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Abstract We describe the library of theorems about N-dimensional Euclidean space
that has been formalized in the HOL Light prover. This formalization was started
in 2005 and has been extensively developed since then, partly in direct support of
the Flyspeck project, partly out of a general desire to develop a well-rounded and
comprehensive theory of basic analytical, geometrical and topological machinery.
The library includes various ‘big name’ theorems (Brouwer’s fixed point theorem,
the Stone-Weierstrass theorem, the Tietze extension theorem), numerous non-trivial
results that are useful in applications (second mean value theorem for integrals,
power series for real and complex transcendental functions) and a host of supporting
definitions and lemmas. It also includes some specialized automated proof tools. The
library has as planned been applied to the Flyspeck project and has become the basis
of a significant development of results in complex analysis, among others.

Keywords Formalized mathematics · Euclidean space · Vector space · HOL

1 Introduction

A library of formalized mathematics can be considered as the logical formalization
of a suitably chosen compendium of proven theorems from textbooks and papers,
together perhaps with tools for the automation of common patterns of reasoning.
This paper gives a brief overview of the substantial library of results about N-
dimensional Euclidean space formalized in HOL Light.

The initial impetus from our development came from the Flyspeck project to
formalize the Kepler conjecture [3], where most of the reasoning is based in R

3 or
occasionally R

2 or R. While a few concepts such as vector cross products, are specific
to R

3, most of the theory has been developed for general R
N so as to be more
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widely applicable. Our theorem prover HOL Light [6] is based on a logic without
dependent types, but we can still encode the index N as a type (roughly, an arbitrary
indexing type of size N), so theorems about specific sizes like 3 really are just type
instantiations of theorems for general N stated with polymorphic type variables. The
basic setup is described in more detail and some initial results are presented in [8].
Since that paper was written, the library has been very substantially expanded into
new areas, and the present paper gives a more up-to-date picture.

With some minimal exceptions noted later we do not generalize beyond R
N to,

for example, analysis in arbitrary Banach or Hilbert spaces. This has the evident
disadvantage that if some more general results are needed, our library cannot be
used directly to derive them, though the proofs could certainly be generalized
in a mechanical way. On the positive side, our theory copes well with a wide
range of applications and the formalization is pleasingly direct and uncluttered. For
example, we simply say that a function f : R

M → R
N is ‘continuous on S’ rather than

‘continuous as a function from the subtopology over S of the Euclidean topology on
R

M into the Euclidean topology on R
N’. Most such details, as well as more mundane

ones like ensuring compatibility of dimensions in matrix multiplication, are taken
care of by the HOL type system and are mostly inferred automatically.

1.1 Famous Theorems Versus Technical Results

It’s natural to focus any discussion of such a library around the most famous
or substantial-seeming results. However, a focus purely on this is apt to give a
misleading impression either of the level of sophistication of the library or the hard
work or ingenuity that went into its construction. First of all, in applications it is
often less important to have powerful ‘big name’ theorems than to have a systematic
development of modest-seeming technical results, and this can often take just as
much or more hard work. For example, our theory proves the Tietze extension
theorem that a function f : R

M → R
N continuous on a closed set S ⊆ R

M has a
continuous extension to the whole of R

M (TIETZE_UNBOUNDED):

|- ∀f:realˆM->realˆN s.
closed s ∧ f continuous_on s
⇒ ∃g. g continuous_on (:realˆM) ∧ (∀x. x ∈ s ⇒ g x = f x)

the Brouwer fixed point theorem that a continuous function f from a nonempty
convex compact S ⊆ R

N to itself has a fixed point (BROUWER):

|- ∀f:realˆN->realˆN s.
compact s ∧ convex s ∧ ¬(s = {}) ∧
f continuous_on s ∧ IMAGE f s SUBSET s
⇒ ∃x. x ∈ s ∧ f x = x

the Krein–Milman theorem (which might better be called the Minkowski theorem in
our setting of R

N) that a convex compact set is the convex hull of its set of extreme
points (KREIN_MILMAN_MINKOWSKI):

|- ∀s:realˆN->bool.
convex s ∧ compact s ⇒ s = convex hull {x | x extreme_point_of s}
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and the Riemann Mapping Theorem that a nontrivial, open and simply connected
subset of C is biholomorphic to the unit disc (RIEMANN_MAPPING_THEOREM):

|- ∀s:complex->bool.
open s ∧ simply_connected s ⇔
s = {} ∨
s = (:complex) ∨
∃f g. f holomorphic_on s ∧

g holomorphic_on ball(Cx(&0),&1) ∧
(!z. z ∈ s ⇒ f z ∈ ball(Cx(&0),&1) ∧ g(f z) = z) ∧
(!z. z ∈ ball(Cx(&0),&1) ⇒ g z ∈ s ∧ f(g z) = z

