
Proof Style

John Harrison

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, England

Abstract. We are concerned with how computer theorem provers should
expect users to communicate proofs to them. There are many stylistic
choices that still allow the machine to generate a completely formal proof
object. The most obvious choice is the amount of guidance required from
the user, or from the machine perspective, the degree of automation pro-
vided. But another important consideration, which we consider particu-
larly significant, is the bias towards a ‘procedural’ or ‘declarative’ proof
style. We will explore this choice in depth, and discuss the strengths
and weaknesses of declarative and procedural styles for proofs in pure
mathematics and for verification applications. We conclude with a brief
summary of our own experiments in trying to combine both approaches.

1 What is a proof?

The word ‘proof’ is used in several different ways, and it is worth making clear
from the outset the way in which we employ the word. With mechanized rea-
soning in mind, a proof may be:

1. What is found in a mathematical textbook, typically a sketch given in a
mixture of formal symbols and natural language, taking for granted certain
knowledge on the part of the reader (Trybulec and Świȩczkowska 1992).

2. A script to be presented to a machine for checking. This might also be a
sketch in some sense, but is itself written in a formal (or at least non-natural)
language. It may even be a program telling the machine how to construct a
formal proof (Constable, Knoblock, and Bates 1985).

3. A proof object in a particular formal system, e.g. one of the standard ax-
iomatizations of first order set theory or intuitionistic type theory.

4. A ‘canonical proof’ used as a theoretical idea in the explication of the intu-
itionistic meaning of the logical connectives.

We will normally use ‘proof’ in the second sense, i.e. a proof is a formal script
to be presented to a machine for checking. Our title should be understood in this
sense: we will focus on the style of such a proof. A reasonable goal in choosing
a style is that our ‘type 2’ proofs should be almost as easy to read and write as
proofs of type 1, while allowing the machine to construct a proof of type 3 from
them. The former objective is likely to be necessary if we are ever to entice a
large body of pure mathematicians to use our proof assistants. The latter lends
our proofs the reliability that a real programme of formalization demands.



While we want to make the gap between 1 and 2 small, it is not essential
that it be made completely negligible. The success of TEX and LATEX shows that
mathematicians are prepared to learn to use tricky computer-based systems
if they can see clear benefits, and perhaps, get a certain aesthetic or creative
satisfaction. TEX and LATEX turn out, after a modest investment of effort, to
be cheaper and more efficient than the traditional reliance on specially skilled
secretaries. It’s doubtful whether mechanized reasoning will become, in the near
future, the most efficient way to produce a proof, but it may turn out to be the
most efficient way to produce a correct proof.

2 Classification of proof styles

We can classify proof styles according to several criteria.

1. The level of automation the style admits. Provers differ greatly in how much
they can prove, and how much they will try to prove, without user interven-
tion.

2. The degree of user control afforded. A high level of automation is often felt
to be in conflict with controllability, but there is no reason why this should
be so. The SAM project (Guard, Oglesby, Bennett, and Settle 1969) was one
of the earliest attempts to combine automation and interaction judiciously.

3. The potential for extensibility, i.e. whether and to what extent ordinary users
can modify the proof style to suite their particular needs.

4. The emphasis on a declarative style, where the user merely states the facts
to be proved and some general information about the method of solution,
or on a procedural style where the user instructs the machine more or less
explicitly.

5. Proof direction. Some systems insist that proofs must proceed forward from
premisses to conclusion. Others insist that on the contrary they must proceed
by refinement, from the conclusion to the premisses. Still others allow the two
styles to be intermixed, or even allow a proof to be attacked from different
places in a more or less arbitrary order, while retaining a clear idea about
when all the extant proof obligations have been satisfied.

6. Whether proofs are processed interactively or via a script submitted to a
batch process. The pioneering proof checking systems such as AUTOMATH
(de Bruijn 1970) and Mizar (Trybulec 1978) were all batch-oriented, whereas
most recent systems support an interactive style of working. Partly this is
a matter of general fashion in computing, but we believe there are a few
objective qualities of batch mode that deserve consideration.

The divide between ‘declarative’ and ‘procedural’ in computer science is a
traditional and long-established one, arguably traceable back to the contrast
between Gödel’s and Turing’s approaches to computability (Robinson 1994).
However it is also notoriously hard to make sharp. We will not attempt to do
so in our context, but we think the division is useful and thought-provoking,
even if understood in a fairly weak and impressionistic way. Prolog, for example,



is usually considered a declarative language, but it does nevertheless give full
control information. The only real difference is that the control information is
implicit, or perhaps more honestly, less obvious to a human reader. By the way,
TEX and LATEX illustrate the distinction, with the latter being avowedly more
declarative and less procedural.

In programming languages, there is a strong association between the phrases
‘declarative’ and ‘high level’. Indeed, one might argue that a declarative style of
proof, if it is to be successful, should feature a high level of automation. On this
view, rather than the level of automation and the proof style being independent
properties, automation is an essential ‘enabling technology’ for a good declarative
style.

3 Some existing systems

Various positions on the automatic-manual and procedural-declarative axes are
exemplified by some existing systems.

AUTOMATH (low automation, procedural)

AUTOMATH (de Bruijn 1970), perhaps the earliest ‘proof checker’, was used in
some pioneering experiments by van Bentham Jutting (1977) in the formalization
of mathematics. It provides low automation and the style of proof is procedural.
The user does not have to provide a completely explicit formal proof, though the
proof commands provided have limited power, and require the user to be fairly
thorough.

