
Formal verification of square root algorithms

John Harrison
Intel Corporation, JF1-13
2111 NE 25th Avenue
Hillsboro, OR 97124, USA

2 October 2002

Abstract. We discuss the formal verification of some low-level mathematical soft-
ware for the Intel Itanium architecture. A number of important algorithms have
been proven correct using the HOL Light theorem prover. After briefly surveying
some of our formal verification work, we discuss in more detail the verification of a
square root algorithm, which helps to illustrate why some features of HOL Light, in
particular programmability, make it especially suitable for these applications.

1. Overview

The Intel Itanium architecture is a new 64-bit architecture jointly
developed by Intel and Hewlett-Packard, implemented in the Itanium
processor family (IPF). Among the software supplied by Intel to sup-
port IPF processors are some optimized mathematical functions to
supplement or replace less efficient generic libraries. Naturally, the
correctness of the algorithms used in such software is always a major
concern. This is particularly so for division, square root and certain
transcendental function kernels, which are intimately tied to the ba-
sic architecture. First, in IA-32 compatibility mode, these algorithms
are used by hardware instructions like fptan and fdiv. And while in
“native” mode, division and square root are implemented in software,
typical users are likely to see them as part of the basic architecture.

The formal verification of some of the division algorithms is de-
scribed by Harrison (2000b), and a representative verification of a
transcendental function by Harrison (2000a). In this paper we complete
the picture by considering a square root algorithm. Division, transcen-
dental functions and square roots all have quite distinctive features and
their formal verifications differ widely from each other. The present
proofs have a number of interesting features, and show how important
some theorem prover features — in particular programmability — are.

The formal verifications are conducted using the freely available1

HOL Light prover (Harrison, 1996). HOL Light is a version of HOL
(Gordon and Melham, 1993), itself a descendent of Edinburgh LCF

1 See http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd.tex; 8/09/2005; 10:46; p.1



2 John Harrison

(Gordon et al., 1979) which first defined the ‘LCF approach’ that these
systems take to formal proof.

LCF provers like HOL explicitly generate proofs in terms of ex-
tremely low-level primitive inferences, in order to provide a high level
of assurance that the proofs are valid. HOL’s foundational approach to
proof is maintained in the formalization of the underlying mathemat-
ics including natural number arithmetic and real analysis (Harrison,
1998). Rather than being axiomatized, these structures are constructed
starting just with a few basic set-theoretic axioms such as the Axiom of
Infinity. Thus, formalization of a proof in HOL achieves a high standard
of formal precision, making errors much less likely than in a hand proof
or one with more ad hoc machine support.

HOL Light allows the user to implement higher-level logical infer-
ence rules by programming them in the interaction and implementation
language CAML Light (Cousineau and Mauny, 1998), using an abstract
type of theorems to protect against arbitrary inferences. Thus, proofs
can be partially automated, so although in some respects the formaliza-
tion of a proof in HOL is painfully exacting, it can sometimes be easier
than by hand because tedious parts can be dealt with automatically.

HOL notation is generally close to traditional logical and mathemat-
ical notation. However, the type system distinguishes natural numbers
and real numbers, and maps between them by &; hence &2 is the
real number 2. The multiplicative inverse x−1 is written inv(x), the
absolute value |x| as abs(x) and the power xn as x pow n.

2. Square root algorithms based on fma

The centerpiece of the Intel Itanium floating-point architecture is
the fma (floating-point multiply-add or fused multiply-accumulate) fam-
ily of instructions. Given three floating-point numbers x, y and z, these
can compute x · y ± z as an atomic operation, with the final result
rounded as usual according to the IEEE (1985) Standard 754 for Binary
Floating-Point Arithmetic, but without intermediate rounding of the
product x · y. Of course, one can always obtain the usual addition and
multiplication operations as the special cases x · 1 + y and x · y + 0.

