
Verifying nonlinear real formulas via sums of squares

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

Abstract. Techniques based on sums of squares appear promising as a general
approach to the universal theory of reals with addition and multiplication, i.e.
verifying Boolean combinations of equations and inequalities. A particularly at-
tractive feature is that suitable ‘sum of squares’ certificates can be found by so-
phisticated numerical methods such as semidefinite programming, yet the actual
verification of the resulting proof is straightforward even in a highly foundational
theorem prover. We will describe our experience with an implementation in HOL
Light, noting some successes as well as difficulties. We also describe a new ap-
proach to the univariate case that can handle some otherwise difficult examples.

1 Verifying nonlinear formulas over the reals

Over the real numbers, there are algorithms that can in principle perform quantifier
elimination from arbitrary first-order formulas built up using addition, multiplication
and the usual equality and inequality predicates. A classic example of such a quantifier
elimination equivalence is the criterion for a quadratic equation to have a real root:

∀a b c. (∃x. ax2 + bx + c = 0) ⇔ a = 0 ∧ (b = 0 ⇒ c = 0) ∨ a 6= 0 ∧ b2 ≥ 4ac

The first quantifier elimination algorithm for this theory was developed by Tarski
[32],1 who actually demonstrated completeness and quantifier elimination just for the
theory of real-closed fields, which can be characterized as ordered fields where all non-
negative elements have square roots (∀x. 0 ≤ x ⇒ ∃y. x = y2) and all non-trivial
polynomials of odd degree have a root. There are several interesting models of these
axioms besides the reals (e.g. the algebraic reals, the computable reals, the hyperreals)
yet Tarski’s result shows that these different models satisfy exactly the same properties
in the first-order language under consideration.

However, Tarski’s procedure is complicated and inefficient. Many alternative deci-
sion methods were subsequently proposed; two that are significantly simpler were given
by Seidenberg [30] and Cohen [8], while the CAD algorithm [9], apparently the first
ever to be implemented, is significantly more efficient, though relatively complicated.
Cohen’s ideas were recast by Hörmander [17] into a relatively simple algorithm. How-
ever, even CAD has poor worst-case complexity (doubly exponential), and the Cohen-
Hörmander algorithm is generally still slower. Thus, there has been limited progress on

1 Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards.

applying these algorithms to problems of interest. An interesting alternative, currently
unimplemented, is described in [4].

If we turn to implementation in foundational theorem provers using basic logi-
cal operations instead of complicated code, the situation is bleaker still. The Cohen-
Hörmander algorithm has been implemented in Coq [23] and HOL Light [24] in a
way that generates formal proofs. However, producing formal proofs induces a fur-
ther significant slowdown. In practice, more successful approaches to nonlinear arith-
metic tend to use heuristic approaches that work well for simple common cases like
x > 0 ∧ y > 0 ⇒ xy > 0 but are incomplete (or at least impractical) in general [18,
33], though in some cases they go beyond the simple algebraic operations [1].

But many important problems in practice are purely universally quantified, i.e. are of
the form ∀x1, . . . , xn.P [x1, . . . , xn] where P [x1, . . . , xn] is an arbitrary Boolean com-
bination of polynomial equations and inequalities. Typical (true) examples are ∀x y.x ≤
y ⇒ x3 ≤ y3, ∀x.0 ≤ 1∧x ≤ 1 ⇒ x2 ≤ 1 and ∀a b c x.ax2+bx+c = 0 ⇒ b2 ≥ 4ac.
For this logically restrictive but practically important case, a completely different ap-
proach is possible based on sums of squares.

2 Positivity and sums of squares

We will be concerned with the set of multivariate polynomials R[x1, . . . , xn] over the
reals, and often more specifically the subset Q[x1, . . . , xn] with rational coefficients.
The cornerstone of what follows is the relationship between a polynomial’s taking non-
negative values everywhere, a.k.a. being positive semidefinite (PSD):

∀x1, . . . , xn. p(x1, . . . , xn) ≥ 0

and the existence of a decomposition into a sum of squares (SOS) of other polynomials:

p(x1, . . . , xn) =
k∑

i=0

si(x1, . . . , xn)2

Since any square is nonnegative, the existence of a sum-of-squares decomposition
implies nonnegativity everywhere. The converse is not true without restrictions — for
example the following [25] is everywhere strictly positive (geometric mean ≤ arith-
metic mean, applied to x2y4, x4y2 and 1), but one can show by quite elementary con-
siderations that it is not a sum of squares in R[x, y].

1 + x4y2 + x2y4 − 3x2y2

On the other hand, the positive solution of Hilbert’s 17th problem [3] implies that
every PSD polynomial is the sum of squares of rational functions. For instance, we
have:

1 + x4y2 + x2y4 − 3x2y2 =(
x2y(x2+y2−2)

x2+y2

)2

+
(

xy2(x2+y2−2)
x2+y2

)2

+
(

xy(x2+y2−2)
x2+y2

)2

+
(

x2−y2

x2+y2

)2

We will consider in what follows a liberal notion of ‘sum of squares’ allowing∑
aisi(x)2 where the ai are nonnegative rational numbers. This amounts to no real

increase in generality since every nonnegative rational can be written as a sum of four
rational squares [34]. And the reasoning that SOS ⇒ PSD is almost equally straight-
forward.