However, it is often just as important to have less famous and more technical
results such as the fact that an indefinite integral is a continuous function of the upper
limit of integration (INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT):

|- ∀f:realˆM->realˆN a b.
f integrable_on interval[a,b]
⇒ (λx. integral (interval[a,x]) f) continuous_on interval[a,b]

or that the relative interior of a polyhedron S defined by the intersection of its affine
hull and a set of halfspaces

⋂
i{x | ai · x ≤ b} that is irredundant is in fact S ∩ ⋂

i{x |
ai · x < b} (RELATIVE_INTERIOR_POLYHEDRON_EXPLICIT):

|- ∀s:realˆN->bool f a b.
FINITE f ∧
s = affine hull s INTER INTERS f ∧
(∀h. h ∈ f ⇒ ¬(a h = vec 0) ∧ h = {x | a h dot x <= b h}) ∧
(∀f’. f’ PSUBSET f ⇒ s PSUBSET affine hull s INTER INTERS f’)
⇒ relative_interior s =

{x | x ∈ s ∧ ∀h. h ∈ f ⇒ a h dot x < b h}

or that the winding number of a simple curve around a point inside it
(implying that the curve must be closed) is ±1 (SIMPLE_CLOSED_PATH_
NORM_WINDING_NUMBER_INSIDE):

|- ∀g z. simple_path g ∧ z ∈ inside(path_image g)
⇒ norm(winding_number(g,z)) = &1

or simply an accurate rational approximation to π (PI_APPROX_32):

|- abs(pi - &13493037705 / &4294967296) <= inv(&2 pow 32)

And collectively, we feel sure that those four technical results took considerably
more work to establish than their four more famous relatives.

1.2 Serious Theorems Versus Trivialities

A striking contrast between textbooks and formalized libraries is that the latter
tend to record for later use many ‘theorems’ that seem so simple and obvious
that a textbook would probably not even mention them except perhaps in a casual
aside, and wouldn’t dignify them even with the appellation ‘Lemma n’. That such
banalities are needed in formalized mathematics reflects the relatively limited power
of automated theorem provers: these ‘trivial’ results would not usually be established
unaided by the built-in automation, but must explicitly be proved somewhere. Once
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proved, they could still be deployed in a more automated way as background
knowledge, but our own style is to keep tighter control over the lemmas used and
keep proofs fairly explicit.

Often, such facts only sink into one’s consciousness after proving them several
times in the course of another proof. Even if such a result is so simple that it only
takes a couple of lines and a moment’s thought, it can become very tedious to
interrupt the flow of a more interesting proof to produce such a result repeatedly.
So when this happens, we try to recognize it as a lemma, prove it separately, give it
a name and thereafter refer to it by that name. Still, there are degrees of triviality.
Some theorems are so simple that a detailed formal proof falls into one’s mind almost
immediately as necessary:

– The number π is strictly positive (PI_POS)

|- &0 < pi

– A 2-element set is collinear (COLLINEAR_2)

|- ∀x y. collinear {x, y}

– A convex hull is indeed convex (CONVEX_CONVEX_HULL)

|- ∀s. convex (convex hull s)

– An ‘open halfspace’ is indeed an open set (OPEN_HALFSPACE_LT)

|- ∀a b. open {x | a dot x < b}

– If x, y and z are in an affine set, so is x + a(y − z) (IN_AFFINE_ADD_MUL_
DIFF)

|- ∀s a x y z.
affine s ∧ x ∈ s ∧ y ∈ s ∧ z ∈ s ⇒ x + a % (y - z) ∈ s

– A nonempty open set cannot have measure zero (OPEN_NOT_NEGLIGIBLE)

|- ∀s. open s ∧ ¬(s = {}) ⇒ ¬negligible s

Some apparently ‘trivial’ properties are a bit more interesting, in that they are still
pretty obvious but one needs to think at least briefly to come up with a formal proof,
e.g.

