
Floating-Point Verification using Theorem
Proving

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue
Hillsboro OR 97124

johnh@ichips.intel.com

Abstract. This chapter describes our work on formal verification of
floating-point algorithms using the HOL Light theorem prover.

1 Introduction

Representation of real numbers on the computer is fundamental to much of ap-
plied mathematics, from aircraft control systems to weather forecasting. Most
applications use floating-point approximations, though this raises significant
mathematical difficulties because of rounding and approximation errors. Even
if rounding is properly controlled, “bugs” in software using real numbers can
be particularly subtle and insidious. Yet because real-number programs are of-
ten used in controlling and monitoring physical systems, the consequences can
be catastrophic. A spectacular example is the destruction of the Ariane 5 rocket
shortly after takeoff in 1996, owing to an uncaught floating-point exception. Less
dramatic, but very costly and embarrassing to Intel, was an error in the FDIV
(floating-point division) instruction of some early Intel Pentium processors
in 1994 [45]. Intel set aside approximately $475M to cover costs arising from this
issue.

So it is not surprising that a considerable amount of effort has been applied
to formal verification in the floating-point domain, not just at Intel [44, 34], but
also at AMD [40, 50] and IBM [51], as well as in academia [33, 5]. Floating-point
algorithms are in some ways an especially natural and appealing target for formal
verification. It is not hard to come up with widely accepted formal specifications
of how basic floating-point operations should behave. In fact, many operations
are specified almost completely by the IEEE Standard governing binary floating-
point arithmetic [32]. This gives a clear specification that high-level algorithms
can rely on, and which implementors of instruction sets and compilers need to
realize.

In some other respects though, floating-point operations present a difficult
challenge for formal verification. In many other areas of verification, significant
success has been achieved using highly automated techniques, usually based on
a Boolean or other finite-state model of the state of the system. For example, ef-
ficient algorithms for propositional logic [7, 15, 53] and their aggressively efficient
implementation [41, 19] have made possible a variety of techniques ranging from
simple Boolean equivalence checking of combinational circuits to more advanced
symbolic simulation or model checking of sequential systems [10, 47, 8, 52].

But it is less easy to verify non-trivial floating-point arithmetic operations
using such techniques. The natural specifications, including the IEEE Standard,
are based on real numbers, not bit-strings. While simple adders and multipliers
can be specified quite naturally in Boolean terms, this becomes progressively
more difficult when one considers division and square root, and seems quite
impractical for transcendental functions. So while model checkers and similar
tools are of great value in dealing with low-level details, at least some parts of
the proof must be constructed in general theorem proving systems that enable
one to talk about high-level mathematics.

There are many theorem proving programs,1 and quite a few have been ap-
plied to floating-point verification, including at least ACL2, Coq, HOL Light
and PVS. We will concentrate later on our own work using HOL Light [23], but
this is not meant to disparage other important work being done at Intel and
elsewhere in other systems.

2 Architectural context

Most of the general points we want to make here are independent of particular
low-level details. Whether certain operations are implemented in software, mi-
crocode or hardware RTL, the general verification problems are similar, though
the question of how they fit into the low-level design flow can be different. Nev-
ertheless, in order to appreciate the examples that follow, the reader needs to
know that the algorithms are mainly intended for software implementation on
the Intel Itanium architecture, and needs to understand something about
IEEE floating-point numbers and the special features of the Itanium floating-
point architecture.

2.1 The IEEE-754 floating point standard

The IEEE Standard 754 for Binary Floating-Point Arithmetic [32] was developed
in response to the wide range of incompatible and often surprising behaviours of
floating-point arithmetic on different machines. In the 1970s, this was creating
serious problems in porting numerical programs from one machine to another,
with for example VAX, IBM/360 and Cray families all having different formats
for floating point numbers and incompatible ways of doing arithmetic on them.
Practically all of the arithmetics displayed peculiarities that could ensnare in-
experienced programmers, for example x = y being false but x − y = 0 true.
The sudden proliferation of microprocessors in the 1970s promised to create
even more problems, and was probably a motivating factor in the success of the
IEEE standardization effort. Indeed, before the Standard was ratified, Intel had
produced the 8087 math coprocessor to implement it, and other microproces-
sor makers followed suit. Since that time, practically every new microprocessor
floating-point architecture has conformed to the standard.

Floating point numbers, at least in the conventional binary formats consid-
ered by the IEEE Standard 754,2 are those of the form:

±2ek

1 See http://www.cs.ru.nl/∼freek/digimath/index.html for a list, and http://

www.cs.ru.nl/∼freek/comparison/index.html for a comparison of the formaliza-
tion of an elementary mathematical theorem in several.

2 The IBM/360 family, for example, used a hexadecimal not a binary system. Exotic
formats such as those proposed in [11] depart even more radically from the Standard.

with the exponent e subject to a certain bound, and the fraction (also called
significand or mantissa) k expressible in a binary positional representation using
a certain number p of bits:

k = k0 · k1k2 · · · kp−1

The bound on the exponent range Emin ≤ e ≤ Emax, together with the
allowed precision p determines a particular floating point format. The novel as-
pect of the IEEE formats, and by far the most controversial part of the whole
Standard, consists in allowing k0 to be zero even when other ki’s are not. In the
model established by most earlier arithmetics, the number 2Emin1.00 · · · 0 is the
floating point number with smallest nonzero magnitude. But the IEEE-754 Stan-
dard allows for a set of smaller numbers 2Emin0.11 · · · 11, 2Emin0.11 · · · 10, . . . ,
2Emin0.00 · · · 01 which allow a more graceful underflow. Note that the above pre-
sentation enumerates some values redundantly, with for example 2e+10 ·100 · · · 0
and 2e1 · 000 · · · 0 representing the same number. For many purposes, we con-
sider the canonical representation, where k0 = 0 only if e = Emin. Indeed, when
it specifies how some floating point formats (single and double precision) are
encoded as bit patterns, the Standard uses an encoding designed to avoid re-
dundancy. Note, however, that the Standard specifies that the floating point
representation must maintain the distinction between a positive and negative
zero.

Floating point numbers cover a wide range of values from the very small
to the very large. They are evenly spaced except that at the points 2j the in-
terval between adjacent numbers doubles. (Just as in decimal the gap between
1.00 and 1.01 is ten times the gap between 0.999 and 1.00, where all numbers
are constrained to three significant digits.) The intervals 2j ≤ x ≤ 2j+1, possi-
bly excluding one or both endpoints, are often called binades (by analogy with
‘decades’), and the numbers 2j binade boundaries. The following diagram illus-
trates this.

-
2j

In the IEEE Standard, the results of the basic algebraic operations (addi-
tion, subtraction, multiplication, division, remainder and square root) on finite
operands3 are specified in a simple and uniform way. According to the standard
(section 5):

. . . each of these operations shall be performed as if it first produced an
intermediate result correct to infinite precision and unbounded range and
then coerced this intermediate result to fit in the destination’s format.

3 In other words, those representing ordinary floating point numbers, rather than
infinities or ‘NaN’s (NaN = not a number).

In non-exceptional situations (no overflow etc.) the coercion is done using
a simple and natural form of rounding, defined in section 4 of the standard.
Rounding essentially takes an arbitrary real number and returns another real
number that is its best floating point approximation. Which particular number
is considered ‘best’ may depend on the rounding mode. In the usual mode of
round to nearest, the representable value closest to the exact one is chosen. If
two representable values are equally close, i.e. the exact value is precisely the
midpoint of two adjacent floating point numbers, then the one with its least
significant bit zero is delivered. (See [48] for a problem caused by systematically
truncating rather than rounding to even in such cases.)

Other rounding modes force the exact real number to be rounded to the
representable number closest to it yet greater or equal (‘round toward +∞’ or
‘round up’), less or equal (‘round toward −∞’ or ‘round down’) or smaller or
equal in magnitude (‘round toward 0’). The following diagram illustrates some
IEEE-correct roundings; y is assumed to be exactly a midpoint, and rounds to
2j because of the round-to-even preference.

-
2j

?
x rounded down

?
x

?

x rounded to nearest

?
y

?

y rounded to nearest

?
y rounded up

2.2 The Intel Itanium floating point architecture

The Intel Itanium architecture is a 64-bit computer architecture jointly de-
veloped by Hewlett-Packard and Intel. In an attempt to avoid some of the limi-
tations of traditional architectures, it incorporates a unique combination of fea-
tures, including an instruction format encoding parallelism explicitly, instruction
predication, and speculative/advanced loads [17]. However, we will not need to
discuss general features like this, but only the special features of its floating-point
architecture.