Direct proof of PSD from SOS
At its simplest, we might seek to prove that a single polynomial is PSD by finding
a SOS decomposition. We have seen that this approach is in general not complete.
Nevertheless, in practice it often works for problems of interest, e.g. the following [12]:

∀w x y z. w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+
3x2 + w2 + 2zw + z2 + 2z + 2w + 1 ≥ 0

via the sum-of-squares decomposition:

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+
3x2 + w2 + 2zw + z2 + 2z + 2w + 1 =
(y2)2 + (x2 + w + z + 1)2 + x2 + (w3 + z2)2

Besides its theoretical incompleteness, finding a direct SOS expansion only works
for nonnegativity of a single polynomial. However, this can be generalized somewhat
by a change of variables. For example, instead of proving ∀x. x ≥ 0 ⇒ p(x) ≥ 0 we
can prove the equivalent ∀x. p(x2) ≥ 0. More interesting is certifying nonnegativity
over a general compact interval [a, b]:

∀x. a ≤ x ∧ x ≤ b ⇒ p(x) ≥ 0

We can likewise prove this equivalent to a simple nonnegativity assertion with a
change of variable. Note first that

x(y) =
a + by2

1 + y2

is a surjection from R to [a, b) with right inverse

y(x) =
√

x− a

b− x

and so

(∀x. a ≤ x ∧ x < b ⇒ p(x) ≥ 0) ⇔ (∀y ∈ R. p(
a + by2

1 + y2
) ≥ 0)

Moreover, because polynomials are continuous, this is equivalent to the original
claim ∀x. a ≤ x ∧ x ≤ b ⇒ p(x) ≥ 0. We can turn the rational function claim into
purely polynomial nonnegativity by multiplying through by (1 + y2)∂(p) where ∂(p) is
the degree of p, since this is guaranteed to cancel all denominators:

(∀x. a ≤ x ∧ x ≤ b ⇒ p(x) ≥ 0) ⇔ (∀y. (1 + y2)∂(p)p(
a + by2

1 + y2
) ≥ 0)

However, we will now consider a more general and theoretically complete approach
to verifying universal formulas using SOS.

3 Important cases of Hilbert’s theorem

A classic result due to Hilbert [16] shows that there are only a few special classes of
polynomials where PSD and SOS are equivalent. We just note two of them.

Univariate polynomials

Every PSD univariate polynomial is a sum of just two real squares. For the proof,
observe that complex roots always occur in conjugate pairs, and any real roots must
have even multiplicity, otherwise the polynomial would cross the x-axis instead of just
touching it. Thus, if the roots are ak ± ibk, we can imagine writing the polynomial as:

p(x) = [(x− [a1 + ib1])(x− [a2 + ib2]) · · · (x− [am + ibm])] ·
[(x− [a1 − ib1])(x− [a2 − ib2]) · · · (x− [am − ibm])]

= (q(x) + ir(x))(q(x)− ir(x))
= q(x)2 + r(x)2

However, to expand a polynomial with rational coefficients as a sum of squares of
rational polynomials, a more sophisticated proof is needed. For example Landau [21],
building on a theorem of Hilbert, shows that every PSD univariate polynomial is the
sum of 8 squares. This was subsequently sharpened by Pourchet [27] to show that 5
squares suffice, and indeed that 5 is the best possible in general. However, even the
more constructive proofs of this and related results [5] do not seem to be very practical,
and we will return later in this paper to finding such expansions in practice.

Quadratic forms

Every PSD quadratic form, in any number of variables, is a sum of squares. (A form
is a polynomial where all monomials have the same [multi-]degree, and in a quadratic
form that degree is 2. So for example x2, wz and xy are permissible monomials in a
quadratic form but not 1, x or y5.) The proof is a straightforward elaboration of the ele-
mentary technique of “completing the square” [10]. We will as usual assume a standard
representation of a quadratic form

f(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj

where aij = aji. We are at liberty to make this symmetry assumption, for given any
representation we can always choose another symmetric one by setting a′ij = a′ji =
(aij + aji)/2.

Theorem 1. Given a quadratic form f(x1, . . . , xn) =
∑n

i=1

∑n
j=1 aijxixj in vari-

ables x1, . . . , xn with the coefficients aij rational and aij = aji, we can construct
either a decomposition:

f(x1, . . . , xn) =
n∑

i=1

bigi(x1, . . . , xn)2

where the bi are nonnegative rational numbers and the gi(x1, . . . , xn) are linear func-
tions with rational coefficients, or particular rational numbers u1, . . . , un such that
f(u1, . . . , un) < 0.

Proof. By induction on the number of variables. If the form is zero, then it trivially
has an empty SOS decomposition. Otherwise, pick the first variable x1 (the order is
unimportant), and separate the monomials into those involving x1 and those not:

f(x1, . . . , xn) = (a11x
2
1 +

n∑
i=2

2a1ix1xi) + g(x2, . . . , xn)

If a11 = 0, then there are two cases to consider. If all the a1i are zero, then we
effectively have a form in n−1 variables and so the result holds by induction; in the case
of a witness of non-positive-semidefiniteness, we can assign u1 arbitrarily. Otherwise,
if any a1i 6= 0, the form is not positive semidefinite and our witness is u1 = aii/2 + 1,
ui = −a1i and all other uj = 0; we then have f(u1, . . . , un) = −2a2

1i < 0 as
required.