Mizar (low automation, declarative)

Mizar (Trybulec 1978), of all present-day systems, has been used for the greatest
amount of formalized mathematics. It provides a rather low degree of automa-
tion, and no user extensibility, but the automation has been chosen judiciously
and supports a declarative proof style rather well. Proofs are structured accord-
ing to a ‘skeleton’ which lays out the basic patterns of natural deduction steps.
The intermediate parts are written in a linear sequence, indicating at all times
from which hypotheses the current line follows, but giving no information about
how it follows. Mizar is, in a sense, the only system supporting a proof style that
is declarative and that really provides user control over the proof.

PVS (high automation, procedural)

PVS (Owre, Rushby, and Shankar 1992) is designed to provide cost-effective
support for proofs in computer system verification. It is distinguished from its
predecessor EHDM particularly in providing a high level of interactive control of
the proof. At the same time, it provides a powerful suite of decision procedures,
e.g. for linear arithmetic, which can make it easy to perform proofs in certain
theories. The proof style is highly procedural, based on fairly high-level tactics
for performing backward proof in sequent calculus.



NQTHM (high automation, declarative)

The NQTHM prover (Boyer and Moore 1979) represents an interesting extreme
in two respects. First, it offers a high degree of automation, including powerful
rewriting and linear arithmetic procedures together with the automation of in-
duction proofs. It includes very few interactive features to guide the proof (the
PC-NQTHM extension tries to remedy this problem). Many traditional provers
for first order logic show similar characteristics in their respective domain.

However, the state of the art in automation falls well short (and will probably
do so for the foreseeable future) of being able to prove many theorems of real
mathematical substance without a great deal of help. As already stated, NQTHM
offers no interactive features to provide user control. However it is possible to
expand the knowledge base available to the prover by proving useful lemmas.
In practice, then, one approaches a difficult theorem step by step via a series of
carefully graded lemmas, each of which can be proved automatically given the
previous lemmas.

Therefore NQTHM’s proof style is almost exclusively declarative: one states
what one wants proved, and the only procedural information about how to prove
it consists in the series of hints given by the choice of previous lemmas, as well
as some associated tags indicating how each one is to be used (e.g. as a rewrite,
or an induction lemma). All the same, this proof style is only concerned with
‘proof’ in a fairly weak sense. Such a series of lemmas is unlike a conventional
proof; perhaps it could be said to correspond to a textbook consisting largely of
a series of graded exercises. (This would fit naturally with certain pedagogical
approaches such as the Socratic or ‘Moore’ method, which emphasize student
participation.)

LP (the middle way?)

The Larch Prover (Garland and Guttag 1991) occupies an interesting intermedi-
ate position. The level of automation provided is high in the area of equational
reasoning (the system is descended from Reve, a pure term rewriting system),
but low elsewhere. The proof style is mainly procedural, but in comparison with
say HOL or PVS, contains some nods towards a declarative style. Proofs often
proceed by explicitly quoting the current ‘proof state’ (i.e. the facts that have
been established and any corresponding context), though these are usually inter-
spersed with explicit proof methods. In fact it is possible for the proof method
in a prove command to be omitted; Larch will then use one of the currently
selected proof methods. However none of these methods are really as general as
in Mizar; the only really powerful ones are concerned with equational reasoning,
while, as with Mizar, there are no facilities for adding others.

4 Declarative and procedural proofs

To illustrate the distinction between declarative and procedural proofs, here are
a couple of examples. Both are from HOL, but the first is done in a ‘Mizar



style’ that we discuss later, and the second in a traditional procedural style
using HOL tactics. The first proof is of the Knaster-Tarski fixpoint theorem
that every monotone function on the complete lattice of subsets has a fixed
point. The details of the syntax are not important for our present purposes,
but let us note that /\ represents conjunction (‘and’) and ==> implication (‘if
. . . then . . . ’), while ! is the universal quantifier (‘for all’) and ? the existential
(‘there exists’).

!f. (!x y. x <= y /\ y <= x ==> (x = y)) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. x <= y ==> f x <= f y) /\
(!X. ?s:A. (!x. x IN X ==> s <= x) /\

(!s’. (!x. x IN X ==> s’ <= x) ==> s’ <= s))
==> ?x. f x = x

proof
let f be A->A;
assume antisymmetry: (!x y. x <= y /\ y <= x ==> (x = y)) by L;

and transitivity: (!x y z. x <= y /\ y <= z ==> x <= z) by L;
and monotonicity: (!x y. x <= y ==> f x <= f y) by L;
and greatest_lower_bound:

(!X. ?s:A. (!x. x IN X ==> s <= x) /\
(!s’. (!x. x IN X ==> s’ <= x) ==> s’ <= s));

set Y_def: Y = {b | f b <= b};
Y_thm: !b. b IN Y = f b <= b by Y_def,IN_ELIM_THM,BETA_THM;
consider a such that

glb: (!x. x IN Y ==> a <= x) /\
(!a’. (!x. x IN Y ==> a’ <= x) ==> a’ <= a)

by greatest_lower_bound;
take a;
now let b be A;

assume b_in_Y: b IN Y;
then L0: f b <= b by Y_thm;
a <= b by b_in_Y, glb;
so f a <= f b by monotonicity;
hence f a <= b by L0, transitivity;
end;

so Part1: f(a) <= a by glb;
so f(f(a)) <= f(a) by monotonicity;
so f(a) IN Y by Y_thm;
so a <= f(a) by glb;
hence thesis by Part1, antisymmetry;

end

Observe that the proof is structured to look like a textbook proof. Even
though certain lines do have a procedural reading (e.g. ‘let f be A->A’ as ‘in-
troduce a universal quantifier’), this is nicely kept implicit. Moreover each of



the main assertions is not tagged with any proof method, merely with the other
assertions from which it is deemed to follow (e.g. ‘by monotonicity’). Contrast
the following proof, from the HOL real analysis library, that the composition of
continuous functions is continuous:

let CONT_COMPOSE = prove

(‘!f g x. f contl x /\ g contl (f x) ==> (\x. g(f x)) contl x‘,

REPEAT GEN_TAC THEN REWRITE_TAC[contl; LIM; REAL_SUB_RZERO] THEN

BETA_TAC THEN DISCH_TAC THEN X_GEN_TAC ‘e:real‘ THEN DISCH_TAC THEN

FIRST_ASSUM(UNDISCH_TAC o assert is_conj o concl) THEN

DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN

DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN

DISCH_THEN(X_CHOOSE_THEN ‘d:real‘ STRIP_ASSUME_TAC) THEN

DISCH_THEN(MP_TAC o SPEC ‘d:real‘) THEN ASM_REWRITE_TAC[] THEN

DISCH_THEN(X_CHOOSE_THEN ‘c:real‘ STRIP_ASSUME_TAC) THEN

EXISTS_TAC ‘c:real‘ THEN ASM_REWRITE_TAC[] THEN

X_GEN_TAC ‘h:real‘ THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN

ASM_CASES_TAC ‘&0 < abs(f(x + h) - f(x))‘ THENL

[UNDISCH_TAC ‘&0 < abs(f(x + h) - f(x))‘ THEN

DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THEN

DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[REAL_SUB_ADD2];

UNDISCH_TAC ‘~(&0 < abs(f(x + h) - f(x)))‘ THEN

REWRITE_TAC[GSYM ABS_NZ; REAL_SUB_0] THEN DISCH_THEN SUBST1_TAC THEN

ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]]);;

Here almost all the steps are direct instructions to HOL as to how to proceed:
repeatedly strip off universal quantifiers, rewrite with the following theorems,
perform beta reduction, and so on. There is little declarative content.

5 Extensibility and full programmability

Present-day systems descended from LCF (Gordon, Milner, and Wadsworth
1979) attain an extreme of extensibility, in that a full Turing-complete program-
ming language is available to write special proof procedures. The lack of such
a language is felt to be a significant defect by many users of PVS, for example.
Even this level of power is felt by some to be insufficient. Pollack (1995) has
suggested using, instead of a conventional programming language like ML, a de-
pendently typed metalanguage of total functions. This allows one to ensure that
tactics always terminate and, in some sense, produce a correct result, merely by
virtue of their type.

The use of a full programming language brings the ‘Java problem’1 — one
wants programming power without allowing the user to do anything dangerous,
in this case produce false ‘theorems’. The LCF approach (Gordon, Milner, and

1 Many standard browsers for the World Wide Web allow programs written in Java
to be downloaded automatically and executed on the user’s machine, e.g. to perform
sophisticated animation.



Wadsworth 1979) solves this difficulty by the use of an abstract datatype of the-
orems. However it brings other problems. The availability of a Turing-complete
language requires, in the context of proof, many activities normally associated
with programming. For example, designing an interface to a prover is harder, as
it needs, in extremis, to support arbitrary programming. Finding errors in proof
scripts may require the use of a full debugger.

Given that there are, therefore, disadvantages as well as advantages in having
a full programming language, let us consider just what the uses of LCF-style
programmability are.

1. First it is used to make substantial, difficult enhancements to the proof
system. These are written only once and with a considerable expenditure of
time and effort, but then become available to other users.

2. It is also used to write small nonce programs to automate currently tiresome
problems. These tend to be ad hoc programs, thrown together quickly and
seldom re-used even by their author.

Since the programs of the first kind are so widely used, they can be considered
almost as a standard extension of the proof system. As such, they are not in such
sharp conflict with the idea of a declarative proof style, especially when some of
the most useful proof procedures allow one to replace an explicit proof with a
casual indication such as ‘by arithmetic’. However the second kind of program
is more problematical. We speculate that the need for such programs results
partly from a bad choice of existing primitives. (For example in HOL there are
poor facilities for manipulating assumptions.) Were such problems remedied, we
imagine there would be much less use of small ad hoc programs. They may be
useful, though, in some verification proofs, e.g. performing what is effectively
symbolic execution by proof.

The Coq system is a good illustration of an intermediate position consis-
tent with the above remarks. It provides a fixed proof language for everyday
use, whereas many LCF-style systems present the user with ML, the actual im-
plementation language. Coq does however permit new proof commands to be
written in ML à la LCF, and linked to names for new proof commands. Since
the procedure is not completely trivial, this tends to discourage the development
of small nonce programs, which as we have said, may be a good thing. However
more experience is necessary to find out whether this is still the case for ver-
ification proofs. We are not sure whether most of those unhappy with PVS’s
primitive proof language are concerned about large extensions or small nonce
programs.

6 Assessment of proof styles

How are we to assess the strengths and weaknesses of different proof styles? We
will discuss several important considerations.



Writability

How easy is it to make a machine accept a valid proof? A typical problem with
machine-checkable proofs is that they are long compared with their informal
counterparts. de Bruijn (1970) suggests that the ratio tends to be more or less
constant, but this was based on work translating a single, highly meticulous text-
book (Landau 1930) into AUTOMATH. More recently Paulson and Gra̧bczewski
(1996) report much more variable results, even within a single textbook. Signif-
icant though proof size is, it is not a direct indicator of how difficult a proof is
to construct. Probably at least as important is how the structure of the proof
script compares with (or aptly formalizes) that of an informal proof.

Since there often occur in proofs repeated patterns and ‘clichés’, it seems
that extensibility is an important issue for writability (Pollack 1995). Just how
important this is depends on the domain of application.