– If a connected set contains a point x where a · x ≤ b and a point y where a · y ≥ b
then it contains a z such that a · z = b (CONNECTED_IVT_HYPERPLANE):

|- ∀s x y a b.
connected s ∧ x ∈ s ∧ y ∈ s ∧ a dot x <= b ∧ b <= a dot y
⇒ ∃z. z ∈ s ∧ a dot z = b

– If two hyperplanes H = {x : R
N | a · x = b} and H′ = {x : R

N | a′ · x = b ′} are
such that H ⊆ H′, then except in the degenerate cases of H = ∅ (i.e.
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a = 0, b �= 0) or H′ = R
N (i.e. a′ = 0, b = 0), we actually have H = H′

(SUBSET_HYPERPLANES)

|- ∀a b a’ b’.
{x | a dot x = b} SUBSET {x | a’ dot x = b’} ⇔
{x | a dot x = b} = {} ∨
{x | a’ dot x = b’} = (:realˆN) ∨
{x | a dot x = b} = {x | a’ dot x = b’}

Of course, the dividing line is subjective, and at the high end these tend towards
results that seem rather trifling but are nevertheless useful to know and might well
be explicitly noted in a sufficiently careful informal treatment. For example, the fol-
lowing is actually Theorem 2.3.4 of [20] and leads to many interesting consequences.

– If c is in the relative interior of a convex set S and x in its clo-
sure then the segment [c, x) is in the relative interior (IN_RELATIVE_
INTERIOR_CLOSURE_CONVEX_SHRINK)

|- ∀s e x c.
convex s ∧ c ∈ relative_interior s ∧ x ∈ closure s ∧
&0 < e ∧ e <= &1
⇒ x - e % (x - c) ∈ relative_interior s

Moreover, theorems whether interesting or uninteresting sometimes collect trivial
side-conditions that one might forget in an informal proof. For example, notice how
the result about hyperplanes above (SUBSET_HYPERPLANES) needed to take into
account cases where the so-called ‘hyperplane’ {x | a · x = b} degenerates because
a = 0. The complex transcendental functions are particularly rich in tricky conditions
that one can forget, and it is quite valuable (if annoying) that the machine never
does forget and can help to keep track of them. When a theorem holds anyway
in various degenerate cases that one wouldn’t consider, it’s arguably worth the
effort to prove it without unnecessary conditions, since those conditions would
otherwise need to be checked each time the theorem is deployed. For example,
consider the theorem that a continuous mapping f from a sphere with center a
and radius r to some other set s is homotopic to some constant function λx. c iff
it extends to a continuous g defined on the whole of the corresponding closed ball
(NULLHOMOTOPIC_SPHERE_EXTENSION):

|- ∀f:realˆM->realˆN s a r.
(∃c. homotopic_with (λx. T) ({x | norm(x - a) = r},s) f (λx. c)) ⇔
(∃g. g continuous_on cball(a,r) ∧ IMAGE g (cball(a,r)) SUBSET s ∧

∀x. x ∈ {x | norm(x - a) = r} ⇒ g x = f x

This theorem has no condition that the radius r is positive, because the theorem
turns out to be degenerately true if r < 0 or r = 0, and the requirement that f be
continuous is not made an explicit condition because it follows automatically from
either side of the equivalence.

1.3 Orientation

The following table lists the files containing proof scripts, in their standard
build order, with an indication of roughly what they contain and the number
of bytes and lines (this is for revision 130 at the HOL Light download site
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http://code.google.com/p/hol-light/). The complete library, including the background
material from the HOL Light core and other libraries, contains 9724 named formal
theorems.

File Bytes Lines Contents
misc.ml 20,611 492 Background on suprema,

hulls etc.
vectors.ml 325,273 7,531 Vectors in R

N , matrices,
linear algebra

determinants.ml 105,718 2,243 Determinants of N × N matrices
topology.ml 604,696 13,111 General topology, mainly on R

N

convex.ml 877,880 18,055 Affine and convex sets, convex
functions

polytope.ml 253,278 5,200 Faces, extreme points, polytopes,
polyhedra

dimension.ml 259,851 5,275 Brouwer, Jordan curve theorem
derivatives.ml 119,474 2,466 Fréchet derivatives, mean value

theorem etc.
clifford.ml 44,977 979 Geometric (Clifford) algebra
integration.ml 775,569 15,846 Kurzweil–Henstock gauge

integration in R
N

measure.ml 384,253 7,830 Lebesgue measure, measurable
functions

complexes.ml 73,182 1,911 Complex numbers, arithmetic,
conjugation etc.

