valid(X) a ∧
(is_normal(X) a ∨ is_denormal(X) a ∨ is_zero(X) a)

It’s also convenient to have extractors for the three fields of a floating
point number:

|- sign (s,e,f) = s

|- exponent (s,e,f) = e

|- fraction (s,e,f) = f

We also define constants for a few convenient values, including the
largest representable positive number in a format (topfloat), and the
most negative number (bottomfloat).

|- plus_infinity(X) = (0,emax(X),0)

|- minus_infinity(X) = (1,emax(X),0)

|- plus_zero(X) = (0,0,0)

|- minus_zero(X) = (1,0,0)

|- topfloat(X) = (0,emax(X) - 1,2 EXP fracwidth(X) - 1)

|- bottomfloat(X) = (1,emax(X) - 1,2 EXP fracwidth(X) - 1)

5.3. Representation and valuation

Now we define the concrete representation for numbers, regarded as
binary numerals — Miner (1995) actually makes the bitstrings ex-
plicit. Note that once again this encoding is not obligatory for the
two extended formats.

|- encoding(X) (s,e,f) =
s * 2 EXP (wordlength(X) - 1) +
e * 2 EXP fracwidth(X) + f

fp.tex; October 13, 1999; 10:41; p.17

18

That is, the fields are laid out with the sign as the most significant
bit, the (biased positive) exponent in the middle and the fraction at the
bottom. Now we specify the real number valuation of nonexceptional
numbers. This is meaningless when applied to infinities and NaNs.

|- valof X (s,e,f) =
if e = 0
then --(&1) pow s * &2 / &2 pow bias(X) *

&f / &2 pow fracwidth(X)
else --(&1) pow s * &2 pow e / &2 pow bias(X) *

(&1 + &f / &2 pow fracwidth(X))

Note that denormalized numbers and normalized numbers are treated
separately. By virtue of this definition, there are no redundant multi-
ple encodings of real numbers, except for ±0. (Once again, redundant
encodings are allowed in the extended formats according to IEEE-754,
subject to a few conditions.) We define a few significant real number
values. The first is intended as the real value of the largest representable
number; the second is the overflow threshold for round-to-nearest, and
the third is the standard notion of one ulp (unit in the last place) for
a given floating point number:

|- largest(X) = (&2 pow (emax(X) - 1) / &2 pow bias(X)) *
(&2 - inv(&2 pow fracwidth(X)))

|- threshold(X) = (&2 pow (emax(X) - 1) / &2 pow bias(X)) *
(&2 - inv(&2 pow SUC(fracwidth(X))))

|- ulp(X) a = valof(X) (0,exponent(a),1) -
valof(X) (0,exponent(a),0)

5.4. Rounding

The above definition of valof is fundamental to what follows, as is
the inverse operation of rounding, which coerces a real number into a
given floating point format. This rounding is controlled by a rounding
mode, specifying whether a real number is to be mapped to the nearest
floating point number (using ‘round to even’ to choose a unique number
if necessary, as described earlier), towards zero, or towards positive or
negative infinity. We represent these choices in HOL via an enumerated
type definition:

fp.tex; October 13, 1999; 10:41; p.18

19

define_type
"roundmode = To_nearest | To_zero |

To_pinfinity | To_ninfinity";;

The actual specification of rounding is intuitively obvious, with the
only subtlety being the question of whether a real number overflows and
whether, if so, the rounded version should be an infinity. The standard
specifies (4.1) that in the round to nearest mode, overflow occurs if the
magnitude of the real number is ≥ 2Emax(2−2−(fracwidth+1)), resulting
in the appropriately signed infinity. The specifications for the other
modes (4.2) are a bit laconic, but clear enough if one takes for granted
a real line with infinities adjoined and the ordering −∞ < finite <
∞.14 For example, when rounding to +∞, the answer is the ‘format’s
value (possibly +∞) closest to and no less than the infinitely precise
result’. This implies that if the input value strictly exceeds the largest
representable finite number, it is rounded to +∞, while if it is below the
lowest (i.e. most negative) representable number, it should be rounded
to that lowest number.

Apparently, the standard defines rounding as an operation mapping
into a subset of the extended real line R∪{+∞,−∞}, rather than back
into the actual floating point format. Our decision to map back to the
actual floating point format gives us an extra choice over the sign of
results that are zero after rounding. We could make a canonical choice,
but instead we leave it undetermined. (When we come to the actual
operations, there are case-by-case rules for the signs of zeros.) First, we
define a quite general notion of rounding. The following predicate means
that a is an element of the set s that provides a best approximation to
x, assuming a valuation function v:

|- is_closest v s x a =
a IN s ∧
∀b. b IN s =⇒ abs(v(a) - x) <= abs(v(b) - x)

However, we need something still more general to incorporate ‘round
to even’, namely a set/predicate p that defines a set of preferred values
when there are multiple ‘closest’ a. We define a function that picks out,
using the Hilbert choice operator, a best approximation in this sense.

14 This assumption is later (6.1) specified in the standard, though it seems to be
discussing the actual machine comparison operators rather than the mathematical
framework in which the standard is interpreted.

fp.tex; October 13, 1999; 10:41; p.19

20

|- closest v p s x =
εa. is_closest v s x a ∧

((∃b. is_closest v s x b ∧ p(b)) =⇒ p(a))

Now at last we define the actual rounding function for an arbi-
trary floating point format X. This is defined casewise on the rounding
modes; in HOL terms this is a (vacuously) primitive recursive definition.
We just show the clause for ‘round to even’.

|- (round(X) To_nearest x =
if x <= --(threshold(X)) then minus_infinity(X)
else if x >= threshold(X) then plus_infinity(X)
else closest (valof(X)) (λa. EVEN(fraction(a)))

{ a | is_finite(X) a} x)

We also define a function intround that rounds to an integer-valued
floating point result. The definition is essentially the same as above,
except that we restrict the set of floating point numbers to those that
are finite and integer-valued, and, in the case of round-to-even, give
preference to even integers, rather than merely integers with the least
significant bit in their scaled representation zero. (For example, 2 =
21× 1.0000 . . . and 3 = 21× 1.1000 . . . both have their l.s.b. zero in the
floating point representation.)

5.5. Arithmetic operations

The standard states (4.0) that each arithmetic operation (which ex-
cludes interconversion with decimal representations) is

. . . performed as if it first produced an intermediate result correct
to infinite precision and with unbounded range, and then rounded
that result according to one of the modes in this section.

This isn’t quite the whole picture, since for example it doesn’t settle
the sign of zeros, and the standard later qualifies this by saying more
precisely that an operation is:

. . . performed as if it first produced an intermediate result correct
to infinite precision and with unbounded range, and then coerced
this intermediate result to fit in the destination’s format (see Sec-
tions 4 and 7). Section 6 augments the following specifications to
cover ±0, ±∞ and NaN; Section 7 enumerates exceptions caused
by exceptional operands and exceptional results.

fp.tex; October 13, 1999; 10:41; p.20

21

Unfortunately section 7 gives another, more complicated, account of
whether a number overflows when rounded (in the context of deciding
whether to raise an exception):

. . . whenever the destination format’s largest finite number is ex-
ceeded in magnitude by what would have been the correctly rounded
floating point result (Section 4) were the exponent range unbounded.

