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A
formal proof is a proof written in a
precise artificial language that admits
only a fixed repertoire of stylized
steps. This formal language is usual-
ly designed so that there is a purely

mechanical process by which the correctness of a
proof in the language can be verified. Nowadays,
there are numerous computer programs known as
proof assistants that can check, or even partially
construct, formal proofs written in their preferred
proof language. These can be considered as practi-
cal, computer-based realizations of the traditional
systems of formal symbolic logic and set theory
proposed as foundations for mathematics.

Why should we wish to create formal proofs?
Of course, one may consider it just a harmless and
satisfying intellectual activity like solving cross-
words or doing Sudoku puzzles and not seek a
deeper justification. But we can identify two more
substantial reasons:

• To establish or refute a thesis about the na-
ture of mathematics or related questions
in philosophy.

• To improve the actual precision, explicit-
ness, and reliability of mathematics.

Philosophical goals played an important role in
the development of logic and indeed of computer
science too [7]. But we’re more interested in the
actual use of formalization in mathematics, which
we think is not such a radical departure from
existing practice as it might appear. In some of
its most fertile periods, mathematics has been
developed in speculative and imaginative ways

John Harrison is principal engineer at Intel Corporation

in Hillsboro, Oregon. His email address is johnh@ichips.

intel.com.

lacking obvious logical justification. Yet many
great mathematicians like Newton and Euler were
clearly self-conscious about a lack of rigor in
their work [24]. Following the waves of innovation,
there have always followed corresponding peri-
ods of retrenchment, analyzing foundations and
increasingly adopting a strict axiomatic-deductive
style, either to resolve apparent problems or just
to make the material easier to teach convincingly
[11]; the “ǫ-δ” explanation of limits in calculus
is a classic example. Complete formalization is a
natural further step in this process of evolution
towards greater clarity and precision. To be more
concrete, our own hopes for formalization are
focused on two specific goals:

• Supplementing, or even partly replacing,
the process of peer review for mainstream
mathematical papers with an objective and
mechanizable criterion for the correctness
of proofs.

• Extending rigorous proof from pure math-
ematics to the verification of computer sys-
tems (programs, hardware systems, proto-
cols, etc.), a process that presently relies
largely on testing.

It is of course debatable whether, in either case,
there is a serious problem with the existing status
quo and whether formal proofs can really offer
a solution if so. But we will argue in this paper
that the answer is a resounding yes in both cases.
Recent decades have seen substantial advances,
with proof assistants becoming easier to use and
more powerful and getting applied to ever more
challenging problems.

A significant early milestone in formalization
of mathematics was Jutting’s 1970s formalization
of Landau’s very detailed proof of the complete
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ordered field axioms for the real numbers con-
structed by Dedekind cuts. Today we can point to
formalizations starting from similarly basic foun-
dations that reach nontrivial results in topology,
analysis, and number theory such as the Jordan
Curve Theorem, Cauchy’s integral theorem, and
the Prime Number Theorem. Perhaps most spec-
tacularly, Gonthier has completely formalized the
proof of the Four-Color Theorem, as described
elsewhere in this issue.

Similar progress can be discerned in formal
proofs of computer systems. The first proof of
compiler correctness by McCarthy and Painter
from 1967 was for a compiler from a simple ex-
pression language into an invented machine code
with four instructions. Recently, Leroy has pro-
duced a machine-checked correctness proof for
a compiler from a significant fragment of C to
a real current microprocessor. In some parts of
the computer industry, especially in critical areas
such as avionics, formal methods are becoming an
increasingly important part of the landscape.

The present author has been responsible for
developing the HOL Light theorem prover, with its
many special algorithms and decision procedures,
and applying it to the formalization of mathemat-
ics, pure and applied. In his present role, he has
been responsible at Intel for the formal verifica-
tion of a number of algorithms implementing basic
floating-point operations [13]. Work of this kind
indicates that formalization of pure mathematics
and verification applications are not separate ac-
tivities, one undertaken for fun and the other for
profit, but are intimately connected. For example,
in order to prove quite concrete results about
floating-point operations, we need nontrivial re-
sults from mainstream real analysis and number
theory, even before we consider all the special
properties of floating-point rounding.

Formal Symbolic Logic
The use of symbolic expressions denoting math-
ematical objects (numbers, sets, matrices, etc.) is
well established. We normally write “(x+y)(x−y)”
rather than “the product of, on the one hand the
sum of the first unknown and the second unknown,
and on the other hand the difference of the first
and the second unknown”. In ancient times such
longwinded natural-language renderings were the
norm, but over time more and more of mathemat-
ics has come to be expressed in symbolic notation.
Symbolism is usually shorter, is generally clear-
er in complicated cases, and avoids some of the
clumsiness and ambiguity inherent in natural lan-
guage. Perhaps most importantly, a well-chosen
notation can contribute to making mathematical
reasoning itself easier, or even purely mechanical.
The positional base-n representation of numbers
is a good example: problems like finding sums and

differences can then be performed using quite sim-
ple fixed procedures that require no mathematical
insight or understanding and are therefore even
amenable to automation in mechanical calculating
machines or their modern electronic counterparts.