The fma has many applications in typical floating-point codes, where
it can often improve accuracy and/or performance. In particular (Mark-
stein, 1990) correctly rounded quotients and square roots can be com-
puted by fairly short sequences of fmas, obviating the need for dedicated
instructions. Besides enabling compilers and assembly language pro-
grammers to make special optimizations, deferring these operations
to software often yields much higher throughput than with typical

fmsd.tex; 8/09/2005; 10:46; p.2



Formal verification of square root algorithms 3

hardware implementations. Moreover, the floating-point unit becomes
simpler and easier to optimize because minimal hardware need be dedi-
cated to these relatively infrequent operations, and scheduling does not
have to cope with their exceptionally high latency.

Itanium architecture compilers for high-level languages will typi-
cally translate division or square root operations into appropriate se-
quences of machine instructions. Which sequence is used depends (i)
on the required precision and (ii) whether one wishes to minimize
latency or maximize throughput. For concreteness, we will focus on
a particular algorithm for calculating square roots in double-extended
precision (64-bit precision and 15-bit exponent field):

1. y0 = frsqrta(a)
2. H0 = 1

2y0 S0 = ay0

3. d0 = 1
2 − S0H0

4. H1 = H0 + d0H0 S1 = S0 + d0S0

5. d1 = 1
2 − S1H1

6. H2 = H1 + d1H1 S2 = S1 + d1S1

7. d2 = 1
2 − S2H2 e2 = a− S2S2

8. H3 = H2 + d2H2 S3 = S2 + e2H2

9. e3 = a− S3S3

10. S = S3 + e3H3

All operations but the last are done using the register floating-point
format with rounding to nearest and with all exceptions disabled. (This
format provides the same 64-bit precision as the target format but has
a greater exponent range, allowing us to avoid intermediate overflow
or underflow.) The final operation is done in double-extended precision
using whatever rounding mode is currently selected by the user.

This algorithm is a non-trivial example in two senses. Since it is
designed for the maximum precision supported in hardware (64 bits),
greater precision cannot be exploited in intermediate calculations and
so a very careful analysis is necessary to ensure correct rounding. More-
over, it is hardly feasible to test such an algorithm exhaustively, even if
an accurate and fast reference were available, since there are about 280

possible inputs. (By contrast, one could certainly verify single-precision
and conceivably verify double precision by exhaustive or quasi-exhaustive
methods.)

3. Algorithm verification

It’s useful to divide the algorithm into three parts, and our discussion
of the correctness proof will follow this separation:

fmsd.tex; 8/09/2005; 10:46; p.3



4 John Harrison

1 Form2 an initial approximation y0 = 1√
a
(1 + ε) with |ε| ≤ 2−8.8.

2–8 Convert this to approximations H0 ≈ 1
2
√

a
and S0 ≈

√
a, then

successively refine these to much better approximations H3 and S3

using Goldschmidt (1964) iteration (a Newton-Raphson variant).

9–10 Use these accurate approximations to produce the square root S
correctly rounded according to the current rounding mode, setting
IEEE flags or triggering exceptions as appropriate.

3.1. Initial approximation

The frsrta instruction makes a number of initial checks for special
cases that are dealt with separately, and if necessary normalizes the
input number. It then uses a simple table lookup to provide the ap-
proximation. The algorithm and table used are precisely specified in the
Itanium instruction set architecture. The formal verification is essen-
tially some routine algebraic manipulations for exponent scaling, then
a 256-way case split followed by numerical calculation. The following
HOL theorem concerns the correctness of the core table lookup:

|- normal a ∧ &0 <= Val a
=⇒ abs(Val(frsqrta a) / inv(sqrt(Val a)) - &1)

< &303 / &138050

3.2. Refinement

Each fma operation will incur a rounding error, but we can easily find
a mathematically convenient (though by no means optimally sharp)
bound for the relative error induced by rounding. The key principle is
the ‘1 + e’ property, which states that the rounded result involves only
a small relative perturbation to the exact result. In HOL the formal
statement is as follows:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)
=⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧

(round fmt rc x = x * (&1 + e))

2 Using frsqrta, the only Itanium instruction specially intended to support
square root. In the present discussion we abstract somewhat from the actual machine
instruction, and ignore exceptional cases like a = 0 where it takes special action.

fmsd.tex; 8/09/2005; 10:46; p.4



Formal verification of square root algorithms 5

The bound on e depends on the precision of the floating-point format
and the rounding mode; for round-to-nearest mode, mu rc is 1/2. The
theorem has two side conditions, one being a nontriviality hypothesis,
and the other an assertion that the value x does not lose precision. We
will not show the formal definition (Harrison, 1999) here, since it is
rather complicated. However, a simple and usually adequate sufficient
condition is that the exact result lies in the normal range (or is zero).