However this is in fact equivalent to the definition in Section 4 that
we formalized above, remembering the rounding to even restriction.
Section 7 also fills out that description with a more explicit discussion
of how overflow is dealt with in the various modes, which coincides with
our formalization.

We depart from the standard slightly in our treatment of NaNs. The
standard leaves many aspects of NaNs undetermined. It is stated that
there are both ‘quiet’ and ‘signalling’ NaNs, and there are rules about
propagating NaNs. However the division is an implementation issue,
and to do justice to it, we would need to make the specification of
arithmetic operations nondeterministic. Since IEEE arithmetic is com-
pletely determined on all other operands,15 this seems a pity. Therefore
we just declare one canonical NaN and generate that in all situations
where a NaN is required; we also make no distinction between quiet
and signalling NaNs in the arguments. We do not discuss the raising of
exceptions, nor of handlers for them.16

|- some_nan(X) = εa. is_nan(X) a

In other respects, the operations are fairly straightforward. One first
deals with the exceptional cases, either where the arguments involve a
NaN or infinity, or are invalid for other reasons (e.g. 1/0). Apart from
that, one basically just takes the values of the arguments, performs the
mathematical operation on them, then rounds the result according to
the desired rounding mode. The only additional problem is fixing the
signs of zero results afterwards. We define the following function, which
coerces the sign of a floating point number a with value zero to a given
value s:

15 At least as far as numerical results are concerned. The details of underflow
detection are underspecified.

16 Miner (1995) formalizes some of the rules for NaNs, but still relies on arbitrary
but fixed choices for things not constrained by the standard, and does not discuss
trap handlers. Barratt (1989) as far as we can tell gives a relational semantics that
reflects the choices in the standard.

fp.tex; October 13, 1999; 10:41; p.21

22

|- zerosign(X) s a = if is_zero(X) a then
if s = 0 then plus_zero(X)
else minus_zero(X)

else a

Generally the rules for signs given in the standard (6.3) are quite
simple. Note that in the case of sums and differences, the result is
rounded to zero iff the precise result is zero, because the operation
took place on representable numbers. So we only need to attend to
zero results, and the rules are quite clear. For example:

|- fadd(X) m a b =
if is_nan(X) a ∨ is_nan(X) b ∨

(is_infinity(X) a ∧ is_infinity(X) b ∧
¬(sign(a) = sign(b)))

then some_nan(X)
else if is_infinity(X) a then a
else if is_infinity(X) b then b
else zerosign(X) (if is_zero(X) a ∧ is_zero(X) b ∧

(sign(a) = sign(b)) then sign(a)
else if m = To_ninfinity then 1

else 0)
(round(X) m (valof(X) a + valof(X) b))

and

|- fmul(X) m a b =
if is_nan X a ∨ is_nan X b ∨

is_zero X a ∧ is_infinity X b ∨
is_infinity X a ∧ is_zero X b

then some_nan X
else if is_infinity X a ∨ is_infinity X b

then if sign a = sign b
then plus_infinity X
else minus_infinity X

else zerosign X (if sign a = sign b then 0 else 1)
(round X m (valof X a * valof X b))

We also provide a negation operation on floating point numbers; this
is recommended but not mandated by the IEEE standard. It simply
switches the sign of a floating point number; apart from the signs of
zeros it has the same effect as −x = 0− x.

fp.tex; October 13, 1999; 10:41; p.22

23

5.6. Comparisons

The standard allows two different ways of implementing the set of
comparison operations: either as a function that returns a condition
code, or as a set of standard predicates. Following Miner (1995), we do
both, starting with an enumerated type of condition codes:

define_type "ccode = Gt | Lt | Eq | Un";;

The generic comparison function is rather obvious, though the case
splits to deal with infinities are a bit tedious:

|- fcompare(X) a b =
if is_nan(X) a ∨ is_nan(X) b then Un
else if is_infinity(X) a ∧ (sign(a) = 1) then
if is_infinity(X) b ∧ (sign(b) = 1) then Eq else Lt

else if is_infinity(X) a ∧ (sign(a) = 0) then
if is_infinity(X) b ∧ (sign(b) = 0) then Eq else Gt

else if is_infinity(X) b ∧ (sign(b) = 1) then Gt
else if is_infinity(X) b ∧ (sign(b) = 0) then Lt
else if valof(X) a < valof(X) b then Lt
else if valof(X) a = valof(X) b then Eq
else Gt

Now we define the usual predicates, e.g.

|- flt(X) a b = (fcompare(X) a b = Lt)

|- fge(X) a b = (fcompare(X) a b = Gt) ∨
(fcompare(X) a b = Eq)

5.7. Float and double types

We specialize the above considerations to actual HOL types of sin-
gle precision and double precision numbers (fixing also on round-to-
nearest), called float and double following the C convention. (If HOL
supported dependent types, we could actually have parametrized float-
ing point types, as in Miner (1995).) These types are defined to be in bi-
jection with the appropriate subset of N3, with the bijections for float
and their types being written in HOL as float:num#num#num->float
and defloat:float->num#num#num. The format of 8-bit exponents and
23-bit significands is abbreviated float_format:

fp.tex; October 13, 1999; 10:41; p.23

24

|- float_format = (8,23)

The operations are defined by mapping out of the type, performing
the operations, and mapping back, e.g.

|- a + b =
float(fadd(float_format) To_nearest

(defloat a) (defloat b))

|- sqrt(a) = float(fsqrt(float_format) To_nearest
(defloat a))

|- a >= b = fge(float_format) (defloat a) (defloat b)

We also provide an ‘absolute value’ function as follows:17

|- abs a = if a >= Plus_zero then a else --a

The operations on floats are distinct from those on mathematical
real numbers, natural numbers etc. However, HOL Light features op-
erator overloading, so we use the conventional symbols for arithmetic
operations on floats; HOL exploits types to disambiguate input, sig-
nalling an error if it is unable to do so. There is one exception: we
cannot overload the equality operation as it is already polymorphic.
Instead we use == for equality on floating point values, which should
look familiar to C programmers. Arguably, using the conventional sym-
bol for equality would be rather misleading, since the standard notion
is neither reflexive (x 6= x if x is a NaN) nor substitutive (−0 = +0 but
1

+0 6=
1
−0).

The reader may need to bear in mind this overloading in order to
understand some of the HOL theorems that follow. It is usually easy
to see what the type of an operation is by noting how it is combined
with a function of known type such as V al : F → R (this is in fact
how HOL’s typechecker does it). For example, in Val(a + b), the ad-
dition operation must be a floating point operation, while in Val(a) +
Val(b) the addition operator is mathematical real addition. Generally,
overloading always makes some expressions more natural at the cost
of requiring a certain alertness on the part of the reader. In informal
explanations we may omit V al where we should properly write it.