Now if a11 < 0, then again the form is not PSD, and a suitable witness is simply
u1 = 1 and all other uj = 0, whence all monomials but a11x

2
1 are zero and that one

is negative. The more interesting case is when a11 > 0, and here we ‘complete the
square’. We have:

f(x1, . . . , xn) = a11(x1 +
∑n

i=2(a1i/a11)xi)2+
(g(x2, . . . , xn)−

∑n
j=2

∑n
k=2(a1ja1k/a11)xjxk)

The second term on the right is a quadratic form in variables x2, . . . , xn, so by the
inductive hypothesis we can either find a SOS expansion or a witness of non-positive-
definiteness. In the former case, we just include a11(x1 +

∑n
i=2(a1i/a11)xi)2 and ob-

tain a SOS decomposition for the entire form. In the latter case, we take the witness
u2, . . . , un and augment it by choosing u1 = −

∑n
i=2(a1i/a11)ui, which makes the

term a11(x1 +
∑n

i=2(a1i/a11)xi)2 vanish and hence gives a non-PSD witness for the
whole form. QED

For example, let us apply the method to the form 6x2+49y2+51z2−82yz+20zx−
4xy, with the variables in the obvious order x, y, z. We obtain a SOS decomposition as
follows:

6x2 + 49y2 + 51z2 − 82yz + 20zx− 4xy

= 6
(

x2 − 2
3
xy +

10
3

xz

)
+

(
49y2 + 51z2 − 82yz

)
= 6

(
x− 1

3
y +

5
3
z

)2

+
(
49y2 + 51z2 − 82yz

)
− 6

(
−1

3
y +

5
3
z

)2

= 6
(

x− 1
3
y +

5
3
z

)2

+
(

145
3

y2 − 226
3

yz +
78
3

z2

)

= 6
(

x− 1
3
y +

5
3
z

)2

+
145
3

(
y2 − 226

145
yz

)
+

103
3

z2

= 6
(

x− 1
3
y +

5
3
z

)2

+
145
3

(
y − 113

145
z

)2

+
103
3

z2 − 12769
435

z2

= 6
(

x− 1
3
y +

5
3
z

)2

+
145
3

(
y − 113

145
z

)2

+
722
145

z2

4 Quadratic forms and matrices

We can establish a correspondence between quadratic forms and matrices by writing a
quadratic form in variables x1, . . . , xn as a vector-matrix-vector product with a vector
of variables:

xT Ax =
n∑

i=1

xi

n∑
j=1

Aijxj =
∑

1≤i,j≤n

Aijxixj

If we restrict ourselves to symmetric matrices A, then the matrix representation is
unique, and the matrix elements correspond exactly to the coefficients in the standard
formulation above. (In an actual implementation we may choose to use an appropriately
modified upper or lower triangular matrix for efficiency reasons.)

Positive semidefinite matrices

Quite generally, a symmetric2 matrix A is said to be positive semidefinite iff xT Ax ≥ 0
for all vectors x — in other words, precisely if the associated quadratic form is positive
semidefinite. Two other equivalent characterizations are:

– There is a factorization A = LT L where L is a triangular matrix and the T signifies
transposition.

– All eigenvalues of A are non-negative (they are necessarily real because A is sym-
metric)

A proof of the former is straightforward by recasting the “completing the square”
algorithm (theorem 1) in matrix terms [31]. More precisely, a factorization of the form
A = LT L is obtained by Choleski decomposition. A direct translation of the ‘com-
pleting the square’ algorithm gives a decomposition A = LDLT where L, D and LT

are respectively lower-triangular, diagonal and upper-triangular. This has some advan-
tages for symbolic applications because it involves only rational operations, whereas
Choleski decomposition requires square roots.

2 Or Hermitian if we consider the complex case, which we will not do here.

5 The universal fragment via SOS

The Positivstellensatz

The Artin-Schreier theorem [19] implies that every ordered integral domain can be em-
bedded in a real-closed field called its real closure. For this reason, a universal formula
must hold in all real-closed fields (and hence, by Tarski’s completeness result, in R) iff
it holds in all ordered integral domains:

– If it holds in all ordered integral domains, it holds in all real-closed fields, since a
real-closed field is a kind of ordered integral domain.

– If it holds in all real-closed fields, it holds in the real closure of any ordered inte-
gral domain, and therefore, since quantifiers are all universal, in the substructure
corresponding to that integral domain.

This already means that a valid formula can in principle be proved without using the
special axioms about square roots and roots of odd-degree polynomials, based only on
the axioms for an ordered integral domain. This can be put in a still sharper form. First
it is instructive to look at the case of the complex numbers, where the classic Hilbert
Nullstellesatz holds:

Theorem 2. The polynomial equations p1(x) = 0, . . . , pn(x) = 0 have no com-
mon solution in C iff 1 is in the ideal generated by p1, . . . , pn, which we write as
1 ∈ Id 〈p1, . . . , pn〉.

More explicitly, this means that the universally quantified formula ∀x. p1(x) =
0 ∧ · · · pn(x) = 0 ⇒ ⊥ holds iff there are ‘cofactor’ polynomials q1(x), . . . , qn(x)
such that the following is a polynomial identity:

p1(x) · q1(x) + · · ·+ pn(x) · qn(x) = 1

The analogous property fails over R; for example x2 + 1 = 0 alone has no solution
yet 1 is not a multiple of x2 + 1 (considering them as polynomials). However, in the
analogous Real Nullstellensatz, sums of squares play a central role:

Theorem 3. The polynomial equations p1(x) = 0, . . . , pn(x) = 0 have no common
solution in R iff there are polynomials s1(x), . . . , sk(x) such that s1(x)2+· · ·+sk(x)2+
1 ∈ Id 〈p1, . . . , pn〉.