Actually applying this theorem, and then bounding the various error
terms, would be quite tedious if done by hand. We have programmed
some special derived rules in HOL to help us. First, these automat-
ically bound absolute magnitudes of quantities, essentially by using
the triangle rule |x + y| ≤ |x| + |y|. This usually allows us to show
that no overflow occurs. However, to apply the 1 + e theorem, we also
need to exclude underflow, and so must establish minimum (nonzero)
absolute magnitudes. This is also largely done automatically by HOL,
repeatedly using theorems for the minimum nonzero magnitude that
can result from an individual operation. For example, if 2e ≤ |a|, then
either a+b ·c is exactly zero or 2e−2p ≤ |a+b ·c| where p is the precision
of the floating-point format containing a, b and c.

It’s now quite easy with a combination of automatic error bounding
and some manual algebraic rearrangement to obtain quite good relative
error bounds for the main computed quantities. In fact, in the early
iterations, the rounding errors incurred are insignificant in comparison
with the approximation errors in the Hi and Si. Thus, the relative
errors in these quantities are roughly in step. If we write

Hi ≈
1

2
√

a
(1 + εi) Si ≈

√
a(1 + εi)

then

di ≈
1
2
− SiHi =

1
2
− 1

2
(1 + εi)2 = −(εi + ε2i /2)

Consequently, correcting the current approximations in the manner
indicated will approximately square the relative error, e.g.

Si+1 ≈ Si +diSi = Si(1+di) ≈
√

a(1+ εi)(1− εi− ε2i /2) =
√

a(1− 3
2
ε2i )

Towards the end, the rounding errors in Si and Hi become more sig-
nificantly decoupled and for the penultimate iteration we use a slightly
different refinement for S3.

e2 ≈ a− S2S2 = a− (
√

a(1 + ε2)2) ≈ −2aε2

fmsd.tex; 8/09/2005; 10:46; p.5



6 John Harrison

and so:

S2 + e2H2 ≈
√

a(1 + ε2)− (2aε2)(
1

2
√

a
(1 + ε′2)) ≈

√
a(1− ε2ε

′
2)

Thus, S2 + e2H2 will be quite an accurate square root approxi-
mation. In fact the HOL proof yields S2 + e2H2 =

√
a(1 + ε) with

|ε| ≤ 5579/279 ≈ 2−66.5.
The above sketch elides what in the HOL proofs is a detailed bound

on the rounding error. However this only really becomes significant
when S3 is rounded; this may in itself contribute a relative error of order
2−64, significantly more than the error before rounding. Nevertheless
it is important to note that if

√
a happens to be an exact floating-

point number (e.g.
√

1.5625 = 1.25), S3 will be that number. This is a
consequence of the fact that the error in S2 + e2H2 is less than half the
distance between surrounding floating-point numbers.

3.3. Correct rounding

The final two steps of the algorithm simply repeat the previous iter-
ation for S3 and the basic error analysis is the same. The difficulty is
in passing from a relative error before rounding to correct rounding
afterwards. Again we consider the final rounding separately, so S is the
result of rounding the exact value S∗ = S3 + e3H3. The error analysis
indicates that S∗ =

√
a(1 + ε) for some |ε| ≤ 25219/2140 ≈ 2−125.37.

The final result S will, by the basic property of the fma operation, be
the result of rounding S∗ in whatever the chosen rounding mode may
be. The desired result would be the result of rounding exactly

√
a in

the same way. How can we be sure these are the same?
First we can dispose of some special cases. We noted earlier that if√

a is already exactly a floating-point number, then S3 will already be
that number. In this case we will have e3 = 0 and so S∗ = S3. Whatever
the rounding mode, rounding a number already in the format concerned
will give that number itself:

|- a IN iformat fmt =⇒ (round fmt rc a = a)

so the result will be correct. Moreover, the earlier observation extends
to show that if

√
a is fairly close (in a precise sense) to a floating-point

number, then S3 will be that number. It is then quite straightforward to
see that the overall algorithm will be accurate without great subtlety:
we just need the fact that e3 has the right sign and roughly the correct

fmsd.tex; 8/09/2005; 10:46; p.6



Formal verification of square root algorithms 7

magnitude, so S∗ will never misround in directed rounding modes.
Thus, we can also deal immediately with what would otherwise be
difficult cases for the directed rounding modes, and concentrate our
efforts on rounding to nearest.