The centerpiece of the Intel Itanium floating-point architecture is the
fma (floating point multiply-add or fused multiply-accumulate) instruction. This
computes xy + z from inputs x, y and z with a single rounding error. Except for
subtleties over signed zeros, floating point addition and multiplication are just
degenerate cases of fma, 1y + z and xy +0, so do not need separate instructions.
However, there are variants of the fma to switch signs of operands: fms computes
xy−z while fnma computes z−xy. While the IEEE standard does not explicitly
address fma-type operations, the main extrapolation is obvious and natural:
these operations behave as if they rounded an exact result, xy + z for fma. The
fact that there is only one rounding at the end, with no intermediate rounding
of the product xy, is crucial in much of what follows.

It needs a little more care to specify the signs of zero results in IEEE style.
First, the interpretation of addition and multiplication as degenerate cases of fma
requires some policy on the sign of 1×−0 + 0. More significantly, the fma leads

to a new possibility: a× b + c can round to zero even though the exact result is
nonzero. Out of the operations in the standard, this can occur for multiplication
or division, but in this case the rules for signs are simple and natural. A little
reflection shows that this cannot happen for pure addition, so the rule in the
standard that ‘the sign of a sum . . . differs from at most one of the addend’s
signs’ is enough to fix the sign of zeros when the exact result is nonzero. For
the fma this is not the case, and fma-type instructions guarantee that the sign
correctly reflects the sign of the exact result in such cases. This is important,
for example, in ensuring that the algorithms for division that we consider later
yield the correctly signed zeros in all cases without special measures.

The Intel Itanium architecture supports several different IEEE-specified
or IEEE-compatible floating point formats. For the four most important formats,
we give the conventional name, the precision, and the minimum and maximum
exponents.

Format name p Emin Emax

Single 24 -126 127
Double 53 -1022 1023
Double-extended 64 -16382 16383
Register 64 -65534 65535

The single and double formats are mandated and completely specified in the
Standard. The double-extended format (we will often just call it ‘extended’)
is recommended and only partially specified by the Standard; the particular
version used in Intel Itanium is the one introduced by on the 8087.4 The
register format has the same precision as extended, but allows greater exponent
range, helping to avoid overflows and underflows in intermediate calculations. In
a sense, the register format is all-inclusive, since its representable values properly
include those of all other formats.

Most operations, including the fma, take arguments and return results in
some of the 128 floating point registers provided for by the architecture. All the
formats are mapped into a standard bit encoding in registers, and any value
represented by a floating point register is representable in the ‘Register’ floating
point format.5 By a combination of settings in the multiple status fields and
completers on instructions, the results of operations can be rounded in any of
the four rounding modes and into any of the supported formats.

In most current computer architectures, in particular Intel IA-32 (x86) cur-
rently represented by the Intel Pentium processor family, instructions are
specified for the floating point division and square root operations. In the Ita-
nium architecture, the only instructions specifically intended to support divi-
sion and square root are initial approximation instructions. The frcpa (floating
4 A similar format was supported by the Motorola 68000 family, but now it is mainly

supported by Intel processors.
5 However, that for reasons of compatibility, there are bit encodings used for extended

precision numbers but not register format numbers.

point reciprocal approximation) instruction applied to an argument a gives an
approximation to 1/a, while the frsqrta (floating point reciprocal square root
approximation) instruction gives an approximation to 1/

√
a. (In each case, the

approximation may have a relative error of approximately 2−8.8 in the worst
case, so they are far from delivering an exact result. Of course, special action is
taken in some special cases like a = 0.) There are several reasons for relegating
division and square root to software.

– In typical applications, division and square root are not extremely frequent
operations, and so it may be that die area on the chip would be better
devoted to something else. However they are not so infrequent that a grossly
inefficient software solution is acceptable, so the rest of the architecture
needs to be designed to allow reasonably fast software implementations. As
we shall see, the fma is the key ingredient.

– By implementing division and square root in software they immediately in-
herit the high degree of pipelining in the basic fma operations. Even though
these operations take several clock cycles, new ones can be started each cycle
while others are in progress. Hence, many division or square root operations
can proceed in parallel, leading to much higher throughput than is the case
with typical hardware implementations.

– Greater flexibility is afforded because alternative algorithms can be substi-
tuted where it is advantageous. First of all, any improvements can quickly
be incorporated into a computer system without hardware changes. Second,
it is often the case that in a particular context a faster algorithm suffices,
e.g. because the ambient IEEE rounding mode is known at compile-time,
or even because only a moderately accurate result is required (e.g. in some
graphics applications).

3 HOL Light

Theorem provers descended from Edinburgh LCF [22] reduce all reasoning to
formal proofs in something like a standard natural deduction system. That is,
everything must be proved in detail at a low level, not simply asserted, nor even
claimed on the basis of running some complex decision procedure. However, the
user is able to write arbitrary programs in the metalanguage ML to automate
patterns of inferences and hence reduce the tedium involved. The original LCF
system implemented Scott’s Logic of Computable Functions (hence the name
LCF), but as emphasized by Gordon [20], the basic LCF approach is applicable
to any logic, and now there are descendents implementing a variety of higher
order logics, set theories and constructive type theories.

In particular, members of the HOL family [21] implement a version of simply
typed λ-calculus with logical operations defined on top, more or less following
Church [9]. They take the LCF approach a step further in that all theory de-
velopments are pursued ‘definitionally’. New mathematical structures, such as
the real numbers, may be defined only by exhibiting a model for them in the

existing theories (say as Dedekind cuts of rationals). New constants may only
be introduced by definitional extension (roughly speaking, merely being a short-
hand for an expression in the existing theory). This fits naturally with the LCF
style, since it ensures that all extensions, whether of the deductive system or
the mathematical theories, are consistent per construction. HOL Light [23] is
our own version of the HOL prover. It maintains most of the general principles
underlying its ancestors, but attempts to be more logically coherent, simple and
elegant. It is written entirely in a fairly simple and mostly functional subset
of Objective CAML [57, 14], giving it advantages of portability and efficient re-
source usage compared with its ancestors, which are based on LISP or Standard
ML.

Like other LCF provers, HOL Light is in essence simply a large OCaml pro-
gram that defines data structures to represent logical entities, together with a
suite of functions to manipulate them in a way guaranteeing soundness. The
most important data structures belong to one of the datatypes hol type, term
and thm, which represent types, terms (including formulas) and theorems re-
spectively. The user can write arbitrary programs to manipulate these objects,
and it is by creating new objects of type thm that one proves theorems. HOL’s
notion of an ‘inference rule’ is simply a function with return type thm.

In order to guarantee logical soundness, however, all these types are encap-
sulated as abstract types. In particular, the only way of creating objects of type
thm is to apply one of HOL’s 10 very simple inference rules or to make a new
term or type definition. Thus, whatever the circuitous route by which one ar-
rives at it, the validity of any object of type thm rests only on the correctness of
the rather simple primitive rules (and of course the correctness of OCaml’s type
checking etc.). For example, one of HOL’s primitives is the rule of transitivity
of equality:

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

This allows one to make the following logical step: if under assumptions Γ
one can deduce s = t (that is, s and t are equal), and under assumptions ∆ one
can deduce t = u, then one can deduce that from all the assumptions together,
Γ ∪∆, that s = u holds. If the two starting theorems are bound to the names
th1 and th2, then one can apply the above logical step in HOL and bind the
result to th3 via:

let th3 = TRANS th1 th2;;

One doesn’t normally use such low-level rules much, but instead interacts
with HOL via a series of higher-level derived rules, using built-in parsers and
printers to read and write terms in a more natural syntax. For example, if one
wants to bind the name th6 to the theorem of real arithmetic that when |c−a| < e
and |b| ≤ d then |(a + b)− c| < d + e, one simply does:

let th6 = REAL_ARITH

‘abs(c - a) < e ∧ abs(b) <= d

=⇒ abs((a + b) - c) < d + e‘;;

If the purported fact in quotations turns out not to be true, then the rule
will fail by raising an exception. Similarly, any bug in the derived rule (which
represents several dozen pages of code written by the present author) would lead
to an exception.6 But we can be rather confident in the truth of any theorem
that is returned, since it must have been created via applications of primitive
rules, even though the precise choreographing of these rules is automatic and of
no concern to the user. What’s more, users can write their own special-purpose
proof rules in the same style when the standard ones seem inadequate — HOL
is fully programmable, yet retains its logical trustworthiness when extended by
ordinary users.

Among the facilities provided by HOL is the ability to organize proofs in a
mixture of forward and backward steps, which users often find more congenial.
The user invokes so-called tactics to break down the goal into more manageable
subgoals. For example, in HOL’s inbuilt foundations of number theory, the proof
that addition of natural numbers is commutative is written as follows (the symbol
∀ means ‘for all’):

let ADD_SYM = prove

(‘∀m n. m + n = n + m‘,

INDUCT_TAC THEN

ASM_REWRITE_TAC[ADD_CLAUSES]);;

The tactic INDUCT TAC uses mathematical induction to break the original
goal down into two separate goals, one for m = 0 and one for m + 1 on the
assumption that the goal holds for m. Both of these are disposed of quickly
simply by repeated rewriting with the current assumptions and a previous, even
more elementary, theorem about the addition operator. The identifier THEN is
a so-called tactical, i.e. a function that takes two tactics and produces another
tactic, which applies the first tactic then applies the second to any resulting
subgoals (there are two in this case).