Readability

Actually, once a proof has been accepted by a machine, then there is a tendency,
unless the proof has a particular wit or charm, rare in verification applications,
to accept the theorem as true and forget about the proof. (At least if the proof
checker is accepted as trustworthy.) Similarly, when a program appears to work,
one is apt to treat it as a black box and forget its internal structure. But these
tendencies are dangerous, for the same reason, and we shall discuss this in the
next section.

Whatever the form of the proof, it is perfectly possible for the machine to
produce a transcript of it in some form considered more suitable for human
consumption. NQTHM includes facilities for producing a readable summary of
the proof it finds. An early investigation of providing a readable form of HOL
proofs is given by Cohn (1990); a prototype system for producing text from Coq
proofs is described by Coscoy, Kahn, and Théry (1995), while the PVS prover
is capable of generating summaries of important parts of its proofs.

Alternatively, users can intersperse formal proofs with a series of informal
comments designed for humans, just as programmers can for their programs.
One of the standard systems for ‘literate programming’ can be used to separate
out the threads in a single document. However there are obvious attractions in
making the formal proof submitted to the machine reasonably pleasant for people
to read. Then the same document can serve as input to the computer and as a
record of the proof for people; that is, we have ‘self documenting’ proofs. This
document-centred view of computing is standard in, for example, WYSIWYG
word processing. It also provides a link to the low-tech analogue of writing a
proof with pen and paper.

What makes a proof pleasant to read is of course highly subjective. An ob-
vious target is to make the proofs look similar to those found in mathematics
texts. However this may not be suitable for all applications, e.g. in verification
proofs involving special proof algorithms and very large terms. It is sometimes



claimed that proofs are better presented using new techniques such as hierarchi-
cal structuring (Lamport 1993) or structured calculational proof (Back, Grundy,
and von Wright 1996).2 Moreover, restricting ourselves to a traditional textual
display might be considered anachronistic, with new possibilities opened up by
hypertext (Grundy 1996). We will not enter into these questions here, but con-
tent ourselves with noting that there are differences in readability on which all
can agree.

Maintainability

Writing a machine-checkable proof is generally a lot of work, and one wants to
be able to re-use as much as possible of this work in a related situation. For
example, in verification work, the system specification or implementation may
change slightly — how easy is it to modify the proof for the new situation?
This has been considered by Curzon (1995). Again, suppose the infrastructure
of the prover is enhanced, or that the foundational system supported is changed;
similar questions arise. These problems are quite similar to those that come up
when modifying existing software for a different situation, and give rise to many
of the same pitfalls.

Readability is always helpful for maintainability, if only in providing orienta-
tion when a proof does break. Moreover, note that in verification, maintainability
can be an essential component even of writing the proof in the first place. Com-
monly, one finds errors in one’s intended specification or implementation, or at
least in some lemmas or invariants, necessitating a rewrite of significant parts of
the proof. This means that improvements in maintainability often have conse-
quential benefits for writability. This might apply to proofs in pure mathematics
too if the theorem prover were being used as an aid to proof discovery. However
that is seldom the case at present; one usually starts with a clear and correct
informal proof.

Efficiency of processing

We have focused on the difficulty of reading and writing the proof for humans.
But what of the difficulty for the machine in checking a proof script? This can also
cause inconvenience for people. One measure is the computational demand made,
which translates into user waiting time. Another is implementation difficulty.

In the final analysis, this factor is decisive, since if a proof cannot feasibly be
processed in a reasonable time, or a proof checker cannot reasonably be written,
the whole business of mechanized reasoning grinds to a halt. However within
reason, one can always accept a certain inefficiency, given that computers are
still getting faster all the time. A moderate emphasis on human considerations
is likely to be vindicated by technological progress.

2 Actually, Lamport even suggests that hierarchical structuring gives a better way to
write proofs in the first place.



Other factors

There are other properties that certain people may consider important. For
example, it is often desirable to support the basic theorem prover with a suite
of additional tools, including a convenient interface. The Mizar system has tools
to find unnecessary assumptions and unused proof steps. The style of proof can
have a significant impact on how easy it is to provide such tools.

For constructivists interested in extracting programs or answers from proofs,
the level of user control afforded over the formal proof object eventually produced
(or implicitly produced) may be highly significant. We will have little to say
about this, since our own experience is in classical logic. However we should
note that typically it is only a tiny part of a proof that is really interesting,
even to a constructivist. For example, it has often been pointed out, e.g. by
Kreisel (1985), that there is normally little point in constructivizing the proofs
of universal lemmas at all, let alone in optimizing the proof structure.

7 Procedural versus declarative

What can we conclude about the merits of a procedural or declarative style from
the experience of present-day systems? First let us say that, since our experience
is necessarily limited, much of the following is anecdotal. In particular, we have
more experience with procedural proof styles than with declarative ones, which
gives us a sharpened awareness of the potential and the defects of the procedural.
Moreover, it’s worth noting that other factors can influence the suitability of a
particular proof style — in particular the logical system supported. For example,
type theory is often felt to be easier to mechanize than set theory, in that many
proof obligations are automatable. However it may be that in a declarative style,
or with a higher level of automation, this difference is much less significant. For
example, Paulson (1990) was fairly negative about the suitability of set theory for
mechanization, but in recent publications he is much more positive — perhaps
the change can be attributed to the superior automation now available in the
Isabelle system.

Writability

Tastes differ on what is easier to write, and once one has got used to a particular
style, the taste tends to stick. We can at least say that declarative styles are eas-
ier for the beginner, simply because they tend to require a smaller ‘vocabulary’.
Even in highly automated theorem provers such as PVS, one needs to master a
fairly large number of proof commands in order to avoid getting stuck. In HOL,
with a panoply of low-level proof procedures together with a full (and probably
unfamiliar) programming language, the situation is worse. In a declarative sys-
tem, things are much easier; one just needs a little background knowledge about
the general format of proofs, and thereafter merely has to make the proof script
simple enough to be understood by the machine.