canal.ml 139,416 3,040 Basic analysis over complex
numbers

transcendentals.ml 264,412 5,869 Real and complex transcendental
functions

realanalysis.ml 616,694 13,340 Analytical theorems in special
case R

cauchy.ml 758,016 14,997 Cauchy integral theorem and
consequences

All files 5,623,300 118,185 TOTAL

The next section goes in more detail into the contents of most of these files.
Since space is limited, we can only give a very brief sketch of each, and readers are
encouraged to browse the formal proof scripts at the URL given above.

1.4 Authorship and Informal Models

This formalization was started by the present author, and the majority of the
proof scripts are still by him, but others have made substantial direct contributions
(not to mention the pervasive influence of the Flyspeck project). Lars Schewe
contributed a significant part of the material on convex and affine sets, including
basic theorems about affine dependence and Radon’s theorem. The basic results on
complex analysis developed by the present author were considerably extended by
Marco Maggesi and his collaborators including Graziano Gentili and Gianni Ciolli

http://code.google.com/p/hol-light/
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(higher complex derivatives, the Cartan theorems) and Valentina Bruno (Cauchy’s
inequality, analytic continuation, maximum modulus principle, Schwartz’s Lemma).

For most non-trivial results, the first step before creating a formal proof is to have
a clearly understood informal proof in mind. We have not followed any one specific
treatment of any large area of mathematics, but have always chosen what seemed
the best proof from the available literature based on what results had already been
formalized and our intuition about how easy certain informal proofs are to formalize.
We would just mention two nice textbooks that we have found ourselves returning to
over and over again, Webster’s book on convexity [20] and Yee and Vyborny’s book
on the Kurzweil–Henstock integral [22].

2 A Tour of the Library

Here we will systematically go through the files listed above giving a slightly more
detailed idea of their content. To save space, we will omit most of the complex
analysis files, a fairly detailed description of the initial development of which can
be found elsewhere [9].

2.1 misc.ml

This file does not yet talk about vectors in R
N but contains some auxiliary material

that is used when we do. For example, it contains additional lemmas about suprema
and infima like this one (SUP_FINITE):

|- ∀s. FINITE s ∧ ¬(s = {}) ⇒ sup s ∈ s ∧ (∀x. x ∈ s ⇒ x <= sup s)

It also contains a general ‘hull’ operation, written infix, which given a predicate
P and a set s yields the intersection of all supersets of s satisfying P:

|- ∀P s. P hull s = INTERS {t | P t ∧ s SUBSET t}

This is used in several places later, most notably ‘convex hull’ and ‘affine hull’, and
it is attractive that some of the general properties can be deduced without special
knowledge of P, for examples this one (HULL_MINIMAL)

HULL_MINIMAL = |- ∀P s t. s SUBSET t ∧ P t ⇒ (P hull s) SUBSET t

2.2 vectors.ml

This is where the basic operations on vectors in R
N are defined, for example addition

(using overloading of the conventional ‘+’ symbol) and scalar-vector multiplication
(using the distinct symbol ‘%’). We also define the usual dot (inner) product, in a
way quite close to the informal notation x · y = ∑N

i=1 xi yi, except that since our N is a
type, we need to convert it to a number by applying dimindex to its universe set:

|- (x:realˆN) dot (y:realˆN) =
sum(1..dimindex(:N)) (λi. x$i * y$i)
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We then also define the usual Euclidean norm norm and distance dist functions.

|- norm x = sqrt(x dot x)

|- dist(x,y) = norm(x - y)

Among other theorems, we prove the triangle law NORM_TRIANGLE and the
Cauchy–Schwarz inequality NORM_CAUCHY_SCHWARZ:

|- ∀x y. norm(x + y) <= norm(x) + norm(y)

|- ∀x y. abs(x dot y) <= norm(x) * norm(y)

Other vectorial concepts formalized include orthogonality, between-ness and
collinearity. Here is a typical theorem (COLLINEAR_BETWEEN_CASES) relating the
last two concepts:

|- ∀a b c:realˆN.
collinear {a,b,c} ⇔
between a (b,c) ∨ between b (c,a) ∨ between c (a,b)