On general grounds we note that
√

a cannot be exactly the mid-point
between two floating-point numbers. This is not hard to see, since the
square root of a number in a given format cannot denormalize in that
format, and a non-denormal midpoint has p+1 significant digits, so its
square must have more than p.3

|- &0 <= a ∧ a IN iformat fmt ∧ b IN midpoints fmt
=⇒ ¬(sqrt a = b)

This is a useful observation. We’ll never be in the tricky case where
there are two equally close floating-point numbers (resolved by the
‘round to even’ rule.) So in round-to-nearest, S∗ and

√
a could only

round in different ways if there were a midpoint between them, for
only then could the closest floating-point numbers to them differ. For
example in the following diagram where large lines indicate floating-
point numbers and smaller ones represent midpoints,

√
a would round

‘down’ while S∗ would round ‘up’:4

-
66√

a S∗

Although analyzing this condition combinatorially would be compli-
cated, there is a much simpler sufficient condition. One can easily see
that it would suffice to show that for any midpoint m:

|
√

a− S∗| < |
√

a−m|
In that case

√
a and S∗ couldn’t lie on opposite sides of m. Here is

the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt =⇒ abs(x - y) < abs(x - m))
=⇒ (round fmt Nearest x = round fmt Nearest y)

3 An analogous result holds for quotients but here the denormal case must be
dealt with specially. For example 2Emin × 0.111· · ·111/2 is exactly a midpoint.

4 Similarly, in the other rounding modes, misrounding could only occur if
√

a and
S∗ are separated by a floating-point number. However as we have noted one can deal
with those cases more directly.

fmsd.tex; 8/09/2005; 10:46; p.7



8 John Harrison

One can arrive at an ‘exclusion zone’ theorem giving the minimum
possible |

√
a − m|. However, this can be quite small, about 2−(2p+3)

relative to
√

a, where p is the precision. For example, in our context
with p = 64, consider the square root of the next floating-point number
below 1, whose mantissa consists entirely of 1s. Its square root is about
2−131 from a midpoint:√

1− 2−64 ≈ (1− 265)− 2−131

Therefore, our relative error in S∗ of about 2−125.37 is far from ade-
quate to justify perfect rounding based on the simple ‘exclusion zone’
theorem, for which we need something of order 2−131. However, our
relative error bounds are far from sharp, and it seems quite plausible
that the algorithm does nevertheless work correctly. What can we do?

One solution is to utilize more refined theorems (Markstein, 2000),
but this is complicated and may still fail to justify several algorithms
that are intuitively believed to work correctly. An ingenious alterna-
tive developed by Cornea-Hasegan (1998) is to observe that there are
relatively few cases like 0.111 · · · 1111 whose square roots come close
enough to render the exclusion zone theorem inapplicable, and these
can be isolated by fairly straightforward number-theoretic methods. We
can therefore:

− Isolate the special cases a1, . . . , an that have square roots within
the critical distance of a midpoint.

− Conclude from the simple exclusion zone theorem that the algo-
rithm will give correct results except possibly for a1, . . . , an.

− Explicitly show that the algorithm is correct for the a1, . . . , an,
(effectively by running it on those inputs).

This two-part approach is perhaps a little unusual, but not unknown
even in pure mathematics.5 For example, consider “Bertrand’s Conjec-
ture” (first proved by Chebyshev), stating that for any positive integer
n there is a prime p with n ≤ p ≤ 2n. The most popular proof, originally
due to Erdös (1930), involves assuming n > 4000 for the main proof
and separately checking the assertion for n ≤ 4000.6

By some straightforward mathematics described by Cornea-Hasegan
(1998) and formalized in HOL without difficulty, one can show that the

5 A more extreme case is the 4-color theorem, whose proof relies on extensive
(computer-assisted) checking of special cases (Appel and Haken, 1976).