For another example, we can prove that there is a unique x such that x =
f(g(x)) if and only if there is a unique y with y = g(f(y)) using a single stan-
dard tactic MESON TAC, which performs model elimination [36] to prove theorems
about first order logic with equality. As usual, the actual proof under the surface
happens by the standard primitive inference rules.

let WISHNU = prove

(‘(∃!x. x = f (g x)) ⇔ (∃!y. y = g(f y))‘,

MESON_TAC[]);;

6 Or possibly to a true but different theorem being returned, but this is easily guarded
against by inserting sanity checks in the rules.

These and similar higher-level rules certainly make the construction of proofs
manageable whereas it would be almost unbearable in terms of the primitive
rules alone. Nevertheless, we want to dispel any false impression given by the
simple examples above: nontrivial proofs, as are carried out in the work described
here, often require long and complicated sequences of rules. The construction
of these proofs often requires considerable persistence. Moreover, the resulting
proof scripts can be quite hard to read, and in some cases hard to modify to
prove a slightly different theorem. One source of these difficulties is that the
proof scripts are highly procedural — they are, ultimately, OCaml programs,
albeit of a fairly stylized form. Perhaps in the future a more declarative style for
proof scripts will prove to be more effective, but the procedural approach has its
merits [24], particularly in applications like this one where we program several
complex specialized inference rules.

In presenting HOL theorems below, we will use standard symbols for the log-
ical operators, as we have in the above examples, but when actually interacting
with HOL, ASCII equivalents are used:

Standard symbol ASCII version Meaning
⊥ F falsity
> T truth
¬p ~p not p
p ∧ q p /\ q p and q
p ∨ q p \/ q p or q
p =⇒ q p ==> q if p then q
p ⇔ q p <=> q p if and only if q
∀x. p !x. p for all x, p
∃x. p ?x. p there exists x such that p
εx. p @x. p some x such that p
λx. t \x. t the function x 7→ t
x ∈ s x IN s x is a member of set s

For more on the fundamentals of the HOL logic, see the appendix of our PhD
dissertation [25], or actually download the system and its documentation from:

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html

Our thesis [25] also gives extensive detail on the definition of real numbers in
HOL and the formalization of mathematical analysis built on this foundation. In
what follows, we exploit various results of pure mathematics without particular
comment. However, it may be worth noting some of the less obvious aspects of
the HOL symbolism when dealing with numbers:

HOL notation Standard symbol Meaning
m EXP n mn Natural number exponentiation
& (none) Natural map N → R
--x −x Unary negation of x
inv(x) x−1 Multiplicative inverse of x
abs(x) |x| Absolute value of x
x pow n xn Real x raised to natural number power n

HOL’s type system distinguishes natural numbers and reals, so & is used to
map between them. It’s mainly used as part of real number constants like &0, &1
etc. Note also that while one might prefer to regard 0−1 as ‘undefined’ (in some
precise sense), we set inv(&0) = &0 by definition.

4 Application examples

We will now give a brief overview of some of our verification projects using HOL
Light at Intel. For more details on the various parts, see [26, 28, 29, 27].

4.1 Formalization of floating point arithmetic

The first stage in all proofs of this kind is to formalize the key floating point
concepts and prove the necessary general lemmas. We have tried to provide a
generic, re-usable theory of useful results that can be applied conveniently in
these and other proofs. In what follows we will just discuss things in sufficient
detail to allow the reader to get the gist of what follows.

Floating point numbers can be stored either in floating point registers or in
memory, and in each case we cannot always assume the encoding is irredun-
dant (i.e. there may be several different encodings of the same real value, even
apart from IEEE signed zeros). Thus, we need to take particular care over the
distinction between values and their floating point encodings.7 Systematically
making this separation nicely divides our formalization into two parts: those
that are concerned only with real numbers, and those where the floating point
encodings with the associated plethora of special cases (infinities, NaNs, signed
zeros etc.) come into play. Most of the interesting issues can be considered at the
level of real numbers, and we will generally follow this approach here. However
there are certainly subtleties over the actual representations that we need to be
aware of, e.g. checking that zero results have the right sign and characterizing
the situations where exceptions can or will occur.

Floating point formats Our formalization of the encoding-free parts of the
standard is highly generic, covering an infinite collection of possible floating point
formats, even including absurd formats with zero precision (no fraction bits). It

7 In the actual standard (p7) ‘a bit-string is not always distinguished from a number
it may represent’.

is a matter of taste whether the pathological cases should be excluded at the
outset. We sometimes need to exclude them from particular theorems, but many
of the theorems turn out to be degenerately true even for extreme values.

Section 3.1 of the standard parametrizes floating point formats by precision p
and maximum and minimum exponents Emax and Emin. We follow this closely,
except we represent the fraction by an integer rather than a value 1 ≤ f < 2,
and the exponent range by two nonnegative numbers N and E. The allowable
floating point numbers are then of the form ±2e−Nk with k < 2p and 0 ≤ e < E.
This was not done because of the use of biasing in actual floating point encodings
(as we have stressed before, we avoid such issues at this stage), but rather to
use nonnegative integers everywhere and carry around fewer side-conditions.
The cost of this is that one needs to remember the bias when considering the
exponents of floating point numbers. We name the fields of a format triple as
follows:

|- exprange (E,p,N) = E

|- precision (E,p,N) = p

|- ulpscale (E,p,N) = N

and the definition of the set of real numbers corresponding to a triple is:8

|- format (E,p,N) =

{ x | ∃s e k. s < 2 ∧ e < E ∧ k < 2 EXP p ∧
x = --(&1) pow s * &2 pow e * &k / &2 pow N}

This says exactly that the format is the set of real numbers representable in
the form (−1)s2e−Nk with e < E and k < 2p (the additional restriction s < 2
is just a convenience). For many purposes, including floating point rounding, we
also consider an analogous format with an exponent range unbounded above.
This is defined by simply dropping the exponent restriction e < E. Note that
the exponent is still bounded below, i.e. N is unchanged.

|- iformat (E,p,N) =

{ x | ∃s e k. s < 2 ∧ k < 2 EXP p ∧
x = --(&1) pow s * &2 pow e * &k / &2 pow N}

Ulps The term ‘unit in the last place’ (ulp) is only mentioned in passing by the
standard on p. 12 when discussing binary to decimal conversion. Nevertheless, it
is of great importance for later proofs because the error bounds for transcenden-
tal functions need to be expressed in terms of ulps. Doing so is quite standard,

8 Recall that the ampersand denotes the injection from N to R, which HOL’s type
system distinguishes. The function EXP denotes exponentiation on naturals, and pow

the analogous function on reals.

yet there is widespread confusion about what an ulp is, and a variety of incom-
patible definitions appear in the literature [43]. Given a particular floating-point
format and a real number x, we define an ulp in x as the distance between the
two closest straddling floating point numbers a and b, i.e. those with a ≤ x ≤ b
and a 6= b assuming an unbounded exponent range.

This seems to convey the natural intuition of units in the last place, and
preserves the important mathematical properties that rounding to nearest cor-
responds to an error of 0.5ulp and directed roundings imply a maximum error
of 1ulp. The actual HOL definition is explicitly in terms of binades, and defined
using the Hilbert choice operator ε:9

|- binade(E,p,N) x =

εe. abs(x) <= &2 pow (e + p) / &2 pow N ∧
∀e’. abs(x) <= &2 pow (e’ + p) / &2 pow N =⇒ e <= e’

|- ulp(E,p,N) x = &2 pow (binade(E,p,N) x) / &2 pow N

After a fairly tedious series of proofs, we eventually derive the theorem that
an ulp does indeed yield the distance between two straddling floating point
numbers.