Next we define the notion of linear function R
M → R

N

|- linear (f:realˆM->realˆN) ⇔
(∀x y. f(x + y) = f(x) + f(y)) ∧
(∀c x. f(c % x) = c % f(x))

and also operations on matrices, treating matrices as vectors of vectors in a uniform
way. We then proceed to develop a body of basic linear algebra theorems, standard
fare about spans, subspaces, bases, dimension and rank. For example, this theorem
relates the dimension of a space of sums to the intersection and its constituents
(DIM_SUMS_INTER):

|- ∀s t:realˆN->bool.
subspace s ∧ subspace t
⇒ dim {x + y | x ∈ s ∧ y ∈ t} + dim(s INTER t) = dim(s) + dim(t)

We often want to switch between the types R
1 and R, which are formally different,

and we do this via mutually inverse functions lift : R → R
1 and drop : R

1 → R.

2.3 determinants.ml

Here we define the determinant of an N × N matrix (det):

|- det(A:realˆNˆN) =
sum { p | p permutes 1..dimindex(:N) }

(λp. sign(p) * product (1..dimindex(:N)) (λi. A$i$(p i)))

and deduce various standard properties from this very explicit definition, such as the
product formula (DET_MUL). The double star used for matrix multiplication here is
also overloaded for vector-matrix and matrix-vector multiplication:

|- ∀A B:realˆNˆN. det(A ** B) = det(A) * det(B)



The HOL Light Theory of Euclidean Space 181

We also prove Cramer’s rule (CRAMER), which is stated using the ‘lambda’
function used to construct a vector (including a vector of vectors, which is our
representation of a matrix) componentwise:

|- ∀A:realˆNˆN x b.
¬(det(A) = &0)
⇒ (A ** x = b ⇔

x = lambda k.
det((lambda i j. if j = k then b$i else A$i$j):realˆNˆN) /
det(A))

In this file we also define orthogonal transformations and various theorems
associated with them.

2.4 topology.ml

Here we start with a somewhat rudimentary development of general topological
spaces, defining concepts like open_in, whether a set is open in a particular
topology. But this fairly general material is brief and only exploited to define relative
interiors (with respect to a set’s affine hull). Most of the time we work with respect to
the standard Euclidean topology, and here we define the usual topological concepts
like open, compact, connected, limit_point_of (which asserts that a point is
a limit point of a set), interior, closure and frontier (boundary). Here, for
example, is the Heine-Borel theorem that a set is compact iff every open cover has a
finite subcover (COMPACT_EQ_HEINE_BOREL):

|- compact s ⇔
∀f. (∀t. t ∈ f ⇒ open t) ∧ s SUBSET (UNIONS f)

⇒ ∃f’. f’ SUBSET f ∧ FINITE f’ ∧ s SUBSET (UNIONS f’)

We include some properties that might not strictly be considered topological, such
as boundedness (bounded) and completeness (complete), the latter being used, for
example, in the Banach fixed point theorem:

|- ∀f s c. complete s ∧ ¬(s = {}) ∧
&0 <= c ∧ c < &1 ∧
(IMAGE f s) SUBSET s ∧
(∀x y. x ∈ s ∧ y ∈ s ⇒ dist(f(x),f(y)) <= c * dist(x,y))
⇒ ∃!x:realˆN. x ∈ s ∧ (f x = x)

Also in this file we define a reasonably general notion of limit (something close
to Smith–Moore convergence nets). We pay particular attention to convergence at a
point (possibly approached within a set) and convergence of a sequence, which can
be characterized in the standard way even though the actual definitions are more
technical (LIM_WITHIN and LIM_SEQUENTIALLY):

|- (f --> l) (at a within s) ⇔
∀e. &0 < e

⇒ ∃d. &0 < d ∧
∀x. x ∈ s ∧ &0 < dist(x,a) ∧ dist(x,a) < d
⇒ dist(f(x),l) < e

|- (s --> l) sequentially ⇔
∀e. &0 < e ⇒ ∃N. ∀n. N <= n ⇒ dist(s(n),l) < e
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We prove various routine combining theorems about limits, most of which are
independent of the particular kind of limit, such as the following (LIM_SUB):

|- ∀net f g l m.
(f --> l) net ∧ (g --> m) net ⇒ ((λx. f(x) - g(x)) --> l - m) net

We also define uniform convergence, continuity and uniform continuity and a slew
of similar routine combining theorems, and set up notation for open and closed inter-
vals and segments using an overloading trick to approximate the common convention
of using [a, b ] for the closed version and (a, b) for the open. Thus for example, the
intervals written interval[a,b] and interval(a,b) are respectively the set of
points x such that ai ≤ xi ≤ bi or ai < xi < bi for each coordinate. Note that these are
N-dimensional intervals, so we might have chosen to call them ‘boxes’ or ‘rectangles’
to avoid misleading one-dimensional connotations of the name.