6 An ‘optimized’ way of checking, referred to by Aigner and Ziegler (2001) as
“Landau’s trick”, is to verify that 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503
and 4001 are all prime and each is less than twice its predecessor.

fmsd.tex; 8/09/2005; 10:46; p.8



Formal verification of square root algorithms 9

difficult cases for square roots have mantissas m, considered as p-bit
integers, such that one of the following diophantine equations has a
solution k for some integer |d| ≤ D, where D is roughly the factor by
which the guaranteed relative error is excessive:

2p+2m = k2 + d 2p+1m = k2 + d

We consider the equations separately for each chosen |d| ≤ D. For
example, we might be interested in whether 2p+1m = k2 − 7 has a
solution. If so, the possible value(s) of m are added to the set of difficult
cases. It’s quite easy to program HOL to enumerate all the solutions
of such diophantine equations, returning a disjunctive theorem of the
form:

` (2p+1m = k2 + d) =⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning and recursion on the
power of two (effectively so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write k = 2k′ + 1 and deduce:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no solutions. In general, we
recurse down to an equation that is trivially unsatisfiable, as here, or
immediately solvable. One equation can split into two, but never more.
For example, we have a formally proved HOL theorem asserting that
for any double-extended number a,7 rounding

√
a and

√
a(1 + ε) to

double-extended precision using any of the four IEEE rounding modes
will give the same results provided |ε| < 31/2131, with the possible
exceptions of 22em for:

m ∈ { 10074057467468575321, 10376293541461622781,
10376293541461622787, 11307741603771905196,
13812780109330227882, 14928119304823191698,
16640932189858196938, 18446744073709551611,
18446744073709551612, 18446744073709551613,
18446744073709551614, 18446744073709551615}

and 22e+1m for
7 Note that there is more subtlety required when using such a result in a mixed-

precision environment. For example, to obtain a single-precision result for a double-
precision input, an algorithm that suffices for single-precision inputs may not be
adequate even though the final precision is the same.

fmsd.tex; 8/09/2005; 10:46; p.9



10 John Harrison

m ∈ { 9223372036854775809, 9223372036854775811,
11168682418930654643}

Note that while some of these numbers are obvious special cases
like 264 − 1, the “pattern” in others is only apparent from the kind of
mathematical analysis we have undertaken here. They aren’t likely to
be exercised by random testing, or testing of plausible special cases.8

Checking formally that the algorithm works on the special cases
can also be automated, by applying theorems on the uniqueness of
rounding to the concrete numbers computed. (For a formal proof, it is
not sufficient to separately test the implemented algorithm, since such
a result has no formal status.) In order to avoid trying all possible
even or odd exponents for the various significands, we exploit some
results on invariance of the rounding and arithmetic involved in the
algorithm under systematic scaling by 22k, doing a simple form of
symbolic simulation by formal proof.

3.4. Flag settings

Correctness according to the IEEE Standard 754 not only requires the
correctly rounded result, but the correct setting of flags or triggering
of exceptions for conditions like overflow, underflow and inexactness.
Actually, almost all these properties follow directly from the arguments
leading to perfect rounding. For example, the mere fact that two real
numbers round equivalently in all rounding modes implies that one is
exact iff the other is:

|- ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)
=⇒ ∀rc. (round fmt rc x = x) = (round fmt rc y = y)

The correctness of other flag settings follows in the same sort of way,
with underflow only slightly more complicated (Harrison, 1999).

4. Conclusions and related work

What do we gain from developing these proofs formally in a theorem
prover, compared with a detailed hand proof? We see two main benefits:
reliability and re-usability.