Rounding Floating point rounding takes an arbitrary real number and chooses
a floating point approximation. Rounding is regarded in the Standard as an op-
eration mapping a real to a member of the extended real line R∪{+∞,−∞}, not
the space of floating point numbers itself. Thus, encoding and representational
issues (e.g. zero signs) are not relevant to rounding. The Standard defines four
rounding modes, which we formalize as the members of an enumerated type:

roundmode = Nearest | Down | Up | Zero

Our formalization defines rounding into a given format as an operation that
maps into the corresponding format with an exponent range unbounded above.
That is, we do not take any special measures like coercing overflows back into
the format or to additional ‘infinite’ elements; this is defined separately when we
consider operations. While this separation is not quite faithful to the letter of the
Standard, we consider our approach preferable. It has obvious technical conve-
nience, avoiding the formally laborious adjunction of infinite elements to the real
line and messy side-conditions in some theorems about rounding. Moreover, it
avoids duplication of closely related issues in different parts of the Standard. For
example, the rather involved criterion for rounding to ±∞ in round-to-nearest
mode in sec. 4.1 of the Standard (‘an infinitely precise result with magnitude at
least Emax(2 − 2−p) shall round to ∞ with no change of sign’) is not needed.
In our setup we later consider numbers that round to values outside the range-
restricted format as overflowing, so the exact same condition is implied. This

9 Read ‘εe. . . . ’ as ‘the e such that . . . ’.

approach in any case is used later in the Standard 7.3 when discussing the rais-
ing of the overflow exception (‘. . . were the exponent range unbounded’).

Rounding is defined in HOL as a direct transcription of the Standard’s defi-
nition. There is one clause for each of the four rounding modes:

|- (round fmt Nearest x =

closest_such (iformat fmt) (EVEN o decode_fraction fmt) x) ∧
(round fmt Down x = closest {a | a ∈ iformat fmt ∧ a <= x} x) ∧
(round fmt Up x = closest {a | a ∈ iformat fmt ∧ a >= x} x) ∧
(round fmt Zero x =

closest {a | a ∈ iformat fmt ∧ abs a <= abs x} x)

For example, the result of rounding x down is defined to be the closest to x of
the set of real numbers a representable in the format concerned (a ∈ iformat
fmt) and no larger than x (a <= x). The subsidiary notion of ‘the closest member
of a set of real numbers’ is defined using the Hilbert ε operator. As can be seen
from the definition, rounding to nearest uses a slightly elaborated notion of
closeness where the result with an even fraction is preferred.10

|- is_closest s x a ⇔
a ∈ s ∧ ∀b. b ∈ s =⇒ abs(b - x) >= abs(a - x)

|- closest s x = εa. is_closest s x a

|- closest_such s p x =

εa. is_closest s x a ∧ (∀b. is_closest s x b ∧ p b =⇒ p a)

In order to derive useful consequences from the definition, we then need to
show that the postulated closest elements always exist. Actually, this depends on
the format’s being nontrivial. For example, if the format has nonzero precision,
then rounding up behaves as expected:

|- ¬(precision fmt = 0)

=⇒ round fmt Up x ∈ iformat fmt ∧
x <= round fmt Up x ∧
abs(x - round fmt Up x) < ulp fmt x ∧
∀c. c ∈ iformat fmt ∧ x <= c

=⇒ abs(x - round fmt Up x) <= abs(x - c)

The strongest results for rounding to nearest depend on the precision being
at least 2. This is because in a format with p = 1 nonzero normalized numbers all
have fraction 1, so ‘rounding to even’ no longer discriminates between adjacent
floating point numbers in the same way.
10 Note again the important distinction between real values and encodings. The canon-

ical fraction is used; the question of whether the actual floating point value has
an even fraction is irrelevant. We do not show all the details of how the canonical
fraction is defined.

The (1 + ε) lemma The most widely used lemma about floating point arith-
metic, often called the ‘(1 + ε)’ property, is simply that the result of a floating
point operation is the exact result, perturbed by a relative error of bounded
magnitude. Recalling that in our IEEE arithmetic, the result of an operation is
the rounded exact value, this amounts to saying that x rounded is always of the
form x(1 + ε) with |ε| bounded by a known value, typically 2−p where p is the
precision of the floating point format. We can derive a result of this form fairly
easily, though we need sideconditions to exclude the possibility of underflow (not
overflow, which we consider separately from rounding). The main theorem is as
follows:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)

=⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧
round fmt rc x = x * (&1 + e)

This essentially states exactly the ‘1+e’ property, and the bound on ε depends
on the rounding mode, according to the following auxiliary definition of mu:

|- mu Nearest = &1 / &2 ∧
mu Down = &1 ∧
mu Up = &1 ∧
mu Zero = &1

The theorem has two sideconditions, the second being the usual nontriviality
hypothesis, and the first being an assertion that the value x does not lose preci-
sion, in other words, that the result of rounding x would not change if the lower
exponent range were extended. We will not show the formal definition [26] here,
since it is rather complicated. However, a simple and usually adequate sufficient
condition is that the exact result lies in the normal range (or is zero):

|- normalizes fmt x =⇒ ¬(losing fmt rc x)

where

|- normalizes fmt x ⇔
x = &0 ∨
&2 pow (precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(x)

In a couple of places, however, we need a sharper criterion for when the
result of an fma operation will not lose precision. The proof of the following
result merely observes that either the result is in the normalized range, or else
the result will cancel so completely that the result will be exactly representable;
however the technical details are non-trivial.

|- ¬(precision fmt = 0) ∧
a ∈ iformat fmt ∧
b ∈ iformat fmt ∧
c ∈ iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(c)

=⇒ ¬(losing fmt rc (a * b + c))

Lemmas about exactness The ‘(1+ε)’ property allows us to ignore most of the
technical details of floating point rounding, and step back into the world of exact
real numbers and straightforward algebraic calculations. Many highly successful
backward error analyses of higher-level algorithms [59] often rely essentially only
on this property. Indeed, for most of the operations in the algorithms we are
concerned with here, ‘(1 + ε)’ is the only property needed for us to verify what
we require of them.

However, in lower-level algorithms like the ones considered here and others
that the present author is concerned with verifying, a number of additional
properties of floating point arithmetic are sometimes exploited by the algorithm
designer, and proofs of them are required for verifications. In particular, there
are important situations where floating point arithmetic is exact, i.e. results
round to themselves. This happens if and only if the result is representable as a
floating point number:

|- a ∈ iformat fmt =⇒ round fmt rc a = a

|- ¬(precision fmt = 0) =⇒ (round fmt rc x = x ⇔ x ∈ iformat fmt)

There are a number of situations where arithmetic operations are exact.
Perhaps the best-known instance is subtraction of nearby quantities; cf. Theorem
4.3.1 of [54]:

|- a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) ∈ iformat fmt

The availability of an fma operation leads us to consider generalization where
results with higher intermediate precision are subtracted. The following is a
direct generalization of the previous theorem, which corresponds to the case
k = 0.11

|- ¬(p = 0) ∧
a ∈ iformat (E1,p+k,N) ∧
b ∈ iformat (E1,p+k,N) ∧
abs(b - a) <= abs(b) / &2 pow (k + 1)

=⇒ (b - a) ∈ iformat (E2,p,N)

Another classic result [39, 16] shows that we can obtain the sum of two float-
ing point numbers exactly in two parts, one a rounding error in the other, by
performing the floating point addition then subtracting both summands from
the result, the larger one first:

|- x ∈ iformat fmt ∧
y ∈ iformat fmt ∧
abs(x) <= abs(y)

=⇒ (round fmt Nearest (x + y) - y) ∈ iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) ∈ iformat fmt

11 With an assumption that a and b belong to the same binade, the (k + 1) can be
strengthened to k.

Once again, we have devised a more general form of this theorem, with the
above being the k = 0 case.12 It allows a laxer relationship between x and y if
the smaller number has k fewer significant digits:

|- k <= ulpscale fmt ∧
x ∈ iformat fmt ∧
y ∈ iformat(exprange fmt,precision fmt - k,ulpscale fmt - k) ∧
abs(x) <= abs(&2 pow k * y)

=⇒ (round fmt Nearest (x + y) - y) ∈ iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) ∈ iformat fmt

The fma leads to a new result of this kind, allowing us to obtain an exact
product in two parts:13

|- a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a * b)

=⇒ (a * b - round fmt Nearest (a * b)) ∈ iformat fmt

A note on floating point axiomatics The proofs of many of the above lem-
mas, and other more specialized results used in proofs, are often quite awkward
and technical. In particular, they often require us to return to the basic defi-
nitions of floating point numbers and expand them out as sign, exponent and
fraction before proceeding with some detailed bitwise or arithmetical proofs. This
state of affairs compares badly with the organization of material in much of pure
mathematics. For example the HOL theory of abstract real numbers proves from
the definitions of reals (via a variant of Cauchy sequences) some basic ‘axioms’
from which all of real analysis is developed; once the reals have been constructed,
the details of how the real numbers were constructed are irrelevant.

One naturally wonders if there is a clean set of ‘axioms’ from which most
interesting floating point results can be derived more transparently. The idea of
encapsulating floating point arithmetic in a set of axioms has attracted some
attention over the years. However, the main point of these exercises was not
so much to simplify and unify proofs in a particular arithmetic, but rather to
produce proofs that would cover various different arithmetic implementations.
With the almost exclusive use of IEEE arithmetic these days, that motivation
has lost much of its force. Nevertheless it is worth looking at whether the axiom
sets that have been proposed would be useful for our purposes.