This can be further generalized to so-called ‘Positivstellensatz’ results on the incon-
sistency of a set of equations, inequations and inequalities.3 Unfortunately these become
a bit more intricate to state. The particular version we rely on in our implementation,
following [26], can be stated as follows:

3 In principle the simple Nullstellensatz suffices to prove unsatisfiability of any unsatisfiable
conjunction of atomic formulas, since in R we have equivalences such as s ≤ t ⇔ ∃x. t =
s + x2, s < t ⇔ ∃x. (t − s)x2 = 1 and s 6= t ⇔ ∃x. (t − s)x = 1. Indeed we could then
combine a conjunction of equations into a single equation using s = 0∧t = 0 ⇔ s2 +t2 = 0.
However, using a general Positivstellensatz tends to be more efficient.

Theorem 4. The polynomial formulas p1(x) = 0, . . . , pn(x) = 0, q1(x) ≥ 0, . . . ,
qm(x) ≥ 0, r1(x) 6= 0, . . . , rp(x) 6= 0 are impossible in R iff there are polynomials P ,
Q, R such that P +Q+R2 = 0 where P ∈ Id 〈p1, . . . , pn〉, R is a product of powers of
the ri (we can if desired assume it’s of the form

∏p
i=1 rk

i) and Q is in the cone generated
by the qi, i.e. the smallest set of polynomials containing all qi, all squares of arbitrary
polynomials and closed under addition and multiplication.

It’s perhaps easier to grasp a simple example. Consider proving the universal half
of the quadratic root criterion

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

by showing the inconsistency of the formulas ax2 + bx + c = 0 and 4ac− b2 > 0. We
have the following polynomial identity of the form whose existence is guaranteed by
the Positivstellensatz:

(4ac− b2) + (2ax + b)2 + (−4a)(ax2 + bx + c) = 0

Given such a “certificate” (i.e. the additional polynomials necessary in such an equa-
tion), it’s easy to verify the required result by elementary inequality reasoning: (2ax +
b)2 is a square and hence nonnegative, (−4a)(ax2 + bx+ c) is zero since by hypothesis
ax2 + bx + c = 0, so b2 − 4ac must be nonnegative for the equation to hold.

Finding SOS decompositions by semidefinite programming

Although the Nullstellensatz/Positivstellensatz assures us that suitable SOS certificates
of infeasibility exist, the usual proofs of these results are not constructive. Lombardi
[22] has proved a constructive form, showing how a refutation using Hörmander’s pro-
cedure can be used to systematically construct a Nullstellensatz certificate. However,
given that we know that none of the sophisticated real-closed field axioms are actually
needed, we might seek a more direct approach.

Parrilo [26] pioneered the approach of using semidefinite programming to find SOS
decompositions. Semidefinite programming is the problem of finding feasible values
u1, . . . , um (or more generally, maximizing some linear combination of the ui) to make
a matrix linearly parametrized by those values PSD, subject to a set of linear equational
constraints on the ui. This is a convex optimization problem, and so in principle we
know it can be solved to a given accuracy in polynomial time, e.g. on the basis of
the ellipsoid algorithm [2, 11].4 In practice, there are powerful semidefinite program-
ming tools, e.g. based on primal-dual interior point algorithms or the ‘spectral bundle
method’. Our experiments have mostly used the system CSDP [6], which we have found
to be robust and efficient.5

4 As [29] notes, convexity rather than linearity is the fundamental property that makes optimiza-
tion relatively tractable. Indeed, the first polynomial-time algorithm for linear programming
[20] was based on the ellipsoid algorithm for general convex optimization, together with an
argument about about the accuracy bound needed.

5 See also the CSDP Web page https://projects.coin-or.org/Csdp/.

The basic idea of this reduction is to introduce new variables for the possible mono-
mials that could appear in the squares. For example [26] to express 2x4+2x3y−x2y2+
5y4 as a SOS, no monomials of degree > 2 can appear in the squares, since their squares
would then remain uncancelled in the SOS form. With a little more care one can deduce
that only the following monomials, for which we introduce the new variables zi, need
be considered:

z1 = x2, z2 = y2, z3 = xy

Now we write the original polynomial as a quadratic form in the zi: z1

z2

z3

T q11 q12 q13

q12 q22 q23

q13 q23 q33

 z1

z2

z3

Comparing coefficients in the original coefficient, we obtain linear constraints on

the qij :
q11 = 2
q22 = 5
q33 + 2q12 = −1
2q13 = 2
2q23 = 0

By introducing the new variables, we have returned to the case of quadratic forms,
where SOS and PSD are the same. Thus, if we find qij for which the matrix is PSD,
we can directly read off a sum of squares using the ‘completing the square’ algorithm.
The price we pay is that only solutions satisfying the linear constraints above will yield
an SOS expansion for the original polynomial; for our example q33 = 5 and q12 = −3
give such a solution, from which a SOS decomposition can be read off. SDP solvers
can solve exactly this problem.

When just searching for a direct SOS decomposition as in the example above, we
were able to place a bound on the monomials we need to consider. However, for gen-
eral Positivstellensatz certificates, the only bounds known are somewhat impractical.
Instead of using these, we impose relatively small limits on the degrees of the poly-
nomials considered (in the squares and in the ideal cofactors) as well as the powers
used for the product of inequations. For any particular bound, the problem reduces to
semidefinite programming, and we can keep increasing the bound until it succeeds, at
least in principle.