Symbolic logic extends the use of symbolism,
featuring not only expressions called terms denot-
ing mathematical objects, but also formulas, which
are corresponding expressions denoting mathe-
matical propositions. Just as there are operators
like addition or set intersection on mathemati-
cal objects, symbolic logic uses logical connectives
like “and” that can be considered as operators
on propositions. The most important have corre-
sponding symbolic forms; for example as we write
“x+ y” to denote the mathematical object “x plus
y”, we can use “p∧q” to denote the proposition “p
and q”. The basic logical connectives were already
used by Boole, and modern symbolic logic also
features the universal quantifier “for all” and the
existential quantifier “there exists”, whose intro-
duction is usually credited independently to Frege,
Peano, and Peirce. The following table summarizes
one common notation for the logical constants,
connectives and quantifiers:

English Symbolic
false ⊥

true ⊤

not p ¬p
p and q p ∧ q
p or q p ∨ q
p implies q p ⇒ q
p iff q p⇔ q
for all x, p ∀x. p
there exists x such that p ∃x. p

For example, an assertion of continuity of a
function f : R → R at a point x, which we might
state in words as

For all ǫ > 0, there exists a δ > 0
such that for all x′ with |x−x′| < δ,
we also have |f (x)− f (x′)| < ǫ

could be written as a logical formula

∀ǫ. ǫ > 0 ⇒ ∃δ. δ > 0 ∧ ∀x′. |x −
x′| < δ⇒ |f (x)− f (x′)| < ǫ

The use of logical symbolism is already bene-
ficial for its brevity and clarity when expressing
complicated assertions. For example, we can make
systematic use of bracketing, e.g., to distinguish
between “p ∧ (q ∨ r)” and “(p ∧ q)∨ r”, while in-
dicating precedences in English is more awkward.
But logical symbolism really comes into its own
in concert with formal rules of manipulation, i.e.,
symbolic transformations on formulas that can
be applied mechanically without returning to the
underlying meanings. For example, one sees at a
glance that x = 2y and x/2 = y are equivalent,
and applies corresponding manipulations with-
out thinking about why. Logical notation creates a
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new vista of such mechanical transformations, e.g.,
from (∃x.P(x))⇒ q to∀x. (P(x)⇒ q). Symbolism
and formal rules of manipulation:

[…] have invariably been intro-
duced to make things easy. […] by
the aid of symbolism, we can make
transitions in reasoning almost
mechanically by the eye, which
otherwise would call into play the
higher faculties of the brain. […]
Civilization advances by extending
the number of important oper-
ations which can be performed
without thinking about them. [27]

In modern formal logic, the emphasis on formal,
mechanical manipulation is taken to its natural ex-
treme. We not only make use of logical symbolism,
but precisely circumscribe the permissible terms
and formulas and define a precise counterpart
to the informal notion of proof based purely on
formal rules. We will see more details later, but
first let us see how this idea arose in relation to
foundational concerns, and how it may be useful
in contemporary mathematics.

The Foundations of Mathematics
Arguably, the defining characteristic of mathemat-
ics is that it is a deductive discipline. Reasoning
proceeds from axioms (or postulates), which are ei-
ther accepted as evidently true or merely adopted
as hypotheses, and reaches conclusions via chains
of incontrovertible logical deductions. This con-
trasts with the natural sciences, whose theories,
while strongly mathematical in nature, tend to
become accepted because of empirical evidence.
(In fact, it is more characteristic of physics to
start from observations and seek, by induction

or abduction, the simple axioms that can explain
them.) A special joy of mathematics is that one
can proceed from simple and entirely plausible
axioms to striking and unobvious theorems, as
Hobbes memorably discovered [2]:

Being in a Gentleman’s Library, Eu-
clid’s Elements lay open, and ’twas
the 47 El. libri 1 [Pythagoras’s The-
orem]. He read the proposition. By

G—, sayd he (he would now and
then sweare an emphaticall Oath
by way of emphasis) this is impossi-

ble! So he reads the Demonstration
of it, which referred him back to
such a Proposition; which propo-
sition he read. That referred him
back to another, which he also
read. Et sic deinceps [and so on]
that at last he was demonstrative-
ly convinced of that trueth. This
made him in love with Geometry.

This idealized style of mathematical develop-
ment was already established in Euclid’s Elements

of Geometry. However, its later critical examina-
tion raised numerous philosophical difficulties.
If mathematics is a purely deductive discipline,
what is its relationship with empirical reality? Are
the axioms actually true of the real world? Can
some axioms be deduced purely logically from
others, or are they all independent? Would it make
sense to use different axioms that contradict the
usual ones? What are the incontrovertible logical
steps admissible in a mathematical proof, and how
are they to be distinguished from the substantial
mathematical assumptions that we call axioms?

Foundational questions of this sort have preoc-
cupied philosophers for millennia. Now and again,
related worries have reached a broader communi-
ty, often as a reaction to disquiet at certain mathe-
matical developments, such as irrational numbers,
infinitesimal calculus, and non-Euclidean geom-
etry. Relatively recently, foundational concerns
were heightened as the theory of infinite sets
began to be generalized and pursued for its own
sake by Cantor, Dedekind, and others.

It was precisely to clarify basic foundation-
al questions that Frege in 1879 introduced his
Begriffsschrift (“concept-script” or “ideography”),
perhaps the first comprehensive formal system
for logic and mathematics. Frege claimed that his
formal rules codified acceptable logical inference
steps. On that basis, he justified his “logicist”
thesis that the basic axioms for numbers and ge-
ometry themselves are, properly understood, not
extralogical assumptions at all, but are derivable
from purely logical principles.

However, it was later observed that right at the
heart of Frege’s system was a logical inconsistency
now known as Russell’s paradox. Frege’s system
allowed the construction of (in modern parlance)
the “set of all sets that are not members of them-
selves”, R = {S | S 6∈ S}. This immediately leads
to a contradiction because R ∈ R if and only if
R 6∈ R, by definition.

Later systems for the foundations of mathe-
matics restricted the principles of set formation
so that they were still able to talk about the
sets needed in mathematics without, apparently,
allowing such self-contradictory collections. Two
somewhat different methods were adopted, and
these streams of work have led to the develop-
ment of modern “type theory” and “set theory”
respectively.