2.5 convex.ml

This file starts by defining the notions of convex and affine set, which are used
constantly in more geometrical reasoning:

|- affine s ⇔ ∀x y u v. x ∈ s ∧ y ∈ s ∧ u + v = &1
⇒ (u % x + v % y) ∈ s

|- convex s ⇔
∀x y u v. x ∈ s ∧ y ∈ s ∧ &0 <= u ∧ &0 <= v ∧ u + v = &1

⇒ (u % x + v % y) ∈ s

In particular, we develop properties of the affine and convex hulls of a set, and
also define the notion of affine dimension (aff_dim), which is similar to dim except
that the origin is not privileged and we define it as an integer rather than a natural
number so that we can maintain the usual convention that the affine dimension of
the empty set is −1. Using the general notion of affine dependence we also define the
special case of coplanarity and more about collinearity, and we define the concept of
relative interior and prove several important properties. Among the more interesting
theorems proved here are Radon’s theorem that an affinely dependent set can be
partitioned into two parts whose convex hulls overlap (RADON):

|- ∀c. affine_dependent c
⇒ ∃(m:realˆN->bool) (p:realˆN->bool).

m SUBSET c ∧ p SUBSET c ∧ DISJOINT m p ∧
¬(DISJOINT (convex hull m) (convex hull p))

and various classic results about separating convex sets from each other by hyper-
planes, e.g. this result (SEPARATING_HYPERPLANE_COMPACT_CLOSED):

|- ∀s t. convex s ∧ compact s ∧ ¬(s = {}) ∧
convex t ∧ closed t ∧ DISJOINT s t
⇒ ∃a b. (∀x. x ∈ s ⇒ a dot x < b) ∧

(∀x. x ∈ t ⇒ a dot x > b)

A few additional notions like continuous paths (path) and the special case of
arcs (arc) are defined here because it is more convenient to have some of the
theorems about convex sets available for various lemmas. We also derive some
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theorems about connectedness as trivial consequences of theorems about convexity,
even though they could have been proved earlier with little extra effort. Sometimes
there is a trade-off between finding the simplest and most natural proof and putting
related proofs together. Similarly, results on homotopy of continuous functions and
contractibility and simple connectedness of topological spaces also end up here.
(These are used extensively in complex analysis.) Since this material has grown
significantly it should probably be separated out into its own file.

2.6 polytope.ml

Here we start by defining ‘extreme points’ and ‘faces’ of a convex set, e.g.

|- t face_of s ⇔
t SUBSET s ∧ convex t ∧
∀a b x. a ∈ s ∧ b ∈ s ∧ x ∈ t ∧ x ∈ segment(a,b)

⇒ a ∈ t ∧ b ∈ t

We develop a number of properties of faces and extreme points in general, notably
the Krein–Milman theorem that we have mentioned above, and various others such
as the following (FACE_OF_FACE, FACE_OF_TRANS and FACE_OF_SING):

|- ∀f s t. t face_of s ⇒ (f face_of t ⇔ f face_of s ∧ f SUBSET t)

|- ∀s t u. s face_of t ∧ t face_of u ⇒ s face_of u‘,

|- ∀x s. {x} face_of s ⇔ x extreme_point_of s

Most of the file is concerned with polytopes, which are convex hulls of finite sets,
and polyhedra, which are finite intersections of halfspaces:

|- polytope s ⇔ ∃v. FINITE v ∧ s = convex hull v

|- polyhedron s ⇔
∃f. FINITE f ∧

s = INTERS f ∧
(∀h. h ∈ f ⇒ ∃a b. ¬(a = vec 0) ∧ h = {x | a dot x <= b})