6 Implementation in HOL and experience

We have integrated this algorithm into HOL Light, and it is freely available in the latest
version (2.20) as the file Examples/sos.ml.

How it works

We rely on all the existing machinery in HOL Light for eliminating various auxiliary
concepts like the absolute value function, max and min, and reducing the problem to

a finite set of subproblems that involve just refuting a conjunction of equations, strict
and nonstrict inequalities. All this is currently used in the simple linear prover of HOL
Light, and it was designed so that any other core equation/inequality refuter can be
plugged in. So now the task is just to refute a conjunction of the form:∧

i

pi(x) = 0 ∧
∧
j

qj(x) ≥ 0 ∧
∧
k

rk(x) > 0

We do this by systematically searching for certificates of the form guaranteed to
exist by the Positivstellensatz. We use iterative deepening, so that at stage n we con-
sider, roughly speaking, polynomials of degree n in the certificate. Symbolically, using
the underlying programming language OCaml in which HOL Light is implemented,
we invent parametrized polynomials for the certificate and solve the constraints that re-
sult from comparing coefficients, to obtain a semidefinite programming problem. The
semidefinite programming problem is printed to a file and we call a semidefinite pro-
gramming package to solve it.

Then comes a rather tricky aspect. The vector returned by the SDP solver is of
floating-point numbers, and we need to translate them to rational numbers in HOL. Un-
fortunately if we map them to the exact rational they denote, we very often find that
the resulting matrix is not quite PSD, because of the influence of rounding errors (e.g.
0.33333333333 instead of exactly 1/3). So instead we postulate that the “exact” solu-
tions probably involve rational numbers with moderate coefficients, and try rounding
all the values based on common denominators 1, 2, 3, (Once we reach 32 we start
to go up by a multiple of 2 each time.) For each attempt we test, using exact rational
arithmetic in OCaml, whether the resulting matrix is PSD, using the algorithm from
theorem 1. As soon as we find a case where it is, we extract the SOS decomposition and
prove the resulting identity in HOL.

Generally speaking this seems to work quite well. It is interesting to note that al-
though we only seek feasible solutions, we tend to do better when rounding if we try
to optimize something (arbitrarily, we minimize the sum of the diagonal elements of
the matrix). So it seems that extremal solutions tend to involve nicer rational numbers
than arbitrary points. We originally attempted to find good ‘simple’ rational approxi-
mants to the coefficients independently, but the approach of picking a single common
denominator seems to work better.

Examples

The primary interface is REAL_SOS, which attempts to prove a purely universal for-
mula over the reals. Here is a typical user invocation:

REAL_SOS
‘a1 >= &0 /\ a2 >= &0 /\
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
(a1 * b1 + a2 * b2 = &0)
==> a1 * a2 - b1 * b2 >= &0‘;;

and the output from HOL Light:

Searching with depth limit 0
Searching with depth limit 1
Searching with depth limit 2
Searching with depth limit 3
Searching with depth limit 4
Translating proof certificate to HOL
val it : thm =
|- a1 >= &0 /\

a2 >= &0 /\
a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2 /\
a1 * b1 + a2 * b2 = &0
==> a1 * a2 - b1 * b2 >= &0

The informative messages indicate the iterative deepening of the bounds imposed; at
each stage the semidefinite programming problem is passed to CSDP for solution. At a
bound of 4 the underlying semidefinite programming problem involves a 38×38 matrix
(in 8 block diagonal portions, which SDP solvers can exploit) parametrized by 143
variables. This problem is solved and HOL Light succeeds in rounding the output vector
to a certificate and hence proving the original claim. The entire sequence of events takes
around one second. Numerous similar instances of classic elementary inequalities can
be proved efficiently, including almost all the examples in [12] and the following:

REAL_SOS
‘&0 <= x /\ &0 <= y
==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2‘;;

On top of REAL_SOS, we have also implemented analogous functions for Z and
N, which do some elimination of division and modulus followed by simple-minded and
incomplete discretization (e.g. translating hypotheses of the form x < y to x ≤ y − 1)
then call the real version. This is enough to solve a few not entirely trivial properties of
truncating division on N, e.g.

SOS_RULE
‘!a b c d. ˜(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b‘;;

and

SOS_RULE ‘0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)‘;;

Problems

This approach to verifying nonlinear inequalities, and more generally to nonlinear op-
timization, has much to recommend it on general grounds [26]. But in the context of
a foundational theorem prover it is especially appealing, because the “difficult” part,
finding the certificates, can be done using highly optimized, unverified external pro-
grams. The theorem prover merely needs to verify the certificate [15]. We have found
it fast and powerful enough to prove many lemmas that come up in practice as part of
larger proofs. Quite recently we were happy to use it for the otherwise slightly tedious
lemmas 0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ c(2a + b)3/27 ≤ x ⇒ ca2b ≤ x (1.25 seconds) and
−1 ≤ t ∧ t ≤ 1 ⇒ 0 ≤ 1 + r2 − 2rt (0.06 seconds). However, we have encountered
two persistent problems that suggest necessary improvements.