The cleanest axiom systems are those that don’t make reference to the under-
lying floating point representation [58, 60, 31]. However these are also the least
useful for deriving results of the kind we consider, where details of the floating
point representation are clearly significant. Moreover, at least one axiom in [60]
is actually false for IEEE arithmetic, and according to [46], for almost every
commercially significant machine except for the Cray X-MP and Y-MP.
12 See [35] for other generalizations that we do not consider.
13 We are not sure where this result originated; it appears in some of Kahan’s lecture

notes at http://www.cs.berkeley.edu∼wkahan/ieee754status/ieee754.ps.

Generally speaking, in order to make it possible to prove the kind of subtle
exactness results that we sometimes need, axioms that are explicit about the
floating point representation are needed [16, 6]. Once this step is taken, there
don’t seem to be many benefits over our own explicit proofs, given that one
is working in a precisely defined arithmetic. On the other hand, it is certainly
interesting to see how many results can be proved by weaker hypotheses. For
example, using the floating point representation explicitly but only assuming
about rounding that it is, in Dekker’s terminology, faithful, Priest [46] deduces
several interesting consequences including Sterbenz’s theorem about cancellation
in subtraction, part of the theorem on exact sums, and the following:14

0 ≤ a ≤ b ∧ fl(b− a) = b− a =⇒ ∀c. a ≤ c ≤ b =⇒ fl(c− a) = c− a

However, he also makes some interesting remarks on the limitations of this ax-
iomatic approach.

4.2 Division

It is not immediately obvious that without tricky and time-consuming bit-
twiddling, it is possible to produce an IEEE-correct quotient and set all the
IEEE flags correctly via ordinary software. Remarkably, however, fairly short
straight-line sequences of fma operations (or negated variants), suffice to do so.
This approach to division was pioneered by Markstein [38] on the IBM RS/600015

family. It seems that the ability to perform both a multiply and an add or sub-
tract without an intermediate rounding is essential here.

Refining approximations First we will describe in general terms how we can
use fma operations to refine an initial reciprocal approximation (obtained from
frcpa) towards a better reciprocal or quotient approximation. For clarity of
exposition, we will ignore rounding errors at this stage, and later show how they
are taken account of in the formal proof.

Consider determining the reciprocal of some floating point value b. Starting
with a reciprocal approximation y with a relative error ε:

y =
1
b
(1 + ε)

we can perform just one fnma operation:

e = 1− by

and get:

14 Think of fl as denoting rounding to nearest.
15 All other trademarks are the property of their respective owners.

e = 1− by

= 1− b
1
b
(1 + ε)

= 1− (1 + ε)
= −ε

Now observe that:

1
b

=
y

(1 + ε)
= y(1− ε + ε2 − ε3 + · · ·)
= y(1 + e + e2 + e3 + · · ·)

This suggests that we might improve our reciprocal approximation by multi-
plying y by some truncation of the series 1 + e + e2 + e3 + · · ·. The simplest case
using a linear polynomial in e can be done with just one more fma operation:

y′ = y + ey

Now we have

y′ = y(1 + e)

=
1
b
(1 + ε)(1 + e)

=
1
b
(1 + ε)(1− ε)

=
1
b
(1− ε2)

The magnitude of the relative error has thus been squared, or looked at
another way, the number of significant bits has been approximately doubled.
This, in fact, is exactly a step of the traditional Newton-Raphson iteration for
reciprocals. In order to get a still better approximation, one can either use a
longer polynomial in e, or repeat the Newton-Raphson linear correction several
times. Mathematically speaking, repeating Newton-Raphson iteration n times is
equivalent to using a polynomial 1 + e + · · ·+ e2n−1, e.g. since e′ = ε2 = e2, two
iterations yield:

y′′ = y(1 + e)(1 + e2) = y(1 + e + e2 + e3)

However, whether repeated Newton iteration or a more direct power series
evaluation is better depends on a careful analysis of efficiency and the impact of
rounding error. The Intel algorithms use both, as appropriate.

Now consider refining an approximation to the quotient with relative error
ε; we can get such an approximation in the first case by simply multiplying a
reciprocal approximation y ≈ 1

b by a. One approach is simply to refine y as
much as possible and then multiply. However, this kind of approach can never
guarantee getting the last bit right; instead we also need to consider how to
refine q directly. Suppose

q =
a

b
(1 + ε)

We can similarly arrive at a remainder term by an fnma:

r = a− bq

when we have:

r = a− bq

= a− b
a

b
(1 + ε)

= a− a(1 + ε)
= −aε

In order to use this remainder term to improve q, we also need a reciprocal
approximation y = 1

b (1 + η). Now the fma operation:

q′ = q + ry

results in, ignoring the rounding:

q′ = q + ry

=
a

b
(1 + ε)− aε

1
b
(1 + η)

=
a

b
(1 + ε− ε(1 + η))

=
a

b
(1− εη)

Obtaining the final result While we have neglected rounding errors hitherto,
it is fairly straightforward to place a sensible bound on their effect. To be precise,
the error from rounding is at most half an ulp in round-to-nearest mode and a
full ulp in the other modes.

` ¬(precision fmt = 0)

=⇒ (abs(error fmt Nearest x) <= ulp fmt x / &2) ∧
(abs(error fmt Down x) < ulp fmt x) ∧
(abs(error fmt Up x) < ulp fmt x) ∧
(abs(error fmt Zero x) < ulp fmt x)

where

` error fmt rc x = round fmt rc x - x

It turn, we can easily get fairly tight lower (|x|/2p ≤ ulp(x)) and upper
(ulp(x) ≤ |x|/2p−1) bounds on an ulp in x relative to the magnitude of x, the
upper bound assuming normalization:

` abs(x) / &2 pow (precision fmt) <= ulp fmt x

and

` normalizes fmt x ∧ ¬(precision fmt = 0) ∧ ¬(x = &0)

=⇒ ulp fmt x <= abs(x) / &2 pow (precision fmt - 1)

Putting these together, we can easily prove simple relative error bounds on
all the basic operations, which can be propagated through multiple calculations
by simple algebra. It is easy to see that while the relative errors in the approxi-
mations are significantly above 2−p (where p is the precision of the floating point
format), the effects of rounding error on the overall error are minor. However,
once we get close to having a perfectly rounded result, rounding error becomes
highly significant. A crucial theorem here is the following due to Markstein [38]:

Theorem 1. If q is a floating point number within 1 ulp of the true quotient a/b
of two floating point numbers, and y is the correctly rounded-to-nearest approxi-
mation of the exact reciprocal 1

b , then the following two floating point operations:

r = a− bq

q′ = q + ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quo-
tient q′.

This is not too difficult to prove in HOL. First we observe that because
the initial q is a good approximation, the computation of r cancels so much
that no rounding error is committed. (This is intuitively plausible and stated by
Markstein without proof, but the formal proof was surprisingly messy.)

` 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ q ∈ iformat fmt ∧
normalizes fmt q ∧ abs(a / b - q) <= ulp fmt (a / b) ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a)

=⇒ (a - b * q) ∈ iformat fmt

Now the overall proof given by Markstein is quite easily formalized. However,
we observed that the property actually used in the proof is in general somewhat
weaker than requiring y to be a perfectly rounded reciprocal. The theorem ac-
tually proved in HOL is:

Theorem 2. If q is a floating point number within 1 ulp of the true quotient
a/b of two floating point numbers, and y approximates the exact reciprocal 1

b
to a relative error < 1

2p , where p is the precision of the floating point format
concerned, then the following two floating point operations:

r = a− bq

q′ = q + ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quo-
tient q′.

The formal HOL statement is as follows:

` 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
q ∈ iformat fmt ∧ r ∈ iformat fmt ∧
¬(b = &0) ∧
¬(a / b ∈ iformat fmt) ∧
normalizes fmt (a / b) ∧
abs(a / b - q) <= ulp fmt (a / b) ∧
abs(inv(b) - y) < abs(inv b) / &2 pow (precision fmt) ∧
r = a - b * q ∧
q’ = q + r * y

=⇒ round fmt Nearest q’ = round fmt Nearest (a / b)

Although in the worst case, the preconditions of the original and modified
theorem hardly differ (recall that |x|/2p ≤ ulp(x) ≤ |x|/2p−1), it turns out
that in many situations the relative error condition is much easier to satisfy. In
Markstein’s original methodology, one needs first to obtain a perfectly rounded
reciprocal, which he proves can be done as follows:

Theorem 3. If y is a floating point number within 1 ulp of the true reciprocal
1
b , then one iteration of:

e = 1− by

y′ = y + ey

using round-to-nearest in both cases, yields the correctly rounded reciprocal, ex-
cept possibly when the mantissa of b consists entirely of 1s.