• Russell’s system, used in the monumental
Principia Mathematica, shared many char-
acteristics with Frege’s formal system, but
introduced an explicit notion of type, sep-
arating mathematical objects of different
kinds (natural numbers, sets of natural
numbers, etc.) The original system was
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subsequently refined and simplified, lead-
ing to the modern system of simple type
theory or higher-order logic (HOL).

• Zermelo did not adopt a formal logic, but
did specify explicit axioms for set con-
struction. For example, Zermelo’s axioms
imply that whenever there is a set S, there
is also a set of all its subsets ℘(S), and
that whenever sets S and T exist, so does
the union S∪T . With some later additions,
this has become the modern foundation-
al system of Zermelo-Fraenkel set theory
(ZF, or ZFC when including the Axiom of
Choice). It can be recast as a formal system
by incorporating suitable rules for formal
logic.

Type-based approaches look immediately ap-
pealing, because mathematicians generally do

make type distinctions: between points and lines,
or between numbers and sets of numbers, etc. A
type discipline is also consonant with the majority
of modern computer programming languages,
which use types to distinguish different sorts
of value, mainly for conceptual clarity and the
avoidance of errors, but also because it sometimes
reflects implementation differences (e.g., between
machine integers and floating-point numbers).
On the other hand, some consider the discipline
imposed by types too inflexible, just as some
programmers do in computer languages. For
example, an algebraist might just want to expand
a field F to an algebraic extension F(a) without
worrying about whether its construction as a
subset or quotient of F[x] would have a different
type from F .

In fact, the distinction between type theory and
set theory is not completely clear-cut. The uni-
verse of sets in ZF set theory can be thought of as
being built in levels (the Zermelo or von Neumann
hierarchy), giving a sort of type distinction, though
the levels are cumulative (each level includes the
previous one) and continued transfinitely. And
the last few decades have seen the development
of formal type theories with a wider repertoire
of set construction principles. The development
of many recent type theories has been inspired
by the Curry-Howard correspondence, which sug-
gests deep connections between propositions and
types and between programs and (constructive)
proofs.

Formalization or Social Process?
Much of the work that we have just described was
motivated by genuine conceptual worries about
the foundations of mathematics: how do we know
which sets or other mathematical objects exist,
or which axioms are logically self-consistent? For
Frege and Russell, formalization was a means to an
end, a way of precisely isolating the permissible

proofs and making sure that all use of axioms
was explicit. Hilbert’s program caused renewed
interest in formal logic, and Brouwer even derided
Hilbert’s approach to mathematics as formalism.
But Hilbert too was not really interested in actually
formalizing proofs, merely in using the theoretical
possibility of doing so to establish results about
mathematics (“metamathematics”).

However, some logical pioneers envisaged a
much more thoroughgoing use of formal proofs in
everyday mathematical practice. Peano, indepen-
dently of Frege, introduced many of the concepts
of modern formal logic, and it is a modified
form of Peano’s notation that still survives to-
day. Peano was largely motivated by the need
to teach mathematics to students in a clear and
precise way. Together with his colleagues and
assistants, Peano published a substantial amount
of formalized mathematics: his journal Rivista di
Matematica was published from 1891 until 1906,
and polished versions were collected in various
editions of the Formulaire de Mathématique.

What of the situation today? The use of set-
theoretic language is widespread, and books some-
times describe possible foundations for math-
ematical structures (e.g., the real numbers as
Dedekind cuts or equivalences classes of Cauchy
sequences). Quite often, lip service is paid to
formal logical foundations:

…the correctness of a mathemat-
ical text is verified by comparing
it, more or less explicitly, with the
rules of a formalized language. [4]

A mathematical proof is rigorous
when it is (or could be) written
out in the first-order predicate lan-
guage L(∈) as a sequence of infer-
ences from the axioms ZFC, each
inference made according to one
of the stated rules. [19]

Yet mathematicians seldom make set-theoretic
axioms explicit in their work, except for those
whose results depend on more “exotic” hypothe-
ses. And there is little use of formal proof, or even
formal logical notation, in everyday mathematics;
Dijkstra has remarked that “as far as the mathe-
matical community is concerned George Boole has
lived in vain”. Inasmuch as the logical symbols
are used (and one does glimpse “⇒” and “∀”
here and there), they usually play the role of ad
hoc abbreviations without an associated battery
of manipulative techniques. In fact, the everyday
use of logical symbols we see today closely resem-
bles an intermediate “syncopation” stage in the
development of existing mathematical notation,
where the symbols were essentially used for their
abbreviatory role alone [26].

Moreover, the correctness of mainstream math-
ematical proofs is almost never established by
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formal means, but rather by informal discussion
between mathematicians and peer review of pa-
pers. The fallibility of such a “social process”
is well-known, with published results sometimes
containing unsubtle errors:

Professor Offord and I recently
committed ourselves to an odd
mistake (Annals of Mathematics (2)
49, 923, 1.5). In formulating a proof
a plus sign got omitted, becom-
ing in effect a multiplication sign.
The resulting false formula got ac-
cepted as a basis for the ensuing
fallacious argument. (In defense,
the final result was known to be
true.) [18]

The inadequacy of traditional peer review is
starkly illustrated by the case of the Four-Color
Theorem. The first purported proof by Kempe in
1879 was accepted for a decade before it was
found to be flawed. It was not until the 1970s that
a proof was widely accepted [1], and even that re-
lied on extensive computer checking which could
not feasibly be verified by hand. (Gonthier’s paper
in this issue describes the complete formalization
of this theorem and its proof.)