First, sometimes our naive rounding procedure is not adequate, and even though
the SDP solver seems to solve the semidefinite program fairly accurately, none of the
roundings we try results in a PSD matrix. In this case, we end up in an infinite loop,
exploring more complex certificates without any benefit. It would certainly be desir-
able to have a more intelligent approach to rounding, but at present we are not sure
what the best approach is. Indeed, in principle the exact floating-point result can be
platform-dependent, since the involved numerical algorithms underlying SDP have of-
ten been optimized in slightly different ways (e.g. a different order of operations when
multiplying matrices).

Second, the treatment of strict inequalities in our Positivstellensatz (considering p >
0 as p ≥ 0 and p 6= 0) means that the style of exploration of the search space depends
critically on whether the inequalities are strict or non-strict. This can sometimes have
tiresome consequences. For example the following example (which I got from Russell
O’Connor) works quite quickly:

REAL_SOS
‘a * a + a * b - b * b >= &0 /\
&2 * a + b >= &0 /\
c * c + c * d - d * d <= &0 /\
d >= &0
==> a * d + c * b + b * d >= &0‘;;

If we replace a few non-strict (≥) inequalities in the hypotheses by strict ones (>),
we might expect it to become easier. Yet because of the difference in treatment of strict
inequalities, the problem is only solved at a much higher depth, and moreover at that
point the rounding problem has appeared and means that we do not solve it at all!

7 Optimizing the univariate case

Most floating-point transcendental function implementations ultimately rely on a poly-
nomial approximation over an interval, and we would like to verify an error bound the-
orem of the form ∀x.a ≤ x ≤ b ⇒ |f(x)−p(x)| ≤ ε relating the function f to its poly-
nomial approximation. By choosing a very accurate Taylor series expansion t(x), one
can reduce the problem to bounding a polynomial ∀x. a ≤ x ≤ b ⇒ |t(x)− p(x)| ≤ ε.
This is a problem that has sometimes preoccupied the present author for some time, and
formally verified solutions can be quite lengthy to compute [13, 14]. The idea of prov-
ing such bounds using SOS techniques, even a direct SOS decomposition after change
of variables, is very attractive.

Unfortunately, the numerical difficulties mentioned above are a serious issue here,
and we have not had much success with SOS methods except on artificially simple
examples. It is not hard to understand why these cases are numerically difficult. The
coefficients of p(x) are carefully chosen to minimize the maximum error over the in-
terval, and are not simple rational numbers. Moreover, by design, the error bounds tend
to be small relative to the coefficients. (A simple and idealized form of the same phe-
nomenon is that the Chebyshev polynomials Tn(x) are bounded by 1 over the interval
[−1, 1] even though their leading coefficient is 2n.)

We therefore consider a different approach, where we adapt the simple proof that
every univariate PSD polynomial is a sum of two real squares to find exact rational

decompositions. This has not yet been completely automated and integrated into HOL
Light, but we have a simple script that runs in PARI/GP6 and appears to be promising.
(We rely on the excellent arbitrary-precision complex root finder in PARI/GP, which
implements a variant of an algorithm due to Schönhage.) We will explain the algorithm
in general, as well as tracing a specific example:

p(x) = ((x− 1)8 + 2(x− 2)8 + (x− 3)8 − 2)/4
= x8 − 16x7 + 126x6 − 616x5 + 1995x4 − 4312x3 + 6006x2 − 4888x + 1768

Elimination of repeated roots

If a polynomial is ≥ 0 everywhere, then real roots must occur with even multiplicity.
Therefore, we start out as in squarefree decomposition by taking d = gcd(p, p′) and
writing p = d2q. The remaining polynomial q must have no real roots, and hence be
strictly > 0 everywhere. If we can write q as a SOS, we can just multiply inside each
square by d and get a SOS for p. In our running example, this factors out one repeated
root x = 2:

p = x8 − 16x7 + 126x6 − 616x5 + 1995x4 − 4312x3 + 6006x2 − 4888x + 1768
p′ = 8x7 − 112x6 + 756x5 − 3080x4 + 7980x3 − 12936x2 + 12012x− 4888
d = x− 2
q = x6 − 12x5 + 74x4 − 272x3 + 611x2 − 780x + 442

Note that this step requires only rational operations and does not introduce any
inaccuracy.

Perturbation

Since all polynomials of odd degree have a real root, the degree of the original p and
our polynomial q must be even, say ∂(q) = n = 2m. Since it is strictly positive, there
must be an ε > 0 such that the perturbed polynomial

q − ε(1 + x2 + ... + x2m)

is also (strictly) positive. To find such an ε we just need to test if a polynomial has
real roots, which we can easily do in PARI/GP; we can then search for a suitable ε
by choosing a convenient starting value and repeatedly dividing by 2 until our goal is
reached; we actually divide by 2 again to leave a little margin of safety. (Of course, there
are more efficient ways of doing this.) In this case we get ε = 1/32 and the perturbed
polynomial becomes:

31/32x6 − 12x5 + 2367/32x4 − 272x3 + 19551/32x2 − 780x + 14143/32

We have been assuming that the initial polynomial is indeed PSD, but if it is not, that
fact will be detected at this stage by checking the ε = 0 case.