8 On the other hand, we can well consider the mathematical analysis as a source
of good test cases.

fmsd.tex; 8/09/2005; 10:46; p.10



Formal verification of square root algorithms 11

Proofs of this nature, large parts of which involve intricate but
routine error bounding and the exhaustive solution of Diophantine
equations, are very tedious and error-prone to do by hand. In practice,
one would do better to use some kind of machine assistance, such as ad
hoc programs to solve the Diophantine equations and check the special
cases so derived. Although this can be helpful, it can also create new
dangers of incorrectly implemented helper programs and transcription
errors when passing results between ‘hand’ and ‘machine’ portions of
the proof. By contrast, we perform all steps of the proof in a painstak-
ingly foundational system, and can be quite confident that no errors
have been introduced. The proof proceeds according to strict logical
deduction, all the way from the underlying pure mathematics up to
the symbolic “execution” of the algorithm in special cases.

Although we have only discussed one particular example, many al-
gorithms with a similar format have been developed for use in systems
based on the Itanium architecture. One of the benefits of implement-
ing division and square root in software is that different algorithms can
be substituted depending on the detailed accuracy and performance
requirements of the application. Not only are different (faster) algo-
rithms provided for IEEE single and double precision operations, but
algorithms often have two versions, one optimized for minimum latency
and one for maximal throughput. These algorithms are all quite similar
in structure and large parts of the correctness proofs use the same ideas.
By performing these proofs in a programmable theorem prover like
HOL, we are able to achieve high re-use of results, just tweaking a few
details each time. Often, we can produce a complete formal proof of a
new algorithm in just a day. For a even more rigidly stereotyped class of
algorithms, one could quite practically implement a totally automatic
verification rule in HOL.

Underlying these advantages are three essential theorem prover fea-
tures: soundness, programmability and executability. HOL scores highly
on these points. It is implemented in a highly foundational style and
does not rely on the correctness of very complex code. It is freely
programmable, since it is embedded in a full programming language. In
particular, one can program it to perform various kinds of computation
and symbolic execution by proof. The main disadvantage is that proofs
can sometimes take a long time to run, precisely because they always
decompose to low-level primitives. This applies with particular force to
some kinds of symbolic execution, where instead of simply accepting
an equivalence like 294 + 3 = 13 · 19 · 681943 · 7941336391 · 14807473717
based, say, on the results of a multiprecision arithmetic package, a
detailed formal proof is constructed under the surface. To some extent,
this sacrifice of efficiency is a conscious choice when we decide to adopt

fmsd.tex; 8/09/2005; 10:46; p.11



12 John Harrison

a highly foundational system, but it might be worth weakening this
ideology at least to include concrete arithmetic as an efficient primitive
operation.

While formal verification of transcendentals appears never to have
been tackled by others, the present work, even when it was done in
1999, was by no means the first formal correctness proof of a square
root algorithm of some kind. Both Rusinoff (1998) and O’Leary et al.
(1999) describe the formal proof of other square root algorithms used
in commercial systems. The former is a multiplicative algorithm based
on Goldschmidt iteration, which has some similarity to the present
one. Similar algorithms for the IBM Power9 series are considered by
Sawada and Gamboa (2002), who formally verifiy the accuracy of the
polynomial approximations, but not the final rounding method (the
rounding is not done by standard fmas as here). The issue of bounding
polynomial approximation error in the context of a formal proof was
first identified and solved in a somewhat different way by Harrison
(1997) and then in yet another way by Harrison (2000a).

In summary, complete or partial proofs of correctness have been
performed for the software algorithms for the Intel Itanium archi-
tecture, the hardware of at least one Intel and one AMD processor
family, and for the latest incarnation of the IBM Power series. There
may be other activity elsewhere that has not been reported in the
literature or of which the present author is unaware. This already gives
some indication of the perceived importance of formal verification in
this domain, and can be considered something of a success in itself.

References

Aigner, M. and G. M. Ziegler: 2001, Proofs from The Book. Springer-Verlag, 2nd
edition.

Appel, K. and W. Haken: 1976, ‘Every planar map is four colorable’. Bulletin of the
American Mathematical Society 82, 711–712.

Cornea-Hasegan, M.: 1998, ‘Proving the IEEE Correctness of Iterative Floating-
Point Square Root, Divide and Remainder Algorithms’. Intel Technology Journal
1998-Q2, 1–11. Available on the Web as http://developer.intel.com/

technology/itj/q21998/articles/art_3.htm.
Cousineau, G. and M. Mauny: 1998, The Functional Approach to Programming.