A book [17] written seventy years ago gave 130
pages of errors made by major mathematicians up
to 1900. To bring this up to date, we would surely
need a much larger volume or even a special-
ist journal. Mathematics is becoming increasingly
specialized, and some papers are read by few if any
people other than their authors. Many results are
produced by those who are not by training math-
ematicians, but computer scientists or engineers.
Perhaps because most “easy” proofs have long ago
been found, many of the most impressive results
of recent years are accompanied by huge proofs:
for example the proof of the graph minor theorem
by Robertson and Seymour was presented in a
series of twenty papers covering about 500 pages.
Others, such as Wiles’s proof of Fermat’s Last
Theorem, are not only quite large and complex in
themselves but rely heavily on a daunting amount
of mathematical “machinery”. Still others, like the
Appel-Haken proof of the Four-Color Theorem
and Hales’s proof of the Kepler Conjecture, rely
extensively on computer checking of cases. It’s
not clear how to bring them within the traditional
process of peer review [16], even supposing one
finds the status quo otherwise satisfying.

When considering the correctness of a con-
ventional informal proof, it’s a partly subjective
question what is to be considered an oversight
rather than a permissible neglect of degenerate
cases, or a gap rather than an exposition tak-
ing widely understood background for granted.
Proofs depend on their power to persuade indi-
vidual mathematicians, and there is no objective

standard for what is considered acceptable, merely
a vague community consensus. There is frequently
debate over whether “proofs” from the past can
be considered acceptable today. For example, the
Fundamental Theorem of Algebra was “proved”
by, among others, d’Alembert and, in more than
one way, by Gauss. Yet opinion is divided on
which, if any, of these proofs should be consid-
ered as the first acceptable by present standards.
(The result is usually referred to as d’Alembert’s
theorem in France.) The history of Euler’s theorem
V − E + F = 2, where the letters denote the num-
ber of vertices, edges, and faces of a polyhedron,
reveals a succession of concerns over whether ap-
parent problems are errors in a “proof” or indicate
unstated assumption about the class of polyhedra
considered [15].

Since mathematics is supposed to be an exact
science and, at least in its modern incarnation,
one with a formal foundation, this situation seems
thoroughly lamentable. It is hard to resist the con-
clusion that we should be taking the idea of formal
foundations at face value and actually formalizing
our proofs. Yet is also easy to see why mathemati-
cians have been reluctant to do so. Formal proof
is regarded as far too tedious and painstaking.
Arguably formalized mathematics may be more
error-prone than the usual informal kind, as for-
mal manipulations become more complicated and
the underlying intuition begins to get lost. Russell
in his autobiography remarks that his intellect
“never quite recovered from the strain” of writing
Principia Mathematica, and as Bourbaki [4] notes:

If formalized mathematics were
as simple as the game of chess,
then once our chosen formalized
language had been described there
would remain only the task of writ-
ing out our proofs in this lan-
guage, […] But the matter is far
from being as simple as that, and
no great experience is necessary
to perceive that such a project is
absolutely unrealizable: the tini-
est proof at the beginning of the
Theory of Sets would already re-
quire several hundreds of signs
for its complete formalization. […]
formalized mathematics cannot in
practice be written down in full,
[…] We shall therefore very quickly
abandon formalized mathematics,
[…]

However, we believe that the arrival of the com-
puter changes the situation dramatically. While
perfect accuracy in formal manipulations is prob-
lematic even for trained mathematicians, checking
conformance to formal rules is one of the things
computers are very good at. There is also the
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prospect that, besides merely checking the cor-
rectness of formal arguments, the computer may
be able to help in their construction: the Bourbaki
claim that the transition to a completely formal
text is routine seems almost an open invitation to
give the task to computers. Ideally, perhaps the
computer may be able to find nontrivial proofs
entirely automatically. We will examine in more
detail later to what extent this is true.

Like Nidditch, who complained that “in the
whole literature of mathematics there is not a sin-
gle valid proof in the logical sense,” we welcome
the prospect of formalizing mathematics. In our
view, the traditional social process is an anachro-
nism to be swept away by formalization, just
as empiricism replaced a similar “social process”
used by the Greeks to decide scientific questions.
But we should emphasize that we aren’t trying to
turn mathematics into drab symbol manipulation.
Traditional informal proofs bear the dual burden
of compelling belief and conveying understand-
ing. These are not always mutually supportive and
can be antagonistic, since the former pulls in the
direction of low-level details, the latter in the di-
rection of high-level concepts. Yet a result whose
proof has been formalized can be presented to
others in a high-level conceptual way, taking for
granted that because of full formalization there
is no reasonable doubt about correctness of the
details nor uncertainty about precisely what has
been proved and from what assumptions. And in
principle, a computer program can offer views of
the same proof at different levels of detail to suit
the differing needs of readers.

Formal Verification

The woolly community process by which math-
ematical proofs become accepted seems all the
worse when one considers the fact that mathe-
matics is applied in the real world. That bridges
do not collapse and aircraft do not fall out of
the sky is a direct consequence of mathematical
design principles. If the underlying mathematics
is in doubt, then how can we trust these engi-
neering artifacts? One may doubt the relevance of
foundational concerns to the practice of applied
mathematics [8], but everyday errors in mathemat-
ical procedures, like getting the sign wrong in an
algebraic calculation, can have serious engineering
consequences. Even so, such errors probably hap-
pen less in practice than other problems such as
mechanical defects, the inaccurate modeling of the
physical world, or the failure even to perform the
appropriate mathematical analysis (e.g., checking
for dangerous resonances in bridges or aircraft
wings). For example, the failure that Frederick II
of Prussia, in a 1778 letter to Voltaire, lays at the
door of Euler (and of mathematics generally) was

arguably caused instead by his contractors’ failure
to follow Euler’s advice [9]:

I wanted to have a water jet in my
garden: Euler calculated the force
of the wheels necessary to raise the
water to a reservoir, from where it
should fall back through channels,
finally spurting out in Sanssouci.
My mill was carried out mathe-
matically and could not raise a
mouthful of water closer than fifty
paces to the reservoir. Vanity of
vanities! Vanity of mathematics!