6 http://pari.math.u-bordeaux.fr/

Approximate SOS of perturbed polynomial

We now use the basic ‘sum of two real squares’ idea to obtain an approximate SOS
decomposition of the perturbed polynomial r, just by using approximations of the roots,
close enough to make the final step below work correctly. Now we have r = ls2+lt2+u
where l is the leading coefficient of r, such that the remainder u is relatively small.
Using our PARI/GP script on the running example we obtain for this remainder:

u = 7/65536x5 − 522851/268435456x4 + 1527705/268435456x3−
655717/536870912x2 − 14239/2097152x + 1913153/536870912

Absorption of remainder term

We now have q = ls2 + lt2 + ε(1 + x2 + ... + x2m) + u, so it will suffice to express
ε(1 + x2 + ... + x2m) + u as a sum of squares. Note that the degree of u is < 2m
by construction (though the procedure to be outlined would work with minor variations
even if it were exactly 2m). Let us say u = a0 + a1x + . . . + a2m−1x

2m−1. Note that

x = (x + 1/2)2 − (x2 + 1/4)
−x = (x− 1/2)2 − (x2 + 1/4)

and so for any c ≥ 0:

cx2k+1 = c(xk+1 + 1/2xk)2 − c(x2k+2 + 1/4x2k)
−cx2k+1 = c(xk+1 − 1/2xk)2 − c(x2k+2 + 1/4x2k)

Consequently we can rewrite the odd-degree terms of u as

a2k+1x
2k+1 = |a2k+1|(xk+1 + sgn(a2k+1)/2xk)2 − |a2k+1|(x2k+2 + 1/4x2k)

and so:

ε(1 + x2 + ... + x2m) + u =
∑m−1

k=0 |a2k+1|(xk+1 + sgn(a2k+1)/2xk)2+∑m
k=0(ε + a2k − |a2k−1| − |a2k+1|/4)x2k

where by convention a−1 = a2m+1 = 0. This already gives us the required SOS
representation, provided each ε + a2k − |a2k−1| − |a2k+1|/4 ≥ 0, and we can ensure
this by computing the approximate SOS sufficiently accurately. In the running example,
our overall expression is

31/32(x3 − 25369/4096x2 + 313/64x + 32207/4096)2+
31/32(21757/4096x2 − 90963/4096x + 1271/64)2+
14239/2097152(x− 1/2)2+
1527705/268435456(x2 + 1/2x)2+
7/65536(x3 + 1/2x2)2+
2041/65536x6+
1582721/67108864x4+
23424925/1073741824x2+
17779073/536870912

and we can recover a SOS decomposition for the original polynomial by incorporating
the additional factor x− 2 into each square:

31/32(x4 − 33561/4096x3 + 35385/2048x2 − 7857/4096x− 32207/2048)2+
31/32(21757/4096x3 − 134477/4096x2 + 131635/2048x− 1271/32)2+
14239/2097152(x2 − 5/2x + 1)2+
1527705/268435456(x3 − 3/2x2 − x)2+
7/65536(x4 − 3/2x3 − x2)2+
2041/65536(x4 − 2x3)2+
1582721/67108864(x3 − 2x2)2+
23424925/1073741824(x2 − 2x)2+
17779073/536870912(x− 2)2

8 Conclusions and related work

Our work so far shows that SOS is a very promising approach to this class of problem.
Despite the implementation in a very foundational theorem-prover, simple problems
are solved fast enough to be a real boon in practice. However, we have also noted a
couple of difficulties. The rounding problem seems to be the most pressing. It could
be avoided given an arbitrary-precision package for semidefinite programming. How-
ever, replacing ordinary floating-point arithmetic in a semidefinite programming engine
with something like MPFR7 would be highly non-trivial even for their designers, since
they are complex programs depending on an infrastructure of linear algebra packages.
Lacking a high-precision SDP solver, we need to come up with a more ‘intelligent’
approach to rounding, but this seems non-trivial. As an answer to our problems with
strict inequalities, there are numerous possibilities, such as directly eliminating strict
inequalities in terms of equations or using a different form of Positivstellensatz, even a
radically different one such as Schmüdgen’s [28]. We have already experimented with
other valuable optimizations, e.g. exploiting symmetry and using Gröbner bases to han-
dle equations, and these should be pursued and properly integrated into the mainstream
version.

Acknowledgements

I want to thank Henri Lombardi for first taking the time to explain some of the basic
theory of the Real Nullstellensatz to me, so setting me off on a long voyage of discovery.
The debt to Pablo Parrilo is clear: a large part of this work is just an implementation
of his key ideas. The ideas for optimizing the univariate case and its implementation
in PARI/GP were worked out when I was a visitor in the Arenaire group at the ENS in
Lyon. I am grateful to many people there for stimulating discussions, and in particular to
Christoph Lauter for help with German translation and for some additional examples. I
also benefited from the discussion at CMU when I presented SOS at a seminar organized
by Jeremy Avigad and Ed Clarke. Laurent Théry, besides porting some of the work to
Coq, persuaded me that I should write things up for publication. I’m also grateful to the
anonymous referees for their constructive suggestions and for catching several errors.

7 http://www.mpfr.org/

References

1. B. Akbarpour and L. C. Paulson. Towards automatic proofs of inequalities involving el-
ementary functions. In B. Cook and R. Sebastiani, editors, Proceedings of PDPAR 2006:
Pragmatics of Decision Procedures in Automated Reasoning, pages 27–37, 2006.

2. M. Akgül. Topics in relaxation and ellipsoidal methods, volume 97 of Research notes in
mathematics. Pitman, 1984.

3. E. Artin. Über die Zerlegung definiter Funktionen in Quadrate. Hamburg Abhandlung,
5:100–115, 1927.

4. J. Avigad and H. Friedman. Combining decision procedures for the reals. To appear in
“Logical Methods in Computer Science”. Available online at http://arxiv.org/abs/
cs.LO/0601134., 2006.