In the case of NQTHM, one can imagine that it is very easy to get started,
since one just needs to type in the theorems to be proved. Of course, one needs to
develop strong intuitions about the power of the prover in order to make effective
use of the ‘series of graded lemmas’ approach. Sometimes it will be frustrating
that there are no ways to direct the proof procedurally, and additions to NQTHM
have been developed to meet these problems. Nevertheless it seems that with
such highly declarative systems the learning curve is not as steep at the very
beginning as it is with, say, HOL. At worst, one can proceed in such tiny steps
that the automated prover is certain to plug the gaps.

We believe that in general, declarative proofs are closer to those found in
mathematics texts. These normally have very little procedural content, and the
reader is expected to plug ‘obvious’ gaps. (Most readers will have had the expe-
rience of finding certain gaps, thought by the author to be obvious, difficult or
even impossible to fill.) A notable exception is the realm of classical geometry,
where proofs often proceed via a series of constructions (drop a perpendicular,
produce this line, . . . ).

For verification proofs, a procedural style is often more appealing. In particu-
lar one can develop customized proof commands to deal with various situations,
such as the symbolic execution of the system being modelled. These can also be
directly parametrized, e.g. by the size of a machine word, whereas in a declarative
style, this is difficult, usually necessitating manual editing.

Readability

We claim as the most striking advantage of declarative proofs their greater read-
ability. In order to construct the proof state partway through a procedural script,
one needs in general to execute all the previous steps. This is analogous to replay-
ing a chess game in one’s head given just the series of moves. Few enough people
can even do that — how much more difficult to anticipate the result of running
what are, in the final analysis, arbitrary programs on a fast computer. Certainly,
each step is deterministic, and many of them are fairly straightforward. However
proof commands often make apparently arbitrary choices, e.g. over the order
in which to execute non-confluent rewrites, or which conditional expression to
case-split over. (HOL’s RES TAC which performs undirected forward chaining,
and PVS’s inst? which instantiates quantified variables by finding a match in
the rest of the sequent, are well known examples in the respective user commu-
nities.) And in general they can do so much computation that it is impossible in
practice to visualize the result without actually running the proof script.

One possibility is to annotate the proof with intermediate steps, just as, to
continue our analogy, one typically includes a few diagrams in the text of a chess
game. However this gives a rather artificial separation between the parts of the
proof intended for human consumption and those parts for the machine. Really,
this is just a form of commenting, and we have already discussed this in general
terms.

The above assessment was biased towards ‘clean’ proofs with a fairly abstract
structure, e.g. those typically found in pure mathematics. The assessment may



need to be reversed, however, for many verification proofs, where the terms in-
volved are very large. Quoting such terms explicitly may be out of the question,
and spotting the modest differences between nearby terms may be quite imprac-
tical, whereas a procedural style might help to focus the mind on which parts
are being manipulated.

Even if one still wants a separate document giving a (more) palatable tran-
script of the proof, it seems that a declarative base document is a better starting
point. One simple idea is simply to have the machine fill in some of the gaps that
it can justify as ‘obvious’, merely making the user’s proof outline more explicit
while preserving its overall structure.

Maintainability

This is a thorny problem, and we are not yet in a position to make a clear assess-
ment of whether procedural or declarative proofs are more maintainable, though
anecdotal evidence tends to support declarative proofs. There are two aspects
to maintainability: how likely proofs are to break (under various perturbations
of the system and/or the problem) and how easy they are to fix once broken.
For the latter, it seems clear that declarative proofs are better, because of the
better readability we have already drawn attention to.

We believe that declarative proofs are certainly stabler under changes to
the prover. In the extreme case of full automation, then provided the prover’s
power increases monotonically, proofs will never break. By contrast, in proce-
dural scripts, quite small changes to a single proof command can be very trou-
blesome, since these changes can propagate to the proof state following each
instance of it, causing the rest of the script to become inappropriate. Fixing this
then becomes a tedious debugging exercise.

For stability under changes to the problem, the situation is not quite so
clear cut. In some sense, declarative proofs are more robust, since very often the
proof is insensitive to small changes, such as reversing the order of disjuncts in a
theorem. By contrast, this may dramatically alter the procedural script required.
Against that, declarative proofs rely more heavily on explicit quotation of terms,
and so can require alteration if the underlying terms change. However the fact
that this information is explicit rather than (in the case of procedural proofs)
implicit is arguably a strength rather than a weakness, since the changes can
be effected by standard editing operations on the text. Most existing experience
(Chen 1992; Gonthier 1996) supports the declarative style as yielding proofs that
are easier to maintain.

Efficiency of processing

Here procedural proofs are definitely better. They instruct the computer pre-
cisely how to construct the proof, and cut out most search. Of course the ba-
sic procedural components may themselves indulge in a substantial amount of
search, but at least they do not have to construct the basic structure of the



given proof. By contract, search procedures often come to the fore in a declara-
tive style.

One possibility to improve the efficiency of automatic proof procedures, what-
ever the proof style, is to process the proof into some intermediate form (perhaps
not human-readable) containing more explicit information about the proof. This
can then cut out a large part of the search when the proof is re-run. Of course it
needs to be ‘recompiled’ if the original proof changes, but nevertheless it seems
quite promising. Such an idea has been tried in PVS.