If we rely on this theorem, we need a very good approximation to 1
b before

these two further serial operations and one more to get the final quotient using
the new y′. However, with the weaker requirement on y′, we can get away with
a correspondingly weaker y. In fact, we prove:

Theorem 4. If y is a floating point number that results from rounding a value
y0, and the relative error in y0 w.r.t. 1

b is ≤ d
22p for some natural number d

(assumed ≤ 2p−2), then y will have relative error < 1
2p w.r.t. 1

b , except possibly
if the mantissa of b is one of the d largest. (That is, when scaled up to an integer
2p−1 ≤ mb < 2p, we have in fact 2p − d ≤ mb < 2p.)

Proof. For simplicity we assume b > 0, since the general case can be deduced by
symmetry from this. We can therefore write b = 2emb for some integer mb with
2p−1 ≤ mb < 2p. In fact, it is convenient to assume that 2p−1 < mb, since when
b is an exact power of 2 the main result follows easily from d ≤ 2p−2. Now we
have:

1
b

= 2−e 1
mb

= 2−(e+2p−1)(
22p−1

mb
)

and ulp(1
b) = 2−(e+2p−1). In order to ensure that |y − 1

b | < | 1b |/2p it suffices,
since |y − y0| ≤ ulp(1

b)/2, to have:

|y0 −
1
b
| < (

1
b
)/2p − ulp(

1
b
)/2

= (
1
b
)/2p − 2−(e+2p−1)/2

= (
1
b
)/2p − (

1
b
)mb/22p

By hypothesis, we have |y0 − 1
b | ≤ (1

b) d
22p . So it is sufficient if:

(
1
b
)d/22p < (

1
b
)/2p − (

1
b
)mb/22p

Cancelling (1
b)/22p from both sides, we find that this is equivalent to:

d < 2p −mb

Consequently, the required relative error is guaranteed except possibly when d ≥
2p −mb, or equivalently mb ≥ 2p − d, as claimed.

The HOL statement is as follows. Note that it uses e = d/22p as compared
with the statement we gave above, but this is inconsequential.

` 2 <= precision fmt ∧
b ∈ iformat fmt ∧
y ∈ iformat fmt ∧
¬(b = &0) ∧
normalizes fmt b ∧
normalizes fmt (inv(b)) ∧
y = round fmt Nearest y0 ∧
abs(y0 - inv(b)) <= e * abs(inv(b)) ∧
e <= inv(&2 pow (precision fmt + 2)) ∧
&(decode_fraction fmt b) <

&2 pow (precision fmt) - &2 pow (2 * precision fmt) * e

=⇒ abs(inv(b) - y) < abs(inv(b)) / &2 pow (precision fmt)

Thanks to this stronger theorem, we were actually able to design more effi-
cient algorithms than those based on Markstein’s original theorems, a surprising
and gratifying effect of our formal verification project. For a more elaborate
number-theoretic analysis of a related algorithm, see [30]; the proof described
there has also been formalized in HOL Light.

Flag settings We must ensure not only correct results in all rounding modes,
but that the flags are set correctly. However, this essentially follows in general
from the correctness of the result in all rounding modes (strictly, in the case
of underflow, we need to verify this for a format with slightly larger exponent
range). For the correct setting of the inexact flag, we need only prove the fol-
lowing HOL theorem:

` ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

=⇒ ∀rc. round fmt rc x = x ⇔ round fmt rc y = y

The proof is simple: if x rounds to itself, then it must be representable. But
by hypothesis, y rounds to the same thing, that is x, in all rounding modes. In
particular the roundings up and down imply x <= y and x >= y, so y = x. The
other way round is similar.

4.3 Square root

Similarly, the Intel Itanium architecture defers square roots to software, and
we have verified a number of sequences for the operation [29]. The process of
formal verification follows a methodology established by Cornea [13]. A general
analytical proof covers the majority of cases, but a number of potential excep-
tions are isolated using number-theoretic techniques and dealt with using an
explicit case analysis. Proofs of this nature, large parts of which involve intricate
but routine error bounding and the exhaustive solution of diophantine equa-
tions, are very tedious and error-prone to do by hand. In practice, one would do
better to use some kind of machine assistance, such as ad hoc programs to solve

the diophantine equations and check the special cases so derived. Although this
can be helpful, it can also create new dangers of incorrectly implemented helper
programs and transcription errors when passing results between ‘hand’ and ‘ma-
chine’ portions of the proof. By contrast, we perform all steps of the proof in
HOL Light, and can be quite confident that no errors have been introduced.

In general terms, square root algorithms follow the same pattern as division
algorithms: an initial approximation (now obtained by frsqrta) is successively
refined, and at the end some more subtle steps are undertaken to ensure correct
rounding. The initial refinement is similar in kind to those for reciprocals and
quotients, though slightly more complicated, and we will not describe them in
detail; interested readers can refer to [37, 12, 29]. Instead we focus on ensuring
perfect rounding at the end. Note that whatever the final fma operation may be,
say

S := S3 + e3H3

we can regard it, because of the basic IEEE correctness of the fma, as the round-
ing of the exact mathematical result S3 +e3H3, which we abbreviate S∗. Thanks
to the special properties of the fma, we can design the initial refinement to en-
sure that the relative error in S∗ is only a little more than 2−2p where p is the
floating-point precision. How can we infer from such a relative error bound that
S will always be correctly rounded? We will focus on the round-to-nearest mode
here; the proof for the other rounding modes are similar but need special consid-
eration of earlier steps in the algorithm to ensure correct results when the result
is exact (

√
0.25 = 0.5 etc.)

Exclusion zones On general grounds we note that
√

a cannot be exactly the
mid-point between two floating-point numbers. This is not hard to see, since the
square root of a number in a given format cannot denormalize in that format,
and a non-denormal midpoint has p+1 significant digits, so its square must have
more than p.16

|- &0 <= a ∧ a ∈ iformat fmt ∧ b ∈ midpoints fmt

=⇒ ¬(sqrt a = b)

This is a useful observation. We’ll never be in the tricky case where there are
two equally close floating-point numbers (resolved by the ‘round to even’ rule.)
So in round-to-nearest, S∗ and

√
a could only round in different ways if there

were a midpoint between them, for only then could the closest floating-point
numbers to them differ. For example in the following diagram where large lines
indicate floating-point numbers and smaller ones represent midpoints,

√
a would

round ‘down’ while S∗ would round ‘up’:17

16 An analogous result holds for quotients but here the denormal case must be dealt
with specially. For example 2Emin × 0.111· · ·111/2 is exactly a midpoint.

17 Similarly, in the other rounding modes, misrounding could only occur if
√

a and S∗

are separated by a floating-point number. However we also need to consider the case
when

√
a is a floating-point number.

-
66√

a
S∗

Although analyzing this condition combinatorially would be complicated,
there is a much simpler sufficient condition. One can easily see that it would
suffice to show that for any midpoint m:

|
√

a− S∗| < |
√

a−m|

In that case
√

a and S∗ couldn’t lie on opposite sides of m. Here is the formal
theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m ∈ midpoints fmt =⇒ abs(x - y) < abs(x - m))

=⇒ round fmt Nearest x = round fmt Nearest y

One can arrive at an ‘exclusion zone’ theorem giving the minimum possible
|
√

a−m|. However, this can be quite small, about 2−(2p+3) relative to
√

a, where
p is the precision. For example, when p = 64, consider the square root of the
next floating-point number below 1, whose mantissa consists entirely of 1s. Its
square root is about 2−131 from a midpoint:√

1− 2−64 ≈ (1− 265)− 2−131

Therefore, our relative error in S∗ of rather more than 2−2p is not adequate to
justify perfect rounding based on the simple ‘exclusion zone’ theorem. However,
our relative error bounds are far from sharp, and it seems quite plausible that
the algorithm does nevertheless work correctly. What can we do?

One solution is to use more refined theorems [37], but this is complicated
and may still fail to justify several algorithms that are intuitively believed to
work correctly. An ingenious alternative developed by Cornea [13] is to observe
that there are relatively few cases like 0.111 · · · 1111 whose square roots come
close enough to render the exclusion zone theorem inapplicable, and these can be
isolated by fairly straightforward number-theoretic methods. We can therefore:

– Isolate the special cases a1, . . . , an that have square roots within the critical
distance of a midpoint.

– Conclude from the simple exclusion zone theorem that the algorithm will
give correct results except possibly for a1, . . . , an.

– Explicitly show that the algorithm is correct for the a1, . . . , an, (effectively
by running it on those inputs).