Nowadays, there is serious concern about the
correctness of computer systems, given their ubiq-
uity in everyday life, sometimes in safety-critical
systems like fly-by-wire aircraft, antilock braking
systems, nuclear reactor controllers, and radiation
therapy machines. Yet most large computer pro-
grams or hardware systems contain “bugs”, i.e.,
design errors that in certain situations can cause
the system to behave in unintended ways. The con-
sequences of bugs can be quite dramatic: the recall
of some early Intel Pentium processors owing
to a bug in the floating-point division instruction
[25], and the explosion of the Ariane 5 rocket on
its maiden voyage as the result of a software bug,
were each estimated to have cost around US$500
million. At a more mundane level, many of us
who use computers in daily life are depressingly
familiar with strange glitches and crashes, even
though they usually cause little more than minor
annoyance.

The fundamental difficulty of writing correct
programs, and delivering them on time, began
to be recognized almost as soon as computers
became popular. By the 1970s, the general situa-
tion was often referred to as the “Software Crisis”.
Brooks [5], drawing on the experience of managing
the design of IBM’s new operating system OS/360,
recounted how adding more people to foundering
projects often just made things worse, drawing a
striking analogy with the struggles of prehistoric
creatures trapped in a tar pit:

In the mind’s eye one sees di-
nosaurs, mammoths, and saber-
toothed tigers struggling against
the grip of the tar. The fiercer the
struggle, the more entangling the
tar, and no beast is so strong or
so skillful but that he ultimately
sinks. Large-system programming
has over the past decade been such
a tar pit.

Why should this be? Most engineering artifacts
are unfailingly reliable: collapsing buildings or
exploding cars are exceptionally rare and news-
worthy events. Yet in the realm of computers,
unreliability sometimes seems to be the norm.
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Arguably, the fundamental reason is that comput-
ers are discrete and digital. In all but the most
chaotic physical systems, there are certain con-
tinuity properties meaning that small changes in
the system or environment are likely to have min-
imal consequences; indeed, physical parameters
are only ever known approximately. In a discrete
system like a computer, by contrast, the state is
in general much more precise and well-defined.
One might think that this would make computers
easier to design and more reliable, because up to
a point, one escapes the approximation and esti-
mation that is necessary in most of the physical
sciences and engineering. In principle, this should
be so. Yet the flipside is that discrete systems are
are also much more vulnerable to design errors
since the smallest possible change, a single bit,
may cause a completely different behavior, such
as going the other way in an “if …then …else …”.

Much of the appeal of using computers is that
a single algorithm is supposed to work across
a range of situations. For example, a tradition-
al program that accepts some inputs, performs a
computation and produces an output, is supposed
to work for any set of inputs, or at least for a broad
and clearly defined class. The number of possi-
ble inputs is often infinite (“any finite string of
alphanumeric characters”), or at least immensely
large (“any two 64-bit integers”). Testing on some
relatively small set of inputs can often be an effec-
tive way of finding errors, particularly if the inputs
are well-chosen, e.g., to exercise all paths through
the program created by conditional statements.
Yet we can seldom conclude with certainty, even
after extensive and elaborate testing, that there are
no remaining errors. In practice, however, while
programs are written with clear intellectual ideas
behind them, their correctness is usually checked
by just this kind of testing.

An assertion that a program with k inputs is
correct can be considered as a universally quanti-
fied proposition ∀n1, . . . , nk. P(n1, . . . , nk): for all
k-tuples of inputs n1, . . . , nk the program performs
its intended function. For any particular tuple of
inputs n1, . . . , nk, e.g., (0,1,42), we can usually
test whether P(n1, . . . , nk) holds, i.e., whether the
program works correctly on those inputs. Many
nontrivial and/or open questions in pure mathe-
matics can be expressed by formulas having the
same characteristics. (These are roughly what lo-
gicians call Π0

1 formulas.) For example, Goldbach’s
conjecture that every even integer> 2 is the sum of
two primes can be expressed using quantification
over natural numbers in the form∀n.even(n)∧n >
2 ⇒ ∃p q.prime(p)∧prime(q)∧p+q = n (we could
if we wish express the subsidiary concepts “even”
and “prime” using just quantification over natural
numbers and basic arithmetic). Once again, for a
specific n, we know we can decide the body of the
quantified formula, because we can restrict our

search to p, q ≤ n. Less obviously, the Riemann
hypothesis about zeros of the complex ζ-function
can also be expressed by a formula quantifying
only over the natural numbers and with the same
characteristics.

In typical programming practice, as we have
noted, correctness claims of the form∀n.P(n) are
usually justified by testing on particular values
of n. In mathematics, by contrast, numerical evi-
dence of that sort may suggest conjectures, and
even be subjectively compelling, yet a result is not
considered firmly established until it is rigorously
proved. There are plenty of cautionary tales to jus-
tify this attitude. For example, Fermat conjectured
that all integers 22n + 1 were prime because this
was the case for all n = 0, . . . ,4, yet it turned out
later that even 225

+ 1 was divisible by 641 and
in fact no other primes of that form are currently
known. Again, it is known by explicit calculations
thatπ(n) ≤ li(n) holds for n ≤ 1020, whereπ(n) is
the number of primes≤ n and li(n) =

∫ n
0 du/ logu,

yet it is known that π(n)− li(n) changes sign in-
finitely often. The idea of formal verification is to
adopt the same standard of evidence in program-
ming as in mathematics: prove the correctness of a
program in the manner of any other mathematical
theorem, rather than relying on the evidence of
particular test situations.

The idea of formal verification once aroused
heated controversy [3]. One criticism is that we are
ultimately interested in confirming that a physical
computing system satisfies real-life requirements.
What we produce instead is a mathematical proof
connecting abstract mathematical models of each.
We can represent this situation by the diagram in
Figure 1. Formal verification aims to prove that
the mathematical model satisfies the mathemati-
cal specification. But one must still be cognizant of
the potential gaps at the top and the bottom. How
do we know that the running of the actual system
conforms to the idealized mathematical model?