Tool support

Many of the properties making declarative proofs more readable also make them
more suitable for support with other tools. For example, one often wants an
interface to allow one to navigate about the proof freely. This requires the es-
tablishment of context at any given point in the script. Though not quite as
difficult for the computer as for the user, this is still in general tedious and time-
consuming, since it requires the intermediate proof steps to be executed. More-
over this has some negative consequences for modularity, because these support
tools then become tied to the prover itself as an indispensable subroutine. Simi-
lar problems would apply if one tried to implement in a procedural system some
of the supporting tools provided with Mizar. For example, to detect redundant
hypotheses, one would need to re-execute steps in a variety of slightly modi-
fied situations. With a declarative style, one can even support computer-aided
proof construction, where the computer makes explicit some of its automatic
reasoning, or helps to lay out the proof like an advanced structure editor (Syme
1997a).

Style of working

Declarative proof scripts give a wider choice over how work is processed, again
because of the relative ease of establishing context. It becomes a real possibility to
process small parts of a large proof independently, just as one typically compiles
small parts of a large program separately. This is more difficult in a procedural
system, which therefore tends to impose a rather rigid structure on the order in
which proofs are tackled. For example, to get round this problem in HOL, one
often temporarily asserts lemmas using the loophole mk thm in order to tackle
the interesting parts first. Inevitably, mistakes creep in and may only be detected
in a final ‘sanity check’. With declarative proof scripts, the work can be dealt
with in any order in a freer fashion.

Declarative styles also make a batch style of working more convenient (and
this is the style supported by Mizar). Error recovery is easier, since even if a
given proof step fails, the proof context can be recovered and useful errors given
for the remainder of the script. Though interactive proof development is often
attractive, particularly when feeling one’s way towards a proof in an exploratory
fashion, it is sometimes more convenient to write a proof sketch, submit it for
checking, then refine it according to the error messages received. In particular,



this is the standard model for programming language compilation, as well as
TEX-style word processing, and so has a certain familiarity for many people.
This could serve to reduce the ‘culture shock’ felt by many people when tackling
mechanized reasoning systems for the first time.

What about automation?

It could be argued that the level of automation itself has as much importance
as a declarative style for each of the above factors. For example, a high level
of automation often has direct benefits for maintainability. This is true at least
when the automated steps actually solve goals, but perhaps not when the highly
automated parts are intermediate steps. Certainly, anecdotal evidence from users
of Isabelle and PVS supports the view that, as users rely more heavily on pow-
erful automation, their proofs become more robust. Moreover, proofs certainly
become easier to write. However they can become hard to read if the prover
is capable of making jumps of baffling complexity. For example, a tendency to
insert extra rewrites into the background automatically may have considerable
benefits for those writing a proof, at great detriment to its eventual readability.
A balance needs to be struck between too much power and too little, the diffi-
culty being that the notion of ‘obviousness’ differs fundamentally for people and
for machines (Rudnicki 1987).

Conclusions

We have pointed out many advantages of a declarative style of working. Indeed,
we believe this idea has been unduly neglected by the main stream of research
in mechanized reasoning. (We exclude NQTHM, which belongs solidly to this
main stream, because it hardly considers proofs in the conventional sense.) At
the same time, the declarative style is not without its disadvantages. Intuitively
one feels that many large verification proofs would be much easier in PVS or
HOL than in a more declarative system such as Mizar. Roughly speaking, a
declarative proof style is good for pure, abstract proofs, whereas a procedural
one is good for big, ugly, concrete proofs. Occasionally this assessment may need
reversing. For example Gonthier (1996) presents Larch proofs of a distributed
garbage collection algorithm, and the proof scripts have a strongly declarative
flavour. More recently, Syme (1997b) has proved type soundness for a subset of
Java using a declarative system called DECLARE (Syme 1997a). On the other side
of the coin, nowadays a number of mathematical results are established with
the aid of computer checking (Lam 1990); it seems that a procedural proof style
offers more possibilities of absorbing these results into mechanized reasoning.

8 The best of both worlds?

Since the merits of the two styles are not clear cut, the ideal is perhaps to have
a free choice of both. We have experimented with supporting Mizar-style proofs



in the HOL system (Harrison 1996). The objective is to combine the strengths of
HOL (reliability, extensibility and interactivity) with those of Mizar (readability
and declarative style).

True to our remarks on the subjectivity of the declarative/procedural divide,
the method is to find a procedural reading for each Mizar construct within
the HOL tactic mechanism. To bridge the ‘obvious’ gaps, the user can install
arbitrary automated provers; a default prover is provided which is capable of
basic first order reasoning and a few other limited functions. At the same time,
a degree of procedural content can be injected into the Mizar/HOL proof scripts
by explicitly indicating a particular automated prover, e.g. ‘by rewriting with
X’ or ‘by arithmetic with Y’. At the same time, conventional HOL tactics can
be interspersed arbitrarily with Mizar constructs, even within a single proof.

This mixture of styles seems especially suitable for our own current research
interest of verifying floating point algorithms, mainly for the transcendental
functions. Such proofs often involve a mix of abstract pure mathematics and
specialized procedures used to extract verification conditions, e.g. proving that
loop invariants are maintained. To arrive at the right proof style, more experience
of real proofs in a range of areas is the most valuable guide, together with a real
willingness for system designers to learn from each other.

Related work

Chen (1992) contrasts a declarative and procedural style of proof (exemplified
for him by Ontic and Nuprl respectively) and the desirability of combining the
best features of each. Prasetya (1993) points out how the standard HOL proof
styles differ from those in textbooks and discusses a prototype system to improve
matters.