17 Note that we have abs(−0) = −0; it’s probably more sensible to make abs(−0) =
+0, but this decision does not affect the algorithm considered here.

fp.tex; October 13, 1999; 10:41; p.24

25

As well as the operations, we specialize various other functions,
predicates and values to the float type, e.g:

|- Val(a) = valof(float_format) (defloat a)

|- Float(x) = float (round(float_format) To_nearest x)

|- Isnan(a) = is_nan(float_format) (defloat a)

|- Plus_infinity = float (plus_infinity(float_format))

As well as floating point numbers, the algorithm we are concerned
with uses machine integers. We will not discuss the (straightforward)
HOL formalization of these numbers in detail, but we will note that
they are 2s complement 32-bit integers. Their behaviour on overflow is
undefined, i.e. an arbitrary value εx. ⊥ results. This seems the most
pessimistic assumption that can reasonably be made about typical
contemporary hardware. In fact, the correctness of the algorithm only
requires a pretty limited range of integers.

There are coercions Tofloat and Toint for mapping between floats
and ints, and these are of course subject to range restrictions in each
case. We will just be explicit about two operations used later, to avoid
any ambiguity. The integer modulus operation, written % as in C, al-
ways returns a positive answer whatever the sign of its arguments.
The function INTRND is the composition of the round-to-integer-value
operation on floating point numbers and the coercion function Toint.
One further operation that we use, recommended but not mandated
by the IEEE Standard, is Scalb, where Scalb(a,N) scales the floating
point number a by 2N for an integer N . This operation is performed
atomically, so may avoid overflow even if 2N itself would overflow.

6. Lemmas about floating point numbers

In order to perform error analysis reasonably smoothly, we try to arrive
at fairly general theorems about the floating point operations. Occa-
sionally we need to dive down to more specialized and intricate results
— we will present an example later — but for the most part we can use
a standard collection of lemmas. Following Tang (1989), we define the
error resulting from rounding a real number to a floating point value:

|- error(x) =
Val(float(round(float_format) To_nearest x)) - x

fp.tex; October 13, 1999; 10:41; p.25

26

Because of the regular way in which the operations are defined, they
all relate to their abstract mathematical counterparts according to the
same pattern for finite operands:

|- Finite(a) ∧ Finite(b) ∧
abs(Val(a) + Val(b)) < threshold(float_format)
=⇒ Finite(a + b) ∧

(Val(a + b) =
(Val(a) + Val(b)) + error(Val(a) + Val(b)))

and

|- Finite(a) ∧ Finite(b) ∧
abs(Val(a) * Val(b)) < threshold(float_format)
=⇒ Finite(a * b) ∧

(Val(a * b) =
(Val(a) * Val(b)) + error(Val(a) * Val(b)))

The comparisons are even more straightforward, e.g.

|- Finite(a) ∧ Finite(b) =⇒ (a < b = Val(a) < Val(b))

|- Finite(a) ∧ Finite(b) =⇒ (a == b = (Val(a) = Val(b)))

We have several lemmas quantifying the error, of which the most
useful is the following:

|- abs(x) < threshold(float_format) ∧
abs(x) < (&2 pow j / &2 pow 125)
=⇒ abs(error(x)) <= &2 pow j / &2 pow 150

The situation for numbers in the denormal range is slightly worse:

|- ∀x. abs x < inv (&2 pow 126)
=⇒ abs(error x) <= inv (&2 pow 150)

There are many important situations, however, where the operations
are exact, because the result is exactly representable. Trivially, for
example, the negation and absolute value functions are always exact:

fp.tex; October 13, 1999; 10:41; p.26

27

|- Finite(a) =⇒ Finite(abs(a)) ∧ (Val(abs(a)) = abs(Val(a)))

Also, if a result only has 24 significant digits (modulo some care in
the denormal case), then it is exactly representable

|- (abs(x) = (&2 pow e / &2 pow 149) * &k) ∧
k < 2 EXP 24 ∧ e < 254
=⇒ ∃a. Finite(a) ∧ (Val(a) = x)

and the error in any calculation with an exactly representable result is
zero, e.g.

|- Finite(a) ∧ Finite(b) ∧
Finite(c) ∧ (Val(c) = Val(a) * Val(b))
=⇒ Finite(a * b) ∧ (Val(a * b) = Val(a) * Val(b))

Another important case of exact operations is subtraction of nearby
values with the same sign. This is a well-known result in floating point
error analysis, similar to Theorem 11 of Goldberg (1991).

|- Finite(a) ∧ Finite(b) ∧
&2 * abs(Val(a) - Val(b)) <= abs(Val(a))
=⇒ Finite(a - b) ∧ (Val(a - b) = Val(a) - Val(b))

There are also many more trivial facts which nonetheless need to be
established formally, e.g. that if a number is finite it is not a NaN and
has a value in a certain range, that the equality is reflexive except on
NaNs, that rounding is monotonic, and so forth, e.g.

|- ∀a. ¬(Isnan a ∧ Infinity a) ∧
¬(Isnan a ∧ Finite a) ∧
¬(Infinity a ∧ Finite a)

|- Iszero Plus_zero ∧ Iszero Minus_zero

|- ¬Isnan Plus_infinity ∧ ¬Isnan Minus_infinity

|- ¬Isnan Plus_zero ∧ ¬Isnan Minus_zero

|- ∀a. Infinity a = a == Plus_infinity ∨ a == Minus_infinity

|- ∀a. ¬(a == Plus_infinity ∧ a == Minus_infinity)

fp.tex; October 13, 1999; 10:41; p.27

28

We will not catalogue every such result here but we should make
clear that proving all these obvious (and sometimes not-so-obvious)
facts took several days of work. Nevertheless, all the results described
in this section are quite general, so could be re-used in any similar ver-
ifications undertaken in the future. A similar suite of trivialities needs
to be provided for the machine integers and the operations relating
them to floats, e.g.

|- Isintegral a ∧ --(&2 pow 31) <= Val a ∧ Val a < &2 pow 31
=⇒ (Ival (Toint a) = Val a)

We use a separate valuation function Ival for machine integers;
recall that Val is only used for floats.

7. The algorithm

The algorithm we verify is one given by Tang (1989) for the exponen-
tial function. Tang gives a fairly detailed explanation of the algorithm
together with an error analysis, which makes it a suitable target for
formal treatment. The algorithm works as follows.

Given an input argument x, exceptional cases such as NaNs, infini-
ties (or simply very large arguments) and zeros are dealt with first.
For example, we have exp(−∞) = +0. Furthermore, if the argument
x is small enough for this to be a satisfactory approximation, the ex-
ponential function is calculated simply as 1 + x. The main part of the
algorithm covers the remaining cases. Mathematically, the procedure
is simple. First we obtain a reduced argument r such that for some
integer n:

x = n
ln(2)
32

+ r

and − ln(2)
64 ≤ r ≤ ln(2)

64 . This n is found by rounding x 32
ln(2) to the

nearest integer. Now we decompose n into its quotient and remainder
when divided by 32, i.e. n = 32m + j with 0 ≤ j ≤ 31. Hence

ex = e(32m+j)
ln(2)
32

+r = eln(2)me
ln(2)j

32 er = 2m2
j
32 er

Values of 2
j
32 for 0 ≤ j ≤ 31 are prestored constants, and mul-

tiplication by 2m is fast. Hence we just need to calculate er for r ∈
[− ln(2)