After a fairly long development of technical lemmas (one example
of which was mentioned above), we end up with some relatively simple
properties such as the characterization of polytopes as bounded polyhedra
(POLYTOPE_EQ_BOUNDED_POLYHEDRON):

|- ∀s. polytope s ⇔ polyhedron s ∧ bounded s

2.7 dimension.ml

This file contains a small number of deeper theorems about the topology of R
N , most

significantly the Brouwer fixed point theorem (see BROUWER above), which is proved
using a combinatorial lemma following Kuhn [15]. This is somewhat analogous to
the “Sperner’s Lemma” proof often found in books, but trades a more complex
combinatorial lemma for a simpler subdivision of a large cube into cubes rather than
a simplex into simplices.
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Brouwer’s theorem is immediately applied to a useful lemma sometimes called the
‘Fashoda meet theorem’, that if one continuous path goes from top to bottom of a
rectangle in R

2 and another goes from left to right, then they must cross (FASHODA):

|- ∀f g a b:realˆ2.
path f ∧ path g ∧
path_image f SUBSET interval[a,b] ∧
path_image g SUBSET interval[a,b] ∧
(pathstart f)$1 = a$1 ∧ (pathfinish f)$1 = b$1 ∧
(pathstart g)$2 = a$2 ∧ (pathfinish g)$2 = b$2
⇒ ∃z. z ∈ path_image f ∧ z ∈ path_image g

This in its turn is used as a major lemma in the proof of the Jordan Curve
Theorem (JORDAN_CURVE_THEOREM), which had already been proved by Hales
using a somewhat different proof [4].

|- ∀c:realˆ1->realˆ2.
simple_path c ∧ pathfinish c = pathstart c
⇒ ∃ins out.

¬(ins = {}) ∧ open ins ∧ connected ins ∧
¬(out = {}) ∧ open out ∧ connected out ∧
bounded ins ∧ ¬bounded out ∧
ins INTER out = {} ∧
ins UNION out = (:realˆ2) DIFF path_image c ∧
frontier ins = path_image c ∧
frontier out = path_image c

2.8 derivatives.ml

Here we define the traditional Frechet derivative of a function, meaning essentially
a local linear approximation

|- (f has_derivative f’) (at x) ⇔
linear f’ ∧
((λy. inv(norm(y - x)) % (f(y) - (f(x) + f’(y - x)))) --> vec 0)
(at x)

All the usual results such as derivatives of sums are easy to prove:

|- (f has_derivative f’) net ∧ (g has_derivative g’) net
⇒ ((λx. f(x) + g(x)) has_derivative (λh. f’(h) + g’(h))) net

and the ‘chain rule’ is also reasonably straightforward:

|- (f has_derivative f’) (at x) ∧
(g has_derivative g’) (at (f x))
⇒ ((g o f) has_derivative (g’ o f’)) (at x)

We also prove a somewhat unusual version of the inverse function theorem, which
does not a priori require continuity of the derivative [19].

|- open s ∧ f continuous_on s ∧
x ∈ s ∧ (f has_derivative f’) (at x) ∧ linear g’ ∧ (f’ o g’ = I)
⇒ ∀t. t SUBSET s ∧ x ∈ interior(t)

⇒ f(x) ∈ interior(IMAGE f t)



The HOL Light Theory of Euclidean Space 185

2.9 clifford.ml

This file is a development of some of the basics of geometric algebra. Because it is
not used in what follows and is somewhat experimental (though we anticipate using
it to develop a theory of differential forms) we will not discuss it further.

2.10 integration.ml

This file is a development of integration in a quite general context, of func-
tions R

M → R
N over an arbitrary subset s ⊆ R

M. The definition is based on
the Kurzweil–Henstock gauge integral. We will not go through the somewhat
technical definitions, but the basic concept defined is (f has_integral y) s,
meaning that

∫
s f = y and that integral is defined. There are numerous simple

manipulative theorems proved, including the composition with a linear function
(HAS_INTEGRAL_LINEAR):

|- ∀f:realˆM->realˆN y s h:realˆN->realˆP.
(f has_integral y) s ∧ linear h ⇒ ((h o f) has_integral h(y)) s

and the integrability of uniform limits (INTEGRABLE_UNIFORM_LIMIT)

|- ∀f a b. (∀e. &0 < e
⇒ ∃g. (∀x. x ∈ interval[a,b] ⇒ norm(f x - g x) <= e) ∧

g integrable_on interval[a,b])
⇒ (f:realˆM->realˆN) integrable_on interval[a,b]