Actual system

Mathematical model

Mathematical specification

Actual requirements

6

6

6

Figure 1. The role of models in formal
verification.
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And how do we know that our formal specification
captures what we really intend?

A thorough discussion of these questions would
take us too far afield, though we may note in
passing that testing can suffer from analogous
concerns. How do we know that the reference
results we are testing against are correct? (The
infamous FDIV bug was discovered at Intel by us-
ing the faulty device as a reference model against
which to test the next generation.) And is our
testing environment really an accurate model of
the eventual deployed system? (This is particularly
an issue in integrated circuit design, where the
system is usually analyzed in simulation before
being committed to silicon.)

We are more interested in another line of criti-
cism, based on the claim that proofs of computer
system correctness are often likely to be so long
and tedious that humans cannot reasonably check
them and discuss them. Even accepting that this
claim is true, which some would not, we do not
consider this an argument against formal veri-
fication. Rather, we think it further emphasizes
the inadequacy of the traditional social process
of proof and the need for a formal, computer-
based replacement. Indeed McCarthy [22], one of
the earliest proponents of program verification,
emphasized the role of machine checking and
generation of proofs. The subsequent evolution of
automated reasoning has been closely intertwined
with verification applications [20].

Automated Reasoning in Theory
The idea of reducing reasoning to mechanical
calculation is an old dream [21]. Hobbes made
explicit the analogy between reasoning and com-
putation in his slogan “Reason […] is nothing but
Reckoning”. This connection was developed more
explicitly by Leibniz, who emphasized that a sys-
tem for reasoning by calculation must contain two
essential components:

• A universal language (characteristica uni-
versalis) in which anything can be ex-
pressed

• A calculus of reasoning (calculus ratioci-

nator) for deciding the truth of assertions
expressed in the characteristica.

Leibniz dreamed of a time when disputants
unable to agree would not waste much time in
futile argument, but would instead translate their
disagreement into the characteristica and say to
each other “calculemus” (let us calculate).

Leibniz was surely right to draw attention to the
essential first step of developing an appropriate
language. But he was far too ambitious in wanting
to express all aspects of human thought. Eventual
progress came rather by the gradual extension of
the symbolic notations already used in mathemat-
ics, culminating in the systems of formal symbolic

logic that we have already mentioned. In partic-
ular, a specific formal language called first-order

(predicate) logic (FOL), is widely regarded as a good
characteristica. Let us briefly sketch how we might
define this precisely.

The permissible terms and formulas of FOL can
be defined by grammars from formal language
theory, similar to the BNF (Backus-Naur form)
grammars often used to specify the syntax of
computer programming languages. For example,
given some previously-defined syntactic categories
of variables and functions (more properly, variable
names and function symbols), we can define the
syntax of first-order terms as follows:

term -→ variable

| function(term, . . . , term)

meaning that a term can be constructed from
variables by applying functions to other terms as
arguments (we consider constants as functions
with zero arguments). The class of formulas is
then built up using propositional connectives and
quantifiers from atomic formulas that apply n-ary
relation symbol to n terms:

formula -→ ⊥

| ⊤

| relation(term, . . . , term)

| ¬formula

| formula∧ formula

| formula∨ formula

| formula⇒ formula

| formula⇔ formula

| ∀variable. formula

| ∃variable. formula

We will consider terms and formulas not as
sequential strings, but as tree structures. In this
tree-like abstract syntax we don’t need bracketing
to indicate precedences since the construction as
a tree contains all this information. When actually
writing down formulas, we may prefer a linear con-

crete syntax more like conventional notation. In
this case we may again need bracketing to establish
precedences, and we may prefer to use convention-
al infix notation for function and relation symbols,
e.g., x+y < 2 instead of< (+(x, y),2()). But we al-
ways keep in mind that the abstract syntax is what
we are really talking about. In practical implemen-
tations, transforming from concrete to abstract
syntax (parsing) and from abstract to concrete
(prettyprinting) are well-understood tasks because
of their role in compilers and other important
applications.
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Intuitive syntactic concepts like “the variables
in a term” can be replaced by precise mathemati-
cal definitions, often by recursion on the grammar
rules:

VARS(v) = {v}

VARS(f (t1, . . . , tn)) =

n⋃

i=1

VARS(ti)

We say that a first-order formula φ is log-
ically valid, and write ⊨ φ, if it holds in any
interpretation, and satisfiable if it holds in some
interpretation. An interpretation M consists of a
nonempty domainD, for each n-ary function sym-
bol f a function fM : Dn → D and for each n-ary
relation symbol a function fM : Dn → {false, true}.
For reasons of space, we will not define precisely
what it means to hold in an interpretation. But
it is important to keep in mind how strong a
requirement it is to hold in all interpretations.
For example, 1 + 1 = 2 does not hold in all in-
terpretations, because it is perfectly permissible
that an interpretation, even if it should happen to
have D = N (which it need not), may choose to
interpret the constant symbols “1” and “2” both
as the number 7 and the “+” function symbol
as multiplication. From abstract algebra we are
already familiar with the way in which properties
like x · y = y · x may not hold in all groups, even
if they hold in some familiar examples. For a first-
order formula to be valid, it must essentially hold
for any sensible way of interpreting the functions
and relations, with only the logical constants, con-
nectives, and quantifiers (and usually the equality
relation) having a fixed meaning.