This two-part approach is perhaps a little unusual, but not unknown even
in pure mathematics.18 For example, consider “Bertrand’s Conjecture” (first
proved by Chebyshev), stating that for any positive integer n there is a prime p

18 A more extreme case is the 4-color theorem, whose proof relies on extensive
(computer-assisted) checking of special cases [3].

with n ≤ p ≤ 2n. The most popular proof, originally due to Erdös [18], involves
assuming n > 4000 for the main proof and separately checking the assertion for
n ≤ 4000.19

By some straightforward mathematics [13] formalized in HOL without diffi-
culty, one can show that the difficult cases for square roots have mantissas m,
considered as p-bit integers, such that one of the following diophantine equations
has a solution k for some integer |d| ≤ D, where D is roughly the factor by which
the guaranteed relative error is excessive:

2p+2m = k2 + d 2p+1m = k2 + d

We consider the equations separately for each chosen |d| ≤ D. For example,
we might be interested in whether 2p+1m = k2 − 7 has a solution. If so, the
possible value(s) of m are added to the set of difficult cases. It’s quite easy
to program HOL to enumerate all the solutions of such diophantine equations,
returning a disjunctive theorem of the form:

` 2p+1m = k2 + d =⇒ m = n1 ∨ . . . ∨m = ni

The procedure simply uses even-odd reasoning and recursion on the power
of two (effectively so-called ‘Hensel lifting’). For example, if

225m = k2 − 7
then we know k must be odd; we can write k = 2k′ + 1 and deduce:

224m = 2k′2 + 2k′ − 3
By more even/odd reasoning, this has no solutions. In general, we recurse

down to an equation that is trivially unsatisfiable, as here, or immediately solv-
able. One equation can split into two, but never more. For example, we have a
formally proved HOL theorem asserting that for any double-extended number
a,20 rounding

√
a and

√
a(1 + ε) to double-extended precision using any of the

four IEEE rounding modes will give the same results provided |ε| < 31/2131,
with the possible exceptions of 22em for:

m ∈ {10074057467468575321, 10376293541461622781,
10376293541461622787, 11307741603771905196,
13812780109330227882, 14928119304823191698,
16640932189858196938, 18446744073709551611,
18446744073709551612, 18446744073709551613,
18446744073709551614, 18446744073709551615}

19 An ‘optimized’ way of checking, referred to by [2] as “Landau’s trick”, is to verify
that 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503 and 4001 are all prime and each
is less than twice its predecessor.

20 Note that there is more subtlety required when using such a result in a mixed-
precision environment. For example, to obtain a single-precision result for a double-
precision input, an algorithm that suffices for single-precision inputs may not be
adequate even though the final precision is the same.

and 22e+1m for

m ∈ {9223372036854775809, 9223372036854775811,
11168682418930654643}

Note that while some of these numbers are obvious special cases like 264− 1,
the “pattern” in others is only apparent from the kind of mathematical analysis
we have undertaken here. They aren’t likely to be exercised by random testing,
or testing of plausible special cases.21

Checking formally that the algorithm works on the special cases can also be
automated, by applying theorems on the uniqueness of rounding to the concrete
numbers computed. (For a formal proof, it is not sufficient to separately test
the implemented algorithm, since such a result has no formal status.) In order
to avoid trying all possible even or odd exponents for the various significands,
we exploit some results on invariance of the rounding and arithmetic involved in
the algorithm under systematic scaling by 22k, doing a simple form of symbolic
simulation by formal proof.

4.4 Transcendental functions

We have also proven rigorous error bounds for implementations of several com-
mon transcendental functions. Note that, according to current standard practice,
the algorithms do not aim at perfect rounding, but allow a small additional rel-
ative error. Although ensuring perfect rounding for transcendental functions is
possible, and may become standard in the future, it is highly non-trivial and
involves at least some efficiency penalty [42]. We will consider here a floating-
point sin and cos function; as will become clear shortly the internal structure is
largely identical in the two cases.

As is quite typical for modern transcendental function implementations [56],
the algorithm can be considered as three phases:

– Initial range reduction
– Core computation
– Reconstruction

For our trigonometric functions, the initial argument x is reduced modulo
π/2. Mathematically, for any real x we can always write:

x = N(π/2) + r

where N is an integer (the closest to x· 2π) and |r| ≤ π/4. The core approximation
is then a polynomial approximation to sin(r) or cos(r) as appropriate, similar
to a truncation of the familiar Taylor series:

21 On the other hand, we can well consider the mathematical analysis as a source of
good test cases.

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

but with the pre-stored coefficients computed numerically to minimize the max-
imum error over r’s range, using the so-called Remez algorithm [49]. Finally, the
reconstruction phase: to obtain either sin(x) and/or cos(x), just return one of
sin(r), cos(r), −sin(r) or −cos(r) depending on N modulo 4. For example:

sin((4M + 3)(π/2) + r) = −cos(r)

Verification of range reduction The principal difficulty of implementing
trigonometric range reduction is that the input argument x may be large and
yet the reduced argument r very small, because x is unusually close to a multiple
of π/2. In such cases, the computation of r needs to be performed very carefully.
Assuming we have calculated N , we need to evaluate:

r = x−N
π

2
However, π

2 is irrational and so cannot be represented exactly by any finite
sum of floating point numbers. So however the above is computed, it must in
fact calculate

r′ = x−NP

for some approximation P = π
2 + ε. The relative error |r′−r|

|r| is then N |ε|
|r| which is

of the order |xε
r |. Therefore, to keep this relative error within acceptable bounds

(say 2−70) the accuracy required in the approximation P depends on how small
the (true) reduced argument can be relative to the input argument. In order
to formally verify the accuracy of the algorithm, we need to answer the purely
mathematical question: how close can a double-extended precision floating point
number be to an integer multiple of π

2 ? Having done that, we can proceed with
the verification of the actual computation of the reduced argument in floating
point arithmetic. This requires a certain amount of elementary number theory,
analyzing convergents [4].

The result is that for nonzero inputs the reduced argument has magnitude at
least around 2−69. Assuming the input has size ≤ 263, this means that an error
of ε in the approximation of π/2 can constitute approximately a 2132ε relative
error in r. Consequently, to keep the relative error down to about 2−70 we need
|ε| < 2−202. Since a floating-point number has only 64 bits of precision, it would
seem that we would need to approximate π/2 by four floating-point numbers
P1, . . . , P4 and face considerable complications in keeping down the rounding
error in computing x − N(P1 + P2 + P3 + P4). However, using an ingenious
technique called pre-reduction [55], the difficulties can be reduced.

Verification of the core computation The core computation is simply a
polynomial in the reduced argument; the most general sin polynomial used is of
the form:22

p(r) = r + P1r
3 + P2r

5 + · · ·+ P8r
17

where the Pi are all floating point numbers. Note that the Pi are not the same
as the coefficients of the familiar Taylor series (which in any case are not exactly
representable as floating point numbers), but arrived at using the Remez algo-
rithm to minimize the worst-case error over the possible reduced argument range.
The overall error in this phase consists of the approximation error p(r)− sin(r)
as well as the rounding errors for the particular evaluation strategy for the poly-
nomial. All of these require some work to verify formally; for example we have
implemented an automatic HOL derived rule to provably bound the error in
approximating a mathematical function by a polynomial over a given interval.
The final general correctness theorems we derive have the following form:

|- x ∈ floats Extended ∧ abs(Val x) <= &2 pow 64

=⇒ prac (Extended,rc,fz) (fcos rc fz x) (cos(Val x))

(#0.07341 * ulp(rformat Extended) (cos(Val x)))

The function prac means ‘pre-rounding accuracy’. The theorem states that
provided x is a floating point number in the double-extended format, with
|x| ≤ 264 (a range somewhat wider than needed), the result excluding the fi-
nal rounding is at most 0.07341 units in the last place from the true answer
of cos(x). This theorem is generic over all rounding modes rc and flush-to-zero
settings fz. An easy corollary of this is that in round-to-nearest mode without
flush-to-zero set the maximum error is 0.57341 ulps, since rounding to nearest
can contribute at most 0.5 ulps. In other rounding modes, a more careful anal-
ysis is required, paying careful attention to the formal definition of a ‘unit in
the last place’. The problem is that the true answer and the computed answer
before the final rounding may in general lie on opposite sides of a (negative,
since |cos(x)| ≤ 1) power of 2. At this point, the gap between adjacent floating
point numbers is different depending on whether one is considering the exact or
computed result. In the case of round-to-nearest, however, this does not matter
since the result will always round to the straddled power of 2, bringing it even
closer to the exact answer.

5 Conclusion and future perspectives

Formal verification in this area is a good target for theorem proving. The work
outlined here has contributed in several ways: bugs have been found, potential
optimizations have been uncovered, and the general level of confidence and intel-
lectual grasp has been raised. In particular, two key strengths of HOL Light are
22 In fact, the reduced argument needs to be represented as two floating-point numbers,

so there is an additional correction term that we ignore in this presentation.

important: (i) available library of formalized real analysis, and (ii) programma-
bility of special-purpose inference rules without compromising soundness. Sub-
sequent improvements might focus on integrating the verification more tightly
into the design flow as in [44].