5. S. Basu. A constructive algorithm for 2-D spectral factorization with rational spectral fac-
tors. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications,
47:1309–1318, 2000.

6. B. Borchers. CSDP: A C library for semidefinite programming. Optimization Methods and
Software, 11:613–623, 1999.

7. B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic
Decomposition, Texts and monographs in symbolic computation. Springer-Verlag, 1998.

8. P. J. Cohen. Decision procedures for real and p-adic fields. Communications in Pure and
Applied Mathematics, 22:131–151, 1969.

9. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. In H. Brakhage, editor, Second GI Conference on Automata Theory and Formal Lan-
guages, volume 33 of Lecture Notes in Computer Science, pages 134–183, Kaiserslautern,
1976. Springer-Verlag.

10. W. L. Ferrar. Algebra: a text-book of determinants, matrices, and algebraic forms. Oxford
University Press, 2nd edition, 1957.

11. M. Grotschel, L. Lovsz, and A. Schrijver. Geometric algorithms and combinatorial opti-
mization. Springer-Verlag, 1993.

12. Z. Guangxing and Z. Xiaoning. An effective decision method for semidefinite polynomials.
Journal of Symbolic Computation, 37:83–99, 2004.

13. J. Harrison. Verifying the accuracy of polynomial approximations in HOL. In E. L. Gunter
and A. Felty, editors, Theorem Proving in Higher Order Logics: 10th International Con-
ference, TPHOLs’97, volume 1275 of Lecture Notes in Computer Science, pages 137–152,
Murray Hill, NJ, 1997. Springer-Verlag.

14. J. Harrison. Formal verification of floating point trigonometric functions. In W. A. Hunt
and S. D. Johnson, editors, Formal Methods in Computer-Aided Design: Third International
Conference FMCAD 2000, volume 1954 of Lecture Notes in Computer Science, pages 217–
233. Springer-Verlag, 2000.

15. J. Harrison and L. Théry. A sceptic’s approach to combining HOL and Maple. Journal of
Automated Reasoning, 21:279–294, 1998.

16. D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten. Math-
ematische Annalen, 32:342–350, 1888.

17. L. Hörmander. The Analysis of Linear Partial Differential Operators II, volume 257 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1983.

18. W. A. Hunt, R. B. Krug, and J. Moore. Linear and nonlinear arithmetic in ACL2. In D. Geist,
editor, Proceedings of the 12th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, CHARME 2003, volume 2860 of Lecture Notes in
Computer Science, pages 319–333. Springer-Verlag, 2003.

19. N. Jacobson. Basic Algebra II. W. H. Freeman, 2nd edition, 1989.

20. L. G. Khachian. A polynomial algorithm in linear programming. Soviet Mathematics Dok-
lady, 20:191–194, 1979.

21. E. Landau. Über die Darstellung definiter Funktionen durch Quadrate. Mathematischen
Annalen, 62:272–285, 1906.

22. H. Lombardi. Effective real nullstellensatz and variants. In T. Mora and C. Traverso, editors,
Proceedings of the MEGA-90 Symposium on Effective Methods in Algebraic Geometry, vol-
ume 94 of Progress in Mathematics, pages 263–288, Castiglioncello, Livorno, Italy, 1990.
Birkhäuser.

23. A. Mahboubi and L. Pottier. Elimination des quantificateurs sur les réels
en Coq. In Journées Francophones des Langages Applicatifs (JFLA), available
on the Web from http://pauillac.inria.fr/jfla/2002/actes/index.
html08-mahboubi.ps, 2002.

24. S. McLaughlin and J. Harrison. A proof-producing decision procedure for real arithmetic. In
R. Nieuwenhuis, editor, CADE-20: 20th International Conference on Automated Deduction,
proceedings, volume 3632 of Lecture Notes in Computer Science, pages 295–314, Tallinn,
Estonia, 2005. Springer-Verlag.

25. T. S. Motzkin. The arithmetic-geometric inequality. In O. Shisha, editor, Inequalities. Aca-
demic Press, 1967.

26. P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathemat-
ical Programming, 96:293–320, 2003.

27. Y. Pourchet. Sur la répresentation en somme de carrés des polynômes a une indeterminée
sur un corps de nombres algébraiques. Acta Arithmetica, 19:89–109, 1971.

28. A. Prestel and C. N. Dalzell. Positive Polynomials: From Hilbert’s 17th Problem to Real
Algebra. Springer monographs in mathematics. Springer-Verlag, 2001.

29. R. T. Rockafellar. Lagrange multipliers and optimality. SIAM review, 35:183–283, 1993.
30. A. Seidenberg. A new decision method for elementary algebra. Annals of Mathematics,

60:365–374, 1954.
31. G. Strang. Linear Algebra and its Applications. Brooks/Cole, 3rd edition, 1988.
32. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Califor-

nia Press, 1951. Previous version published as a technical report by the RAND Corporation,
1948; prepared for publication by J. C. C. McKinsey. Reprinted in [7], pp. 24–84.

33. A. Tiwari. An algebraic approach to the satisfiability of nonlinear constraints. In Computer
Science Logic, 19th International Workshop CSL 2005, volume 3634 of Lecture Notes in
Computer Science, pages 248–262. Springer-Verlag, 2005.

34. A. Weil. Number Theory: An approach through history from Hammurapi to Legendre.
Birkhäuser, 1983.