For first-order logic it is possible to define a
notion of provability that is entirely formal in na-
ture, and is sound (a provable formula is valid) and
complete (a valid formula is provable). We write
⊢ φ to indicate that φ is provable, so soundness
and completeness means that for any formula φ
we have ⊢ φ if and only if ⊨ φ. There are various
ways of defining a suitable notion of provability,
but the usual choices are based on a set of formal
inference rules that allow proof steps of a spe-
cific form. (To get started, we need at least one
inference rule with no hypotheses, also known as
an axiom.) For example, a typical inference rule is
modus ponens, stating that if both p and p ⇒ q
have been proved, we can add a new step deducing
q. The set of provable formulas is then generated
inductively by these formal rules, and according-
ly we write proof rules in the standard way for
inductive definitions:

⊢ p ⇒ q ⊢ p

⊢ q

It is now straightforward to define a corre-
sponding notion of proof, such as a tree reflecting
the patterns of inference, or simply a sequence of

formulas with an indication of how it was derived
from those earlier in the list.

For the following discussion, let us ignore the
question of what a formal proof actually consists
of, regarding both formulas and proofs as natural
numbers and writing Proves(m,n) for “proof m
is a valid proof of proposition n.” (This is quite
common when describing results of this nature,
leaning on the trick of Gödel numbering, express-
ing a symbolic entity just as a large number. For
example, one might express the symbolic expres-
sion as an ASCII string and regard the characters
as base-256 digits.) Then soundness and complete-
ness of the formal rules means that a proposition
n is logically valid if and only if ∃m. Proves(m,n),
i.e., if there exists a formal proof of n. From a
suitably abstract point of view, the purely formal
nature of the rules is manifested in the fact that
there is a mechanical procedure, or computer pro-
gram, that given any particular m and n as inputs
will decide whether indeed Proves(m,n).

To return to a philosophical question that we
raised early on, some might say that it is merely
a question of terminology what we choose to call
purely logical reasoning and what we consider as
involving mathematical hypotheses with content
going beyond pure logic. However, an important
characteristic of a proof as traditionally under-
stood is that even indifferent mathematicians
should be able, with sufficient effort, to check
that a long and difficult but clearly written proof
really is a proof, even if they barely understand
the subject matter and could not conceive of de-
vising the proof themselves, just as Hobbes did
for Pythagoras’s theorem. The fact that for formal
first-order logic, there is a proof-checking process
that can be performed by machine is for many
a solid reason for identifying “logical” reasoning
with reasoning that is first-order valid.

As part of his foundational program, Hilbert
raised further questions about logical reason-
ing, including the Entscheidungsproblem (decision
problem) for first-order logic. If the binary “proof
checking” relation Proves(m,n) is mechanical-
ly computable, what about the unary relation
of provability, Provable(n) =def ∃m.Proves(m,n)?
Church and Turing showed that it is in fact
uncomputable—a doubly significant step since
they first needed to specify what it means to be
computable. We can summarize this by saying that
although formal proof checking is mechanizable,
formal proof finding is not, even if we have an
idealized digital computer without time or space
limitations.

Having said that, proof finding is semicom-
putable (recursively enumerable) because we can
systematically try m = 0,1,2, . . . in turn, testing
in each case whether Proves(m,n). If indeed n
is logically valid, we will eventually find an m
that works and terminate our search with success.
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However, if n turns out to be invalid, this process
will continue indefinitely, and the Church-Turing
result shows that the same must sometimes hap-
pen not just for this rather uninspired method,
but for any other algorithm. Still, we might hope
to come up with more intelligent programs that
will find proofs of reasonably “simple” logically
valid formulas relatively quickly.

We emphasized earlier the important distinc-
tion between holding in all interpretations and
holding in some particular interpretation. The dif-
ficulty of the corresponding decision problems
can also be very different. Consider first-order
formulas built from constants 0 and 1, functions
+, − and · and relations =, ≤ and <, or as we say
for brevity arithmetic formulas. By the results we
have just described, whether a formulaφ holds in
all interpretations is semicomputable but not com-

putable (the restriction to an arithmetic language
does not affect either result). By contrast, it follows
from famous undecidability results due to Gödel
and Tarski that whether an arithmetic formula
holds in N (i.e., the interpretation with domain
N and the functions and relations interpreted in
the obvious way) is not even semicomputable. This
last result lends more support to the identifica-
tion of purely logical with first-order valid, since
it implies that validity for many natural exten-
sions of first-order logic, e.g., to higher-order logic
where quantification is permitted over functions
and predicates, cease even to be semicomputable.
This does not invalidate higher-order logic as a
vehicle for formal mathematics. However it shows
that for any sound formal proof system, we must
reconcile ourselves to being able to prove only
a proper subset of the higher-order valid formu-
las, or even of those first-order formulas that
hold in N.

Automated Reasoning in Practice
There are already well-established classes of com-
puter programs that manipulate symbolic expres-
sions, e.g., programming language compilers and
computer algebra systems. The same techniques
can be used to perform symbolic manipulations
of the terms and formulas of formal logic. Us-
ing modern high-level languages, e.g., OCaml or
Haskell, these manipulations can be expressed at
a high level not far from their mathematical for-
mulations on page 1402. For example, in OCaml
we can define the first-order terms as a type of
abstract syntax trees almost copying the abstract
grammar:

type term = Var of string
| Fn of string * term list;;

and express in a direct recursive way the function
returning the set of variables in a term:

let rec vars tm =
match tm with

Var v -> [v]
| Fn(f,ts) -> unions (map vars ts);;

The theoretical results in the last section sug-
gest two contrasting approaches to the prac-
tical mechanization of proof. A proof checker
expects the user to provide both the proposition
n and the formal proof m, and simply checks
that Proves(m,n). An automated theorem prover,
by contrast, takes just the proposition n and
attempts to find a suitable proof by itself. We
use the broader term proof assistant or interactive

theorem prover to cover the whole spectrum, in-
cluding these extremes and various intermediate
possibilities where the user provides hints or proof
sketches to the program to direct the search.