Cambridge University Press.
Erdös, P.: 1930, ‘Beweis eines Satzes von Tschebyshev’. Acta Scientiarum Mathe-

maticarum (Szeged) 5, 194–198.
Goldschmidt, R. E.: 1964, ‘Applications of division by convergence’. Master’s thesis,

Dept. of Electrical Engineering, MIT, Cambridge, Mass.

9 All other brands are properties of their respective owners

fmsd.tex; 8/09/2005; 10:46; p.12



Formal verification of square root algorithms 13

Gordon, M. J. C. and T. F. Melham: 1993, Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press.

Gordon, M. J. C., R. Milner, and C. P. Wadsworth: 1979, Edinburgh LCF: A Mech-
anised Logic of Computation, Vol. 78 of Lecture Notes in Computer Science.
Springer-Verlag.

Harrison, J.: 1996, ‘HOL Light: A Tutorial Introduction’. In: M. Srivas and A.
Camilleri (eds.): Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design (FMCAD’96), Vol. 1166 of Lecture Notes in
Computer Science. pp. 265–269.

Harrison, J.: 1997, ‘Verifying the accuracy of polynomial approximations in HOL’.
In: E. L. Gunter and A. Felty (eds.): Theorem Proving in Higher Order Log-
ics: 10th International Conference, TPHOLs’97, Vol. 1275 of Lecture Notes in
Computer Science. Murray Hill, NJ, pp. 137–152.

Harrison, J.: 1998, Theorem Proving with the Real Numbers. Springer-Verlag.
Revised version of author’s PhD thesis.

Harrison, J.: 1999, ‘A Machine-Checked Theory of Floating Point Arithmetic’. In:
Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry (eds.): Theorem
Proving in Higher Order Logics: 12th International Conference, TPHOLs’99,
Vol. 1690 of Lecture Notes in Computer Science. Nice, France, pp. 113–130.

Harrison, J.: 2000a, ‘Formal verification of floating point trigonometric functions’.
In: W. A. Hunt and S. D. Johnson (eds.): Formal Methods in Computer-Aided
Design: Third International Conference FMCAD 2000, Vol. 1954 of Lecture Notes
in Computer Science. pp. 217–233.

Harrison, J.: 2000b, ‘Formal verification of IA-64 division algorithms’. In: M. Aa-
gaard and J. Harrison (eds.): Theorem Proving in Higher Order Logics: 13th
International Conference, TPHOLs 2000, Vol. 1869 of Lecture Notes in Computer
Science. pp. 234–251.

IEEE: 1985, ‘Standard for Binary Floating Point Arithmetic’. ANSI/IEEE Standard
754-1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East
47th Street, New York, NY 10017, USA.

Markstein, P.: 2000, IA-64 and Elementary Functions: Speed and Precision.
Prentice-Hall.

Markstein, P. W.: 1990, ‘Computation of elementary functions on the IBM RISC
System/6000 processor’. IBM Journal of Research and Development 34, 111–119.

O’Leary, J., X. Zhao, R. Gerth, and C.-J. H. Seger: 1999, ‘Formally Verifying IEEE
Compliance of Floating-Point Hardware’. Intel Technology Journal 1999-Q1, 1–
14. Available on the Web as http://developer.intel.com/technology/itj/

q11999/articles/art_5.htm.
Rusinoff, D.: 1998, ‘A Mechanically Checked Proof of IEEE Compliance of

a Register-Transfer-Level Specification of the AMD-K7 Floating-Point Mul-
tiplication, Division, and Square Root Instructions’. LMS Journal of
Computation and Mathematics 1, 148–200. Available on the Web via
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

Sawada, J. and R. Gamboa: 2002, ‘Mechanical Verification of a Square Root Algo-
rithms using Taylor’s Theorem’. In: M. Aagaard and J. O’Leary (eds.): Formal
Methods in Computer-Aided Design: Fourth International Conference FMCAD
2002, Vol. 2517 of Lecture Notes in Computer Science.

fmsd.tex; 8/09/2005; 10:46; p.13



fmsd.tex; 8/09/2005; 10:46; p.14