Acknowledgements

The importance of the declarative style of proof was brought home to me by An-
drzej Trybulec and the success of his Mizar system. Many of the issues discussed
in this paper were inspired by conversations with Donald Syme. In particular
I owe to him many observations about the difficulty of establishing context in
procedural proof scripts, and the issues connected with having a full program-
ming language available. I’m also grateful to David Basin and Paul Jackson for
some pointers to relevant literature. Richard Boulton, Mike Gordon, Michael
Norrish and Mark Staples offered some valuable comments on this work, and in
particular on the slippery distinction between procedural and declarative, while
Konrad Slind’s comments on the paper have improved several key parts, as have
the comments of anonymous referees. Thanks also to Natarajan Shankar who
pointed out that I originally wrote ‘least upper bound’ where I meant ‘greatest
lower bound’ in the Mizar example. Many of those present at the TYPES’96
workshop provided valuable suggestions and advice; thanks to Christine Paulin-
Mohring and the other organizers for giving me the opportunity to present these



ideas. The work described was funded by the European Commission under the
HCM scheme, and by the UK Engineering and Physical Sciences Research Coun-
cil.

Glossary of systems

Here we will give some starting points for finding out more about the theorem
proving systems mentioned in the text.

AUTOMATH The system is no longer used, but there is an extensive collection
of papers (Nederpelt, Geuvers, and de Vrijer 1994) describing the system, its
applications, and the underlying philosophy.

Coq The Coq system and its documentation can be found via the Web page
http://pauillac.inria.fr/coq/systeme_coq-eng.html.

HOL HOL is described in a book by Gordon and Melham (1993), and the
two versions of the system, as well as documentation and numerous papers, are
available from http://www.cl.cam.ac.uk/Research/HVG/HOL/index.html. Of
particular note is an extensive bibliography of HOL-related papers available as
http://www.dcs.glasgow.ac.uk/~tfm/hol-bib.html.

Isabelle Isabelle is described in a book by Paulson (1994), and there is a Web
page for the system: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

Larch The Larch Prover is described by Garland and Guttag (1991), and the
page http://larch-www.lcs.mit.edu:8001/larch/LP/overview.html has ad-
ditional information.

LCF The original Edinburgh LCF project is described in a book by Gordon,
Milner, and Wadsworth (1979), and the later Cambridge version by Paulson
(1987). As far as we know, the system is no longer used, but Coq, HOL, Isabelle
and Nuprl are all descended from it and follow the same general approach to
proof.

Mizar A good overview of Mizar is given by Rudnicki (1992). There are some
older papers describing the system by Trybulec (1978) and by Trybulec and Blair
(1985). The system manuals are a good guide, but are mostly out of print. How-
ever the entire set of the Journal of Formalized Mathematics is devoted to Mizar
formalizations, and this is now online at http://mizar.uw.bialystok.pl/JFM/.
The Web page http://web.cs.ualberta.ca:80/~piotr/Mizar/ is a good start-
ing point.



Nuprl An older version of Nuprl is described in a book (Constable 1986); the
current version and supporting documentation and bibliographic information is
online at http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html.

Ontic Ontic seems not to be widely used now, but is described by McAllester
(1989).

NQTHM NQTHM is described in the classic book by Boyer and Moore (1979);
http://www.cs.utexas.edu/users/moore/best-ideas/nqthm/index.html is
a short description of the system’s history including a link to the FTP distri-
bution. A newer prover called ACL2 supersedes NQTHM in most important
respects, and http://www.cs.utexas.edu/users/moore/acl2/index.html in-
cludes the system, documentation and examples.

PVS PVS is described by Owre, Rushby, and Shankar (1992). The system and
associated documentation and bibliographic data is available via the Web page
http://www.csl.sri.com/pvs.html.

References

Back, R., Grundy, J., and von Wright, J. (1996) Structured calculational proof.
Technical Report 65, Turku Centre for Computer Science (TUCS), Lem-
minkäisenkatu 14 A, FIN-20520 Turku, Finland. Also available as Technical
Report TR-CS-96-09 from the Australian National University.

Boyer, R. S. and Moore, J S. (1979) A Computational Logic. ACM Monograph
Series. Academic Press.

de Bruijn, N. G. (1970) The mathematical language AUTOMATH, its usage
and some of its extensions. In Laudet, M., Lacombe, D., Nolin, L., and
Schützenberger, M. (eds.), Symposium on Automatic Demonstration, Volume
125 of Lecture Notes in Mathematics, pp. 29–61. Springer-Verlag.

Chen, W. (1992) Tactic-based theorem proving and knowledge-based forward
chaining. See Kapur (1992), pp. 552–566.

Cohn, A. (1990) Proof accounts in HOL (incomplete draft). Available on the
Web as http://www.cl.cam.ac.uk/users/mjcg/AccountsPaper.ps.gz.

Constable, R. (1986) Implementing Mathematics with The Nuprl Proof Develop-
ment System. Prentice-Hall.

Constable, R. L., Knoblock, T. B., and Bates, J. L. (1985) Writing programs
that construct proofs. Journal of Automated Reasoning , 1, 285–326.

Coscoy, Y., Kahn, G., and Théry, L. (1995) Extracting text from proofs. In
Dezani-Ciancaglini, M. and Plotkin, G. (eds.), Second International Confer-
ence on Typed Lambda Calculi and Applications, TLCA’95, Volume 902 of
Lecture Notes in Computer Science, Edinburgh, pp. 109–123. Springer-Verlag.

Curzon, P. (1995) Tracking design changes with formal machine-checked proof.
The Computer Journal , 38, 91–100.



Garland, S. J. and Guttag, J. V. (1991) A guide to LP, the Larch Prover. Tech-
nical report, MIT Laboratory for Computer Science.

Gonthier, G. (1996) Verifying the safety of a practical concurrent garbage col-
lector. In Alur, R. and Henzinger, T. A. (eds.), Proceedings of the 8th inter-
national conference on computer aided verification (CAV’96), Volume 1102
of Lecture Notes in Computer Science, New Brunswick, NJ, pp. 462–465.
Springer-Verlag.

Gordon, M. J. C. and Melham, T. F. (1993) Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press.

Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979) Edinburgh LCF: A
Mechanised Logic of Computation, Volume 78 of Lecture Notes in Computer
Science. Springer-Verlag.

Grundy, J. (1996) A browsable format for proof presentation. In Gefwert, C.,
Orponen, P., and Seppänen, J. (eds.), Proceedings of the Finnish Artificial
Intelligence Society Symposium: Logic, Mathematics and the Computer, Vol-
ume 14 of Suomen Tekoälyseuran julkaisuja, pp. 171–178. Finnish Artificial
Intelligence Society.

Guard, J. R., Oglesby, F. C., Bennett, J. H., and Settle, L. G. (1969) Semi-
automated mathematics. Journal of the ACM , 16, 49–62.

Harrison, J. (1996) A Mizar mode for HOL. In von Wright, J., Grundy, J., and
Harrison, J. (eds.), Theorem Proving in Higher Order Logics: 9th International
Conference, TPHOLs’96, Volume 1125 of Lecture Notes in Computer Science,
Turku, Finland, pp. 203–220. Springer-Verlag.

van Bentham Jutting, L. S. (1977) Checking Landau’s “Grundlagen” in the AU-
TOMATH System. Ph. D. thesis, Eindhoven University of Technology. Useful
summary in Nederpelt, Geuvers, and de Vrijer (1994), pp. 701–732.

Kapur, D. (ed.) (1992) 11th International Conference on Automated Deduction,
Volume 607 of Lecture Notes in Computer Science, Saratoga, NY. Springer-
Verlag.

Kreisel, G. (1985) Proof theory and the synthesis of programs: Potential and
limitations. In Buchberger, B. (ed.), EUROCAL ’85: European Conference
on Computer Algebra, Volume 203 of Lecture Notes in Computer Science, pp.
136–150. Springer-Verlag.

Lam, C. W. H. (1990) How reliable is a computer-based proof? The Mathemat-
ical Intelligencer , 12, 8–12.

Lamport, L. (1993) How to write a proof. Research Report 94, DEC Systems
Research Center, 130 Lytton Avenue, Palo Alto, California 94301, USA.

Landau, E. (1930) Grundlagen der Analysis. Leipzig. English translation by F.
Steinhardt: ‘Foundations of analysis: the arithmetic of whole, rational, irra-
tional, and complex numbers. A supplement to textbooks on the differential
and integral calculus’, published by Chelsea; 3rd edition 1966.

McAllester, D. A. (1989) ONTIC: A Knowledge Representation System for
Mathematics. MIT Press.

Nederpelt, R. P., Geuvers, J. H., and de Vrijer, R. C. (eds.) (1994) Selected Pa-



pers on Automath, Volume 133 of Studies in Logic and the Foundations of
Mathematics. North-Holland.

Owre, S., Rushby, J. M., and Shankar, N. (1992) PVS: A prototype verification
system. See Kapur (1992), pp. 748–752.

Paulson, L. C. (1987) Logic and computation: interactive proof with Cambridge
LCF, Volume 2 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press.

Paulson, L. C. (1990) Isabelle: The next 700 theorem provers. In Odifreddi,
P. G. (ed.), Logic and Computer Science, Volume 31 of APIC Studies in Data
Processing, pp. 361–386. Academic Press.

Paulson, L. C. (1994) Isabelle: a generic theorem prover, Volume 828 of Lecture
Notes in Computer Science. Springer-Verlag. With contributions by Tobias
Nipkow.

Paulson, L. C. and Gra̧bczewski, K. (1996) Mechanizing set theory: Cardinal
arithmetic and the axiom of choice. Journal of Automated Reasoning , 17,
291–323.

Pollack, R. (1995) On extensibility of proof checkers. In Dybjer, P., Nordström,
B., and Smith, J. (eds.), Types for Proofs and Programs: selected papers from
TYPES’94, Volume 996 of Lecture Notes in Computer Science, B̊astad, pp.
140–161. Springer-Verlag.

Prasetya, I. S. W. B. (1993) On the style of mechanical proving. In Joyce, J. J.
and Seger, C. (eds.), Proceedings of the 1993 International Workshop on the
HOL theorem proving system and its applications, Volume 780 of Lecture Notes
in Computer Science, UBC, Vancouver, Canada, pp. 475–488. Springer-Verlag.

Robinson, J. A. (1994) Logic, computers, Turing and von Neumann. In Fu-
rukawa, K., Michie, D., and Muggleton, S. (eds.), Machine Intelligence 13,
pp. 1–35. Clarendon Press.

Rudnicki, P. (1987) Obvious inferences. Journal of Automated Reasoning , 3,
383–393.

Rudnicki, P. (1992) An overview of the MIZAR project. Available by anonymous
FTP from menaik.cs.ualberta.ca as pub/Mizar/Mizar Over.tar.Z.

Syme, D. (1997a) DECLARE: A prototype declarative proof system for higher
order logic. Technical Report 416, University of Cambridge Computer Labo-
ratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK.

Syme, D. (1997b) Proving Java type soundness. Technical Report 427, University
of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,
Cambridge, CB2 3QG, UK.

Trybulec, A. (1978) The Mizar-QC/6000 logic information language. ALLC
Bulletin (Association for Literary and Linguistic Computing), 6, 136–140.

Trybulec, A. and Blair, H. A. (1985) Computer aided reasoning. In Parikh, R.
(ed.), Logics of Programs, Volume 193 of Lecture Notes in Computer Science,
Brooklyn, pp. 406–412. Springer-Verlag.

Trybulec, Z. and Świȩczkowska, H. (1991-1992) The language of mathematical
texts. Studies in Logic, Grammar and Rhetoric, Bia lystok , 10/11, 103–124.

This article was typeset using the LATEX macro package with the LLNCS2E class.