We refer to programs that always terminate with
a correct yes/no answer to a decision problem as
decision procedures. From the Church-Turing re-
sult, we know that there is no decision procedure
for first-order validity in general, but there are de-
cision procedures for limited or modified forms of
the same problem. For example, validity of purely
propositional formulas (those without functions,
variables or quantifiers) is computable, since the
only predicates are nullary and therefore an inter-
pretation simply assigns “true” or “false” to each of
the relation symbols, and we can systematically try
all combinations. This is the dual of the well-known
propositional satisfiability problem SAT, and al-
though it is NP-complete, there are tools that are
surprisingly effective on many large problems.
More generally, logical validity is computable for
first-order formulaswhose onlyquantifiersare uni-
versal and at the outside, e.g., ∀x y. f (f (f (x)) =
x ∧ f (f (f (f (f (x))))) = x ∧ f (f (x)) = y ⇒ x = y
(which is valid); such methods have important
applications in verification. Whether an arithmetic
formula holds in R is also computable, albeit not
very efficiently, and whether an arithmetic formu-
la involving multiplication only by constants (a
“Presburger formula”) holds in N or Z is quite effi-
ciently computable; even further restricted forms
of this problem are useful in verification. There
are also “combination” techniques for checking
validity of formulas in languages including some
symbols with a specific interpretation and oth-
ers where all interpretations are permitted as in
pure first-order validity. Modern SMT (satisfiability
modulo theories) decision procedures are effective
implementations of these methods.

In the early computer experiments in the late
1950s, most of the interest was in purely auto-
mated theorem proving. Perhaps the first theorem
prover to be implemented on a computer was a
decision procedure for Presburger arithmetic [6].
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Subsequently, research was dominated by proof
search algorithms for pure first-order logic. Deci-
sion procedures have proven useful in verification
applications, while proof search has achieved some
notable successes in mathematics, such as the
solution by McCune [23], using the automated
theorem prover EQP, of the longstanding “Rob-
bins conjecture” concerning the axiomatization
of Boolean algebra, which had resisted human
mathematicians for some time. However, for some
problems there seems to be no substitute for
human involvement, and there was also consid-
erable interest in proof checking at around the
same time. The idea of a proof assistant that
struck a balance between automation and human
guidance appeared with the SAM (semi-automated
mathematics) provers. Influential systems from
the 1970s such as AUTOMATH, LCF, Mizar and
NQTHM introduced most of the ideas that lie
behind today’s generation of proof assistants.

The purely automatic systems tend to adopt
inference rules that are conducive to automated
proof search, such as resolution, while the in-
teractive systems adopt those considered more
suitable for human beings such as natural deduc-
tion. However, in the SAM tradition, the leading
interactive systems also tend to include an arsenal
of decision procedures and proof search methods
that can automate routine subproblems. Whatev-
er the panoply of proof methods included, the
system is some sort of computer program, and
therefore its set of provable theorems is still at
least semicomputable. However, since computer
programs, especially large and complicated ones,
are known to be prone to error, how can we be
confident that such a system is sound, i.e., that
the set of provable formulas is a subset of the set
of valid ones?

Since we have been proposing theorem provers
as an improvement on human fallibility and as a
way of proving the correctness of other programs,
this is a serious question: we seem to be in danger
of an infinite regress. However, sound principles
of design can provide a fairly satisfying answer.
Some systems satisfy the de Bruijn criterion: they
can output a proof that is checkable by a much
simpler program. Others based on the LCF ap-
proach [10] generate all theorems internally using
a small logical kernel: only this is allowed to create
objects of the special type “theorem”, just as only
the kernel of an operating system is allowed to
execute in privileged mode.

There is a fair degree of unanimity on the
basic formal foundations adopted by the various
proof assistants of today: most are based on either
first-order logic plus set theory, or some version
of simple type theory, or some constructive type
theory. But the systems vary widely in other char-
acteristics such as the level of automation and
the style in which proof hints or sketches are

provided [28]. One interesting dichotomy is be-
tween procedural and declarative proof styles [12].
Roughly, in a declarative proof one outlines what
is to be proved, for example a series of interme-
diate assertions that act as waystations between
the assumptions and conclusions. By contrast, a
procedural proof explicitly states how to perform
the proofs (“rewrite the second term with lemma 7
…”), and some procedural theorem provers such as
those in the LCF tradition use a full programming
language to choreograph the proof process.

Conclusions and Future Prospects
The use of formal proofs in mathematics is a
natural continuation of existing trends towards
greater rigor. Moreover, it may well be the only
practical way of gaining confidence in proofs that
are too long and complex to check in the tradition-
al way (e.g., those in formal verification), or those
that already involve ad hoc computer assistance.
Hitherto, formalization has attracted little interest
in the mathematical community at large because
it seems too difficult. There is no escaping the
fact that creating formal proofs is still difficult
and painstaking. However, in barely fifty years,
computer proof assistants have reached the stage
where formalizing many nontrivial results is quite
feasible, as the other papers in this issue illustrate.
In our opinion, progress has come mainly through
the following:

• The cumulative effects as libraries of for-
malized mathematics are developed and
can be built upon by others without start-
ing from scratch.

• The integration into proof assistants of
more automated decision procedures,
while maintaining high standards of
logical rigor.

• More attention to the languages used to
expressproofs, and various interface ques-
tions that make the systems more conve-
nient to use.

We believe that these trends will continue for
some time, and perhaps other avenues for im-
provement will be more thoroughly explored. For
example, computer algebra systems already fea-
ture many powerful algorithms for automating
mainstream mathematics, which if incorporated
in a logically principled way could be very valu-
able [14]. As proof assistant technology further
improves, we can expect it to become increasing-
ly accessible to mathematicians who would like
to put the correctness of their proofs beyond
reasonable doubt.
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