64 , ln(2)
64]. This is done by a low-order polynomial approximation

p(r) ≈ er − 1, where:

fp.tex; October 13, 1999; 10:41; p.28

29

p(r) = r +
8388676

224
r2 +

11184876
226

r3

The actual reconstruction of ex, for reasons of accuracy, is done by:

ex = 2m(2
j
32 + 2

j
32 p(r))

In fact, in order to achieve good accuracy, the above mathematical
description is complicated slightly. The value r is broken down into r1+
r2 where r2 � r1. Similarly the prestored constants 2

j
32 are all stored as

two separate arrays Slead and Strail with 2
j
32 ≈ Slead(j) + Strail(j) and

Strail(j) � Slead(j). These devices to avoid rounding error, as well as
the care required over the ordering of operations, make the actual code
look a bit more complicated than the above mathematical description;
they also create a lot of the difficulty in the verification. The following
is a rendering of the algorithm in our while-language, embedded in
the correctness assertion that is the ultimate conclusion of the work
described here.

fp.tex; October 13, 1999; 10:41; p.29

30

|- (Int_32 = Int(32)) ∧
(Int_2e9 = Int(2 EXP 9)) ∧
(Plus_one = float(0,127,0)) ∧
(THRESHOLD_1 = float(0,134,6056890)) ∧
(THRESHOLD_2 = float(0,102,0)) ∧
(Inv_L = float(0,132,3713595)) ∧
(L1 = float(0,121,3240448)) ∧
(L2 = float(0,102,4177550)) ∧
(A1 = float(0,126,68)) ∧
(A2 = float(0,124,2796268)) ∧
TABLES_OK S_Lead S_Trail
=⇒
correct
T
var X:float,E:float,R1:float,R2:float,R:float,P:float,

Q:float,S:float,E1:float, N:Int,
N1:Int,N2:Int,M:Int,J:Int;

if Isnan(X) then E := X
else if X == Plus_infinity then E := Plus_infinity
else if X == Minus_infinity then E := Plus_zero
else if abs(X) > THRESHOLD_1 then
if X > Plus_zero then E := Plus_infinity
else E := Plus_zero

else if abs(X) < THRESHOLD_2 then E := Plus_one + X
else
(N := INTRND(X * Inv_L);
N2 := N % Int_32;
N1 := N - N2;
if abs(N) >= Int_2e9 then
R1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1

else
R1 := X - Tofloat(N) * L1;

R2 := Tofloat(--N) * L2;
M := N1 / Int_32;
J := N2;
R := R1 + R2;
Q := R * R * (A1 + R * A2);
P := R1 + (R2 + Q);
S := S_Lead(J) + S_Trail(J);
E1 := S_Lead(J) + (S_Trail(J) + S * P);
E := Scalb(E1,M)
)

end
(Isnan(X) =⇒ Isnan(E)) ∧
(X == Plus_infinity ∨
Finite(X) ∧ exp(Val X) >= threshold(float_format)
=⇒ E == Plus_infinity) ∧

(X == Minus_infinity =⇒ E == Plus_zero) ∧
(Finite(X) ∧ exp(Val X) < threshold(float_format)
=⇒ Isnormal(E) ∧

abs(Val(E) - exp(Val X)) < (&54 / &100) * Ulp(E) ∨
(Isdenormal(E) ∨ Iszero(E)) ∧
abs(Val(E) - exp(Val X)) < (&77 / &100) * Ulp(E))

fp.tex; October 13, 1999; 10:41; p.30

31

The constant TABLES_OK is used to abbreviate a large set of assump-
tions about the values of table entries. All the following values are taken
from Tang’s paper.

|- TABLES_OK S_Lead S_Trail =
(S_Lead(Int 0) = float(0,127,0)) ∧
(S_Lead(Int 1) = float(0,127,183680)) ∧
...
(S_Lead(Int 31) = float(0,127,8029056)) ∧
(S_Trail(Int 0) = float(0,0,0)) ∧
(S_Trail(Int 1) = float(0,106,5444997)) ∧
...
(S_Trail(Int 31) = float(0,109,4943305))

8. The HOL verification

Following Tang, we split the error into three more or less independent
parts and analyze them separately.

− The error in range reduction, i.e. the inaccuracy compared with
the ideal equation X = N ln(2)

32 + R, where R = R1 + R2.

− The error resulting from the difference between p(R) and eR − 1,
both regarded as pure mathematical expressions.

− The rounding error in the evaluation of p(R) and the rest of the
reconstruction.

We insert some annotations into the program which separate the
correctness proof into three corresponding verification conditions (one
of which splits into two because of the conditional statement), as well
as half a dozen other VCs, most of which are trivial, for the special
cases. A few additional assertions are added too, to break the task
down further in a controlled way. For example, an assertion after the
assignment to E1 separates the detailed analysis of the rounding error
and the final consideration of overflow and underflow on scaling by 2M .

fp.tex; October 13, 1999; 10:41; p.31

32

...
E1 := S_Lead(J) + (S_Trail(J) + S * P);
{ Finite(X) ∧
abs(Val X) <= Val(THRESHOLD_1) ∧
Val(THRESHOLD_2) <= abs(Val X) ∧
abs(Ival M) <= &318 ∧
Finite(E1) ∧
inv(&2) < Val(E1) ∧ Val(E1) < &2 - inv(&2 pow 6) ∧
abs(Val(E1) - exp(Val(X) - Ival(M) * ln(&2)))
<= &5338 / &10000 * inv (&2 pow 23) ∧
(Val(E1) < &1 =⇒ abs(Val(E1) - exp(Val(X) -

Ival(M) * ln(&2)))
<= &5125 / &10000 * inv (&2 pow 24)) };

E := Scalb(E1,M)
...

In all, there are 13 verification conditions to be proved.

8.1. Checking of prestored constants

In several places, we need to prove mathematical results about the vari-
ous prestored constants. Most of these constants bear a straightforward
relationship to ln(2), so first we obtain, by formal proof, an accurate
approximation to ln(2). We use ln(2) = ln(1+ 1

2)− ln(1− 1
4), since each

of the values on the right of this equation can be evaluated reasonably
efficiently by truncating its Taylor series, using existing HOL theorems
about the error in such situations. The numerical result is:

|- abs(ln(&2) - &544531980202654583340825686620847 /
&785593587443817081832229725798400)

< inv(&2 pow 51)

The other constants needed are approximations to sj = 2
j
32 for j =

0, . . . , 31. The easiest way to justify these is to measure the difference
s32
j − 2j and appeal to the following theorem, easily derived in HOL

from the Mean Value Theorem for derivatives:

|- &0 < x ∧ x <= &2
=⇒ abs(x - root 32 (&2 pow j))

<= abs(x pow 32 - &2 pow j) /
(if x pow 32 <= &2 pow j then &32 * x pow 32 / x
else &16 * &2 pow j)

fp.tex; October 13, 1999; 10:41; p.32

33

This allows us to deduce that the difference between the stored value
sj and the true mathematical figure 2

j
32 is below 2−41 in all cases. This

could be sharpened a little, but it is already much better than the
accuracy we need later. There is one exception: we need later the fact
that in the case j = 0 the error is zero, trivially so since s0 is exactly
1.