References

1. M. Aagaard and J. Harrison, editors. Theorem Proving in Higher Order Logics:
13th International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

2. M. Aigner and G. M. Ziegler. Proofs from The Book. Springer-Verlag, 2nd edition,
2001.

3. K. Appel and W. Haken. Every planar map is four colorable. Bulletin of the
American Mathematical Society, 82:711–712, 1976.

4. A. Baker. A Concise Introduction to the Theory of Numbers. Cambridge University
Press, 1985.

5. S. Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis,
ENS Lyon, 2004. Available on the Web from http://www.ens-lyon.fr/LIP/Pub/

Rapports/PhD/PhD2004/PhD2004-05.pdf.

6. W. S. Brown. A simple but realistic model of floating-point computation. ACM
Transactions on Mathematical Software, 7:445–480, 1981.

7. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35:677–691, 1986.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98:142–
170, 1992.

9. A. Church. A formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

10. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In D. Kozen, editor, Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71, Yorktown Heights,
1981. Springer-Verlag.

11. C. W. Clenshaw and F. W. J. Olver. Beyond floating point. Journal of the ACM,
31:319–328, 1984.

12. M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing for Itanium Based
Systems. Intel Press, 2002.

13. M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point
square root, divide and remainder algorithms. Intel Technology Journal,
1998-Q2:1–11, 1998. Available on the Web as http://developer.intel.com/

technology/itj/q21998/articles/art 3.htm.

14. G. Cousineau and M. Mauny. The Functional Approach to Programming. Cam-
bridge University Press, 1998.

15. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

16. T. J. Dekker. A floating-point technique for extending the available precision.
Numerical Mathematics, 18:224–242, 1971.

17. C. Dulong. The IA-64 architecture at work. IEEE Computer, 64(7):24–32, July
1998.

18. P. Erdös. Beweis eines Satzes von Tschebyshev. Acta Scientiarum Mathematicarum
(Szeged), 5:194–198, 1930.

19. E. Goldberg and Y. Novikov. BerkMin: a fast and robust Sat-solver. In C. D. Kloos
and J. D. Franca, editors, Design, Automation and Test in Europe Conference and
Exhibition (DATE 2002), pages 142–149, Paris, France, 2002. IEEE Computer
Society Press.

20. M. J. C. Gordon. Representing a logic in the LCF metalanguage. In D. Néel, editor,
Tools and notions for program construction: an advanced course, pages 163–185.
Cambridge University Press, 1982.

21. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

22. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

23. J. Harrison. HOL Light: A tutorial introduction. In M. Srivas and A. Camilleri,
editors, Proceedings of the First International Conference on Formal Methods in
Computer-Aided Design (FMCAD’96), volume 1166 of Lecture Notes in Computer
Science, pages 265–269. Springer-Verlag, 1996.

24. J. Harrison. Proof style. In E. Giménez and C. Paulin-Mohring, editors, Types for
Proofs and Programs: International Workshop TYPES’96, volume 1512 of Lecture
Notes in Computer Science, pages 154–172, Aussois, France, 1996. Springer-Verlag.

25. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
Revised version of author’s PhD thesis.

26. J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in
Higher Order Logics: 12th International Conference, TPHOLs’99, volume 1690 of
Lecture Notes in Computer Science, pages 113–130, Nice, France, 1999. Springer-
Verlag.

27. J. Harrison. Formal verification of floating point trigonometric functions. In W. A.
Hunt and S. D. Johnson, editors, Formal Methods in Computer-Aided Design:
Third International Conference FMCAD 2000, volume 1954 of Lecture Notes in
Computer Science, pages 217–233. Springer-Verlag, 2000.

28. J. Harrison. Formal verification of IA-64 division algorithms. In Aagaard and
Harrison [1], pages 234–251.

29. J. Harrison. Formal verification of square root algorithms. Formal Methods in
System Design, 22:143–153, 2003.

30. J. Harrison. Isolating critical cases for reciprocals using integer factorization.
In J.-C. Bajard and M. Schulte, editors, Proceedings, 16th IEEE Symposium
on Computer Arithmetic, pages 148–157, Santiago de Compostela, Spain, 2003.
IEEE Computer Society. Currently available from symposium Web site at http:

//www.dec.usc.es/arith16/papers/paper-150.pdf.
31. J. E. Holm. Floating-Point Arithmetic and Program Correctness Proofs. PhD

thesis, Cornell University, 1980.
32. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-

1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

33. C. Jacobi. Formal Verification of a Fully IEEE Compliant Floating Point Unit.
PhD thesis, University of the Saarland, 2002. Available on the Web as http:

//engr.smu.edu/∼seidel/research/diss-jacobi.ps.gz.
34. R. Kaivola and M. D. Aagaard. Divider circuit verification with model checking

and theorem proving. In Aagaard and Harrison [1], pages 338–355.

35. S. Linnainmaa. Analysis of some known methods of improving the accuracy of
floating-point sums. BIT, 14:167–202, 1974.

36. D. W. Loveland. Mechanical theorem-proving by model elimination. Journal of
the ACM, 15:236–251, 1968.

37. P. Markstein. IA-64 and Elementary Functions: Speed and Precision. Prentice-
Hall, 2000.

38. P. W. Markstein. Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM Journal of Research and Development, 34:111–119, 1990.

39. O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.
40. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the

correctness of the kernel of the AMD5K86 floating-point division program. IEEE
Transactions on Computers, 47:913–926, 1998.

41. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC 2001), pages 530–535. ACM Press, 2001.

42. J.-M. Muller. Elementary functions: Algorithms and Implementation. Birkhäuser,
1997.

43. J.-M. Muller. On the definition of ulp(x). Research Report 2005-09, ENS Lyon,
2005.

44. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE
compliance of floating-point hardware. Intel Technology Journal, 1999-Q1:1–14,
1999. Available on the Web as http://developer.intel.com/technology/itj/

q11999/articles/art 5.htm.
45. V. R. Pratt. Anatomy of the Pentium bug. In P. D. Mosses, M. Nielsen, and

M. I. Schwartzbach, editors, Proceedings of the 5th International Joint Conference
on the theory and practice of software development (TAPSOFT’95), volume 915
of Lecture Notes in Computer Science, pages 97–107, Aarhus, Denmark, 1995.
Springer-Verlag.

46. D. M. Priest. On Properties of Floating Point Arithmetics: Numer-
ical Stability and the Cost of Accurate Computations. PhD thesis,
University of California, Berkeley, 1992. Available on the Web as
ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.

47. J. P. Queille and J. Sifakis. Specification and verification of concurrent programs
in CESAR. In Proceedings of the 5th International Symposium on Programming,
volume 137 of Lecture Notes in Computer Science, pages 195–220. Springer-Verlag,
1982.

48. K. Quinn. Ever had problems rounding off figures? The stock exchange has. Wall
Street Journal, November 8:?, 1983.

49. M. E. Remes. Sur le calcul effectif des polynomes d’approximation de Tchebichef.
Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 199:337–
340, 1934.

50. D. Rusinoff. A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multiplica-
tion, division, and square root instructions. LMS Journal of Compu-
tation and Mathematics, 1:148–200, 1998. Available on the Web via
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

51. J. Sawada. Formal verification of divide and square root algorithms using series
calculation. In D. Borrione, M. Kaufmann, and J. Moore, editors, 3rd Interna-
tional Workshop on the ACL2 Theorem Prover and its Applications, pages 31–49.
University of Grenoble, 2002.

52. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design, 6:147–189, 1995.

53. G. St̊almarck and M. Säflund. Modeling and verifying systems and software in
propositional logic. In B. K. Daniels, editor, Safety of Computer Control Systems,
1990 (SAFECOMP ’90), pages 31–36, Gatwick, UK, 1990. Pergamon Press.

54. P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, 1974.
55. S. Story and P. T. P. Tang. New algorithms for improved transcendental functions

on IA-64. In I. Koren and P. Kornerup, editors, Proceedings, 14th IEEE symposium
on on computer arithmetic, pages 4–11, Adelaide, Australia, 1999. IEEE Computer
Society.

56. P. T. P. Tang. Table-lookup algorithms for elementary functions and their er-
ror analysis. In P. Kornerup and D. W. Matula, editors, Proceedings of the 10th

Symposium on Computer Arithemtic, pages 232–236, 1991.
57. P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993. See also the CAML

Web page: http://pauillac.inria.fr/caml/.
58. A. v. Wijngaarden. Numerical analysis as an independent science. BIT, 6:68–81,

1966.
59. J. H. Wilkinson. Rounding Errors in Algebraic Processes, volume 32 of National

Physical Laboratory Notes on Applied Science. Her Majesty’s Stationery Office
(HMSO), London, 1963.

60. N. Wirth. Systematic Programming: An Introduction. Prentice-Hall, 1973.