8.2. Error in range reduction

The error analysis here is rather intricate, belying the simplicity of
the code. We must establish that R1 is calculated exactly. The stored
values L1 and L2 have enough trailing zeros that multiplication by
small enough integers is exact; this is a fairly straightforward appli-
cation of earlier lemmas about the exact representability of values
with few enough significant digits. More difficult is establishing that
the subsequent subtractions, either X − NL1 or both X − N1L1 and
(X − N1L1) − N2L1 depending on the arm of the conditional, are
exact by virtue of cancellation. We are tantalizingly close to being
able to apply a previous lemma requiring that 2|X − NL| ≤ |NL| or
2|X−NL| ≤ |X|. This always works for the subtraction X−N1L1, but
the required preconditions are just missed in the other subtractions in
the cases when N = ±1 or N2 = 1 respectively. We need to analyze L1’s
bit pattern more carefully to justify the exactness of subtraction over
a larger range. This tedious reasoning is embedded in the following ad
hoc lemma, which says that subtraction of NL1 from any value within
1
88 of it is exact.

|- (L1 = float (0,(121,3240448))) ∧
Finite(X) ∧
Finite(Tofloat(N) * L1) ∧
(Val(Tofloat(N) * L1) = Ival(N) * Val(L1)) ∧
abs(Val(X) - Val(Tofloat(N) * L1)) <= inv(&88)
=⇒ Finite(X - Tofloat(N) * L1) ∧

(Val(X - Tofloat(N) * L1) =
Val(X) - Val(Tofloat(N) * L1))

8.3. Error in polynomial approximation

This is a matter of pure mathematics, and has no connection with
floating point arithmetic. It is dismissed in a few lines of Tang’s paper,
since if one doesn’t insist on a fully formal proof, then maximizing a
smooth function over a closed interval is a straightforward matter for

fp.tex; October 13, 1999; 10:41; p.33

34

a numerical programmer. However, justifying such a result by a formal
proof is much harder. We took several weeks of work, becoming diverted
into the necessary proofs of various results about polynomial elimina-
tion. This is described in more detail in a separate paper (Harrison,
1997), but in summary the approach is as follows.

We want to arrive at reasonably sharp bounds for ex−(1+p(x)) over
a suitable range. First, we find a truncated Taylor series to approximate
ex to an accuracy well beyond that we are interested in. Thus, the
problem is reduced to bounding a polynomial, which is a tractable
problem. We just need to locate the points of zero derivative. The main
difficulty is that one must prove that all such points have been located;
in general it may be fewer than the degree of the polynomial. Thus
we need to prove formally how many (real) roots a polynomial has,
and to do this we formalize Sturm’s theorem on polynomial remainder
sequences (Benedetti and Risler, 1990).

It is worth noting that the only real error we have found in Tang’s
proof occurs here. He bounds the polynomial approximation accuracy
over the interval [−0.010831, 0.010831], with the implicit assumption
that this is the limit of R, or to be precise, of V al(R1) + V al(R2).
However, in the case of single precision arithmetic this is not quite cor-
rect. For example if X has the hex representation 423708C0 (real value
about 45.76, and float(0,132,3606720) in the HOL formalization)
the corresponding R already exceeds this slightly, while for 435C0524
(value about 220.02, and HOL float(0,134,6030628)) the magnitude
of R has risen to over 0.010833. (The latter example is only significant
if one performs bias adjustment, since its exponential is out of range,
but the first is well within range, and there are several other such
counterexamples.) A naive error analysis gives a bound of 0.010844,
which is the range we use; this could be improved by a more delicate
analysis of how multiples of InvL round, but this hardly affects the
overall error. We arrive at an error bound of 24

272−33 rather than 23
272−33

which could be proved over the narrower interval assumed by Tang. By
the way, it may be the case that Tang’s polynomial coefficients could
be improved given the new interval.

8.4. Rounding errors

Though this occupies the largest part of Tang’s error analysis, it is all
a routine application of earlier lemmas. This is a little laborious since
it has to be repeated for about a dozen arithmetic operations, but it
is far from difficult. We organize things slightly differently from Tang,
and exploit HOL’s programmability to compose errors appropriately.
For example, the calculation of P involves the composition of 41 error

fp.tex; October 13, 1999; 10:41; p.34

35

terms, many of which are the product of several others, and it would
be quite tedious to do this by hand. Our analysis descends all the
way to the rounding error in calculating Q, while Tang simply says
that because of its small size, ‘the rounding errors accumulated in its
calculation are practically zero’. While this is quite true, justifying this
intuition formally is harder than simply bounding that error in the
usual way.18 Anyway, one might argue that ‘error bounds’ should be
just that — guaranteed upper bounds.

We arrive at a bound for the rounding error in P of 11
202−30. Though

this is larger than the error Tang assumed, the overall error bounds in
E1 that we get are actually tighter. Tang derives bounds of 0.5267ulp
and 0.5378ulp in E1, depending on the binary interval in which it lies,
[12 , 1) or [1, 2). Our bounds are 0.5125ulp and 0.5338ulp respectively
(see the annotation given earlier for the HOL statement). The first is
lower because we manually observed that in this case, we must have
Ival(J) = 0 and then most of the arithmetic operations involved in
calculating P in terms of Q are exact. The better bound for the sec-
ond, however, results purely from HOL’s mechanical application of the
theorems about error bounds. It seems paradoxical that we get a better
final result despite taking into account more errors, but the explanation
seems to be that we avoid inserting any ‘safety margin’ in results to
compensate for neglected errors.

In some ways, our argument is also more natural than Tang’s in
that when deciding on the binary intervals in which results lie, we care-
fully separate abstract mathematical values from their floating point
approximations and deal always with the ones that are actually rel-
evant. For example, we case split over the binary intervals for the
computed output E1, since this determines the value of an ulp in
the result. We deduce that if V al(E1) lies in [12 , 1) then j = 0 and
V al(SLead(J)) + V al(STrail(J) + (SLead(J) + STrail(J))P) < 1, where
j = Ival(J). This is then used in the remaining error analysis. By
contrast, Tang considers whether j = 0 first and then whether r < 0,
where r is the exact variant of R, that is, V al(X)− Ival(N) ln(2)

32 . This
necessitates a nontrivial additional argument to see that, for example,
r and V al(R1) + V al(R2) always lie in the same binary interval.

The last line of the algorithm simply scales E1 by 2M to yield the
final result. This is close to being simple. If the result is normalized,
then the scaling is exact and the maximum error is still 0.5338ulp. If,
on the other hand, the result is denormalized, we can get an extra error

18 Arguably this is a general problem in trying to achieve a high level of for-
malization in applications of scientific theories — it can be harder to justify the
simplifying assumptions rigorously than to avoid them. For example, think of some
of the approximations commonly used in mechanics.

fp.tex; October 13, 1999; 10:41; p.35

36

of 0.5ulp due to rounding, but the corresponding ulp is at least twice
as large as it would be if the result could be scaled exactly. Thus the
maximum error is 0.5 + 0.5338

2 ulp. However there are subtleties lurking
where overflow and underflow are concerned.

8.5. Overflow

Our specification makes quite a strong statement about the overflow
behaviour of the algorithm.19 We assert that overflow occurs (i.e. the
result is +∞) if and only if the true exponential exceeds the standard
overflow threshold. (Tang doesn’t make any similarly precise claim.) It
is clear that overflow occurs precisely when our approximate exponen-
tial exceeds the overflow threshold, and we are left to prove that these
are sufficiently close that either one overflows if the other does.

The proof proceeds by contradiction. If there is a disparity in the
overflow behaviours, then 2MV al(E1) and eV al(X) lie on opposite sides
of the overflow threshold. This means that 2MV al(E1) is at least
as close to the overflow threshold as it is to eV al(X), that is, within
about 0.54 2M/223. Thus |threshold/eV al(X)− 1| < 0.55/222. Hence by
appealing to the following theorem:

|- abs(x - &1) <= e ∧ e <= inv(&4)
=⇒ abs(ln(x)) <= e + e pow 2

we find that |ln(threshold)−V al(X)| ≤ 2−22. However by carefully ap-
proximating ln(threshold), easily done using the known approximation
to ln(2), we discover that this is impossible: there is no such X. The
reason is that ln(threshold) is straddled by two floating point values,
float(0,133,3240471) and float(0,133,3240472), and is more than
2−22 from either of them, although not that much further from the
latter. Quite naively, we could count ourselves unlucky if this property
failed, since

eX(1+δ) = eXeXδ ≈ eX(1 + Xδ)

In other words, the relative change in the output is about X times
the relative change in the input. Since X at this point is around 26, we
might expect a probability of about 2−5 that the true exponential lies
dangerously close (within just over 0.5ulp) to the overflow threshold.

19 We do not follow Tang in performing ‘bias adjustment’ in the case of overflow.
This would be very easy to add, given that everything is tightly bounded until the
final scaling by 2M .

fp.tex; October 13, 1999; 10:41; p.36

37

8.6. Underflow

There is a similar dangerous case to be ruled out at the other end of
the scale. We have said that the maximum error from scaling is 0.5ulp,
but in compensation an ulp is at least twice as large relative to the
result as it would otherwise be. However our specification, following
Tang, asserts that this situation only arises when the final result E is
denormalized. We need to rule out the possibility that E1 loses a bit
in scaling yet then rounds back up to a normalized result. This can
only happen when the exact value of 2ME1 is 2−126(1−2−24). Now E1
could not, in this case, lie in the interval [1, 2), since we have proved
earlier that it cannot exceed about 2− 2−6 (see the annotation shown
earlier). We must therefore have E1 ∈ [12 , 1) and so M = −126. The
problem is reduced to showing that no floating point value X has an
exponential within 2−150 of 2−126(1− 2−24).

This is susceptible to reasoning very similar to that in the case of
overflow. Abbreviating t = 2−126(1− 2−24), we want to show that ln(t)
is too far away from any representable value. In fact the situation is
even better than before: ln(t) is straddled by float(1,133,3058767)
and float(1,133,3058768) and at least 2−19 from either of them; once
again, a distance of 2−22 would suffice. Hence we get the final result.

9. Conclusions and methodological remarks

When describing verification efforts, there is a tension between impress-
ing with our persistence, and demonstrating the maturity and usability
of the tools chosen. While we are not averse to making such points, the
main message we want to communicate is that verifications of this
nature are, with a little effort, comfortably within the state of the art,
and as such are well placed for industrial exploitation. There has been
other work in this area, which we will discuss briefly below, but ours is
distinguished by a combination of factors:

− The algorithm is not a toy example, but a real-world, published
one.

− The algorithm is for a transcendental function and the mathemat-
ics underlying it is non-trivial.

− The algorithm is expressed in a recognizable programming lan-
guage.

− The whole algorithm is verified in full against a formal specification
of IEEE-754.

fp.tex; October 13, 1999; 10:41; p.37

38

− The entire proof proceeds from logical first principles.

We believe that verifications of this sort are well worthwhile. Al-
though we have found Tang’s error analysis to be correct in essentials,
we have found one small slip and have located a few subtle corners
in the proof that a less careful worker than Tang might easily have
overlooked. One of the commonest errors in postulated theorems is
the forgetting of special or degenerate cases. (IEEE floating point is
particularly rich in such cases, e.g. NaNs, negative zeros etc.) Using a
mechanical theorem prover means we are never allowed to miss these
things. On top of that, we derive the mathematics with the greatest
rigour and integrate it with the verification, so it can be relied on
that we have not misapplied some ‘book’ result such as the error in
truncating a Taylor series.

Apart from standard real analysis, some parts of this correctness
proof (Harrison, 1997) needed a lot of additional pure mathematics,
e.g. Sturm’s theorem. So it is a mistake to believe that to get concrete
results, the only theorems about the reals needed are a few algebraic
and order-theoretic banalities: sometimes one needs much more. Even
so, these results are often quite concrete and combinatorial, in contrast
to the clean, abstract results on often sees in mathematics texts, and are
typically much harder to prove formally. To give an ad hoc comparison,
the work here took about 100 times as much work as a HOL proof
by us of M. H. Stone’s theorem that a metrizable topological space
is paracompact, a result arguably of greater mathematical depth.20

However, while the result described here is the culmination of about 3
months of hard work, most of this was devoted to getting the IEEE-754
formalization right and proving general results on polynomial approx-
imation and floating point error analysis. This is all re-usable, so we
believe other verifications of this general type could now be cranked
out reasonably quickly, say in one or two weeks each.

In this algorithm, we have taken IEEE-compliant addition, mul-
tiplication etc. as given. However, it would be perfectly possible to
specify instead the kind of special extra precise arithmetic that might
be implemented in hardware. For example, a simple CORDIC example
we dealt with some time ago is based on this approach (Harrison, 1998).
Indeed, we could attempt to verify some implementations of the IEEE
primitives in terms of their low-level components. The proofs would
presumably be quite simple compared with those tackled here.

20 This theorem was suggested on the QED mailing list on 17th June 1994 by
Andrzej Trybulec as an interesting case study in the relative power and flexibility of
theorem proving systems — see ftp://ftp.mcs.anl.gov/pub/qed/archive/56 and
ftp://ftp.mcs.anl.gov/pub/qed/archive/66.

fp.tex; October 13, 1999; 10:41; p.38

39

Although the present algorithm could be verified by exhaustive test-
ing, our proof scales straightforwardly to double, extended or perhaps
even generic versions of the operation, whereas exhaustive testing seems
not to. In particular, Tang sketches a proof for the double precision
case, and it would be a straightforward mechanical process to adapt
the present proof. (We might do this, but on reflection will probably
make some improvements, as noted later.) This is an example of a
general phenomenon: verification has more modularity than testing,
i.e. it is often possible to re-use and modify proofs, or to link together
proofs for submodules of a system, whereas this can be problematic
for some other approaches. However, testing does have the advantage,
where it is applicable, of giving (in principle) tighter error bounds. That
is, the various errors that are accumulated may be correlated in ways
too subtle to analyze mathematically. However we don’t believe that
would make a substantial difference to the error bounds here.

We have assumed a correct algorithm. But is testing or verification
better for detecting errors? Testing has the advantage of indicating
counterexamples directly. By contrast, in verification, one simply finds
that a proof does not go through as hoped, as in our attempts to prove
Tang’s bound on R. This doesn’t (in this case or typically) constitute
a disproof, but only motivates a more directed search for counterex-
amples. We found our counterexamples by testing numbers where the
rounding to an integer leaves the greatest possible error of 0.5ulp. On
the other hand, while verification doesn’t pinpoint counterexamples, it
does pinpoint mathematical errors more directly. To go from a failure
in testing to an analysis of the problem, one needs to trace through the
counterexample to see where things go wrong. So we might say that
testing is better for finding when things go wrong, and verification for
finding why and where things (might) go wrong.

As for other theorem provers, there is hardly an alternative to some
version of HOL for verifications of this kind at present. One needs
available a large library of results from real analysis — for example
we have used the mean value theorem, Taylor’s theorem and common
properties of the exponential function. One also needs a system that is
reasonably ‘heavyweight’; biased towards big, ugly verification proofs
rather than the elegant solution of high-level mathematical problems.
While some systems have one (e.g. Mizar) and some have the other
(e.g. NQTHM), no other system that we are aware of combines these
strengths. Probably the best alternative would be PVS, which has al-
ready benefited from some excellent work in formalized mathematics
(Dutertre, 1996) and floating point verification (Miner, 1995; Miner
and Leathrum, 1996). Its type system offers some extra features over

fp.tex; October 13, 1999; 10:41; p.39

40

HOL’s that might be helpful in giving a clear specification; for example,
it is not necessary to distinguish between N and R.

In future verifications, we can make better use of HOL’s programma-
bility. As it stands, we automated certain routine steps, e.g. the ap-
plication of the valuation function V al to particular floating point
values, the accumulation of rounding errors in expressions, and the
evaluation of Taylor approximations. However, much more could be
done and from the perspective gained as a result of this proof, we
can identify the most important things to automate. We have used
HOL’s existing tools to prove innumerable trivial but tedious results
of linear arithmetic automatically, and this was almost indispensable.
But one of the most tiresome aspects of the proofs was that similarly
simple results with a nonlinear component need to be proved manually.
Similar experiences are reported by Miner and Leathrum (1996) when
using PVS. However we have now implemented experimental tools to
automate these steps, including the semi-automatic determination of
the signs of product terms, many of which are of the form 2k and are
hence trivially strictly positive. We believe these tools would have been
invaluable in this verification, and should streamline future efforts. We
also intend to clean up, fill out and generalize the most useful-looking
lemmas; in the present verification almost all of these were accreted ‘by
need’ without any systematic plan.

Our insistence on reducing everything to logical first principles gives
us the highest confidence in the final result, and has not been a disaster
from the point of view of efficiency. There is one unfortunate exception:
arithmetic. Performing arithmetic, particularly multiplication, of large
numbers by proof is very time-consuming. So much so that the entire
proof takes about 12 hours to run;21 this is cut to about 2 hours if
addition and multiplication are performed as primitives using CAML’s
native bignums, rather than via logical decomposition. It might be a
pragmatic necessity to do this for double precision or extended pre-
cision verifications; these are structurally identical and no harder for
the user, but involve calculation with still larger numbers. The main
problem areas are the evaluation of Sturm sequences and the accu-
rate approximation of ln(2) and 2

j
32 . On the other hand, most of the

arithmetic operations could be done in a more sophisticated way using
approximations tailored to the required accuracy rather than relying
on exact rational arithmetic (Harrison, 1998).

21 More precisely, to build HOL Light from the ground including the mathemat-
ical theories and then run through all the verification, takes 498 minutes of user
CPU time on a 200MHz Pentium Pro machine with 128M of RAM running CAML
Light 0.73 under Red Hat Linux 2.0.29 #10. Note that CAML Light is a bytecode
interpreter, not a native code compiler.

fp.tex; October 13, 1999; 10:41; p.40

41

There is an argument though, that forcing the user to think carefully
about something as basic as arithmetic in order to make it acceptably
efficient is not conducive to great productivity. Perhaps it should simply
be made primitive. The ACL2 prover makes a virtue of its ability to
mix efficient calculation in with the proof process. Our verification gives
a good illustration of how important this can be. Of course ACL2 is
hardly suited to verifications of this type since it has no notion of real
number, and would therefore be unable to formalize some of the higher
level details directly. However ACL2 has been used for interesting work
in verifying a more elementary floating point operation, namely division
(Moore et al., 1996; Brock et al., 1996). This work in ACL2 was actually
carried out in cooperation with the designer of the algorithm at AMD.

Postscript

Since the main body of this work was written, we have moved to
industry and are now actually doing formal verification of floating
point software at Intel Corporation. The formalization of floating point
arithmetic used is described in Harrison (1999). As yet, none of the
actual verification details have been written up for publication, but
some of them are closely related to the work described here. Other
recent industrial verifications, of the basic algebraic operations rather
than transcendental functions, are described by Rusinoff (1998) and by
O’Leary et al. (1999).

Acknowledgements

Thanks are due to Mark Aagaard, who suggested this algorithm for
verification, and to Clemens Ballarin whose comments on a draft of
this paper have led to several improvements.

References

Back, R.: 1980, Correctness Preserving Program Transformations: Proof Theory and
Applications, Vol. 131 of Mathematical Centre Tracts. Mathematical Centre,
Amsterdam.

Baker, A.: 1975, Transcendental Number Theory. Cambridge University Press.
Barratt, M.: 1989, ‘Formal Methods Applied to a Floating-Point System’. IEEE

Transactions on Software Engineering 15, 611–621.
Barwise, J.: 1989, ‘Mathematical Proofs of Computer Correctness’. Notices of the

American Mathematical Society 7, 844–851.

fp.tex; October 13, 1999; 10:41; p.41

42

Benedetti, R. and J.-J. Risler: 1990, Real algebraic and semi-algebraic sets. Hermann,
Paris.

Brock, B., M. Kaufmann, and J. S. Moore: 1996, ‘ACL2 Theorems about Commercial
Microprocessors’. in (Srivas and Camilleri, 1996), pp. 275–293.

Clenshaw, C. W. and F. W. J. Olver: 1984, ‘Beyond Floating Point’. Journal of the
ACM 31, 319–328.

Cousineau, G. and M. Mauny: 1998, The Functional Approach to Programming.
Cambridge University Press.

DeMillo, R., R. Lipton, and A. Perlis: 1979, ‘Social Processes and Proofs of Theorems
and Programs’. Communications of the ACM 22, 271–280.

Dijkstra, E. W.: 1976, A Discipline of Programming. Prentice-Hall.
Dutertre, B.: 1996, ‘Elements of Mathematical Analysis in PVS’. in (Wright et al.,

1996), pp. 141–156.
Gal, S.: 1986, ‘Computing Elementary Functions: A New Approach for Achieving

High Accuracy and Good Performance’. In: W. L. Miranker and R. A. Toupin
(eds.): Accurate scientific computations, Vol. 235 of Lecture Notes in Computer
Science. pp. 1–16.

Goldberg, D.: 1991, ‘What Every Computer Scientist Should Know About Floating
Point Arithmetic’. ACM Computing Surveys 23, 5–48.

Gordon, M.: 1995, ‘The Semantic Challenge of Verilog HDL’. In: Proceedings of the
Tenth Annual IEEE Symposium on Logic in Computer Science. San Diego, CA,
USA, pp. 136–145.

Gordon, M. J. C.: 1989, ‘Mechanizing Programming Logics in Higher Order Logic’.
In: G. Birtwistle and P. A. Subrahmanyam (eds.): Current Trends in Hardware
Verification and Automated Theorem Proving. pp. 387–439.

Gordon, M. J. C. and T. F. Melham: 1993, Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press.

Gordon, M. J. C., R. Milner, and C. P. Wadsworth: 1979, Edinburgh LCF: A Mech-
anised Logic of Computation, Vol. 78 of Lecture Notes in Computer Science.
Springer-Verlag.

Harrison, J.: 1995, ‘Floating Point Verification in HOL’. In: P. J. Windley, T.
Schubert, and J. Alves-Foss (eds.): Higher Order Logic Theorem Proving and Its
Applications: Proceedings of the 8th International Workshop, Vol. 971 of Lecture
Notes in Computer Science. Aspen Grove, Utah, pp. 186–199.

Harrison, J.: 1996a, ‘HOL Light: A Tutorial Introduction’. in (Srivas and Camilleri,
1996), pp. 265–269.

Harrison, J.: 1996b, ‘A Mizar Mode for HOL’. in (Wright et al., 1996), pp. 203–220.
Harrison, J.: 1997, ‘Verifying the accuracy of polynomial approximations in HOL’.

In: E. L. Gunter and A. Felty (eds.): Theorem Proving in Higher Order Log-
ics: 10th International Conference, TPHOLs’97, Vol. 1275 of Lecture Notes in
Computer Science. Murray Hill, NJ, pp. 137–152.

Harrison, J.: 1998, Theorem Proving with the Real Numbers. Springer-Verlag.
Revised version of author’s PhD thesis.

Harrison, J.: 1999, ‘A Machine-Checked Theory of Floating Point Arithmetic’. In:
Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry (eds.): Theorem
Proving in Higher Order Logics: 12th International Conference, TPHOLs’97,
Vol. 1690 of Lecture Notes in Computer Science. Nice, France, pp. 113–130.

IEEE: 1985, ‘Standard for Binary Floating Point Arithmetic’. ANSI/IEEE Standard
754-1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East
47th Street, New York, NY 10017, USA.

Lindemann, F.: 1882, ‘Über die Zahl π’. Mathematische Annalen 120, 213–225.

fp.tex; October 13, 1999; 10:41; p.42

43

Loveland, D. W.: 1968, ‘Mechanical Theorem-Proving by Model Elimination’.
Journal of the ACM 15, 236–251.

Mahler, K.: 1953, ‘On the Approximation of Logarithms of Algebraic Numbers’.
Philosophical Transactions of the Royal Society of London, Series A 245, 371–
398.

Miner, P. S.: 1995, ‘Defining the IEEE-854 Floating-Point Standard in PVS’. Tech-
nical memorandum 110167, NASA Langley Research Center, Hampton, VA
23681-0001, USA.

Miner, P. S. and J. F. Leathrum: 1996, ‘Verification of IEEE Compliant Subtractive
Division Algorithms’. in (Srivas and Camilleri, 1996), pp. 64–78.

Moore, J. S., T. Lynch, and M. Kaufmann: 1996, ‘A Mechanically Checked
Proof of the Correctness of the Kernel of the AMD5K86 Floating-
Point Division Algorithm’. Unpublished; available on the Web as
http://devil.ece.utexas.edu:80/~lynch/divide/divide.html.

Ng, K. C.: 1992, ‘Argument Reduction for Huge Arguments: Good to the Last Bit’.
Unpublished draft, available from the author (kwok.ng@eng.sun.com).

Nipkow, T.: 1996, ‘Winskel is (almost) Right: Towards a Mechanized Semantics Text-
book’. In: V. Chandru and V. Vinay (eds.): Foundations of Software Technology
and Theoretical Computer Science, 16th conference, proceedings. pp. 180–192.

Norrish, M.: 1998, ‘C formalized in HOL’. Technical Report 453, University of Cam-
bridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge,
CB2 3QG, UK. Author’s PhD thesis.

O’Leary, J., X. Zhao, R. Gerth, and C.-J. H. Seger: 1999, ‘Formally
Verifying IEEE Compliance of Floating-Point Hardware’. Intel
Technology Journal 1999-Q1, 1–14. Available on the Web as
http://developer.intel.com/technology/itj/q11999/articles/art 5.htm.

Page, I.: 1996, ‘Constructing hardware-software systems from a single description’.
Journal of VLSI Signal Processing 12, 87–107.

Paulson, L. C.: 1987, Logic and computation: interactive proof with Cambridge
LCF, Vol. 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

Payne, M. and R. Hanek: 1983, ‘Radian Reduction for Trigonometric Functions’.
SIGNUM Newsletter 18(1), 19–24.

Pollack, R.: 1998, ‘How to Believe a Machine-Checked Proof’.
In: G. Sambin and J. Smith (eds.): Twenty-Five Years of
Constructive Type Theory. Also available on the Web as
http://www.brics.dk/~pollack/export/believing.ps.gz.

Pratt, V. R.: 1995, ‘Anatomy of the Pentium Bug’. In: P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach (eds.): Proceedings of the 5th International Joint Conference
on the theory and practice of software development (TAPSOFT’95), Vol. 915 of
Lecture Notes in Computer Science. Aarhus, Denmark, pp. 97–107.

Rusinoff, D.: 1998, ‘A Mechanically Checked Proof of IEEE Compliance of
a Register-Transfer-Level Specification of the AMD-K7 Floating-Point Mul-
tiplication, Division, and Square Root Instructions’. LMS Journal of
Computation and Mathematics 1, 148–200. Available on the Web via
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

Srivas, M. and A. Camilleri (eds.): 1996, ‘Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design (FMCAD’96)’, Vol.
1166 of Lecture Notes in Computer Science. Springer-Verlag.

fp.tex; October 13, 1999; 10:41; p.43

44

Tang, P. T. P.: 1989, ‘Table-Driven Implementation of the Exponential Function in
IEEE Floating-Point Arithmetic’. ACM Transactions on Mathematical Software
15, 144–157.

Trybulec, A.: 1978, ‘The Mizar-QC/6000 Logic Information Language’. ALLC
Bulletin (Association for Literary and Linguistic Computing) 6, 136–140.

Weis, P. and X. Leroy: 1993, Le langage Caml. InterEditions. See also the CAML
Web page: http://pauillac.inria.fr/caml/.

Wilkinson, J. H.: 1963, Rounding Errors in Algebraic Processes, Vol. 32 of National
Physical Laboratory Notes on Applied Science. Her Majesty’s Stationery Office
(HMSO), London.

Wright, J. v., J. Grundy, and J. Harrison (eds.): 1996, ‘Theorem Proving in Higher
Order Logics: 9th International Conference, TPHOLs’96’, Vol. 1125 of Lecture
Notes in Computer Science. Turku, Finland:, Springer-Verlag.

Wright, J. v., J. Hekanaho, P. Luostarinen, and T. Langbacka: 1993, ‘Mechanizing
Some Advanced Refinement Concepts’. Formal Methods in System Design 3,
49–82.

fp.tex; October 13, 1999; 10:41; p.44