There are also many deeper results such as the powerful monotone and dominated
convergence theorems, the latter (DOMINATED_CONVERGENCE) looking like this:

|- ∀f:num->realˆM->realˆN g h s.
(∀k. (f k) integrable_on s) ∧ h integrable_on s ∧
(∀k x. x ∈ s ⇒ norm(f k x) <= drop(h x)) ∧
(∀x. x ∈ s ⇒ ((λk. f k x) --> g x) sequentially)
⇒ g integrable_on s ∧

((λk. integral s (f k)) --> integral s g) sequentially

The gauge integral is a ‘nonabsolute’ generalization of the Lebesgue integral on
Euclidean space, but we define the following notion that turns out to be exactly
equivalent to Lebesgue integration as traditionally defined:

|- f absolutely_integrable_on s ⇔
f integrable_on s ∧ (λx. lift(norm(f x))) integrable_on s

2.11 measure.ml

In this file we define two variants of measurability. One, lebesgue_measurable,
is defined in a more traditional way based on a theory of measurable functions, while
the other measurable is defined directly in terms of integration of characteristic
functions. The latter corresponds to measurability with a bounded measure, which is
returned by a function measure. We also have a concept of a null set, negligible,
which corresponds to having measure zero. We prove various routine closure
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properties (these are called MEASURE_NEGLIGIBLE_UNION and MEASURABLE_
INTER):

|- ∀s t. measurable s ∧ measurable t ∧ negligible(s INTER t)
⇒ measure(s UNION t) = measure s + measure t

|- ∀s t. measurable s ∧ measurable t ⇒ measurable (s INTER t)

as well as the measurability of various well-behaved sets (these are MEASURABLE_
COMPACT and LEBESGUE_MEASURABLE_OPEN)

|- ∀s. compact s ⇒ measurable s

|- ∀s. open s ⇒ lebesgue_measurable s

and conversely, the fact that measurable sets can be approximated by well-behaved
ones (this is MEASURABLE_OUTER_OPEN):

|- ∀s e. measurable s ∧ &0 < e
⇒ ∃t. open t ∧ s SUBSET t ∧

measurable t ∧ measure t < measure s + e

A slightly more exotic theorem is Steinhaus’s that if a set has strictly positive
measure then its set of differences has nonempty interior (STEINHAUS):

|- ∀s. measurable s ∧ &0 < measure s
⇒ ∃d. &0 < d ∧ ball(vec 0,d) SUBSET {x - y | x ∈ s ∧ y ∈ s}

2.12 transcendentals.ml

This file defines transcendental functions over the complex numbers and the real
numbers. Generally speaking we derive the complex variants as basic and then
deduce properties of the real functions from those. For example, the complex
exponential function is defined by its power series:

|- cexp z = infsum (from 0) (λn. z pow n / Cx(&(FACT n)))

and the real version defined in terms of that

|- exp(x) = Re(cexp(Cx x))

We prove a number of standard ‘algebraic’ facts, e.g SIN_ADD:

|- ∀x y. sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y)

as well as continuity and differentiability properties, e.g. the following for continuity
of the complex arctangent:

|- ∀s. (∀z. z ∈ s ∧ Re z = &0 ⇒ abs(Im z) < &1) ⇒ catn continuous_on s
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2.13 realanalysis.ml

In this file we deduce a slew of real analytical theorems from their counterparts either
over R

1 or C. Most of these proofs are entirely routine, even though it is somewhat
tedious to have to redefine essentially equivalent notions over the reals instead of
vectors (e.g. has_real_integral instead of has_integral. Some theorems that
were proved earlier reach their cleanest and most natural form here, such as the
fundamental theorem of calculus, including this slightly generalized form

|- ∀f f’ s a b.
FINITE s ∧
a <= b ∧ f real_continuous_on real_interval[a,b] ∧
(∀x. x ∈ real_interval(a,b) DIFF s

⇒ (f has_real_derivative f’(x)) (atreal x))
⇒ (f’ has_real_integral (f(b) - f(a))) (real_interval[a,b])

and the integral Second Mean Value Theorem (REAL_SECOND_MEAN_VALUE_
THEOREM):

|- ∀f g a b.
¬(real_interval[a,b] = {}) ∧
f real_integrable_on real_interval[a,b] ∧
(∀x y. x ∈ real_interval[a,b] ∧ y ∈ real_interval[a,b] ∧ x <= y

⇒ g x <= g y)
⇒ ∃c. c ∈ real_interval[a,b] ∧

real_integral (real_interval[a,b]) (λx. g x * f x) =
g(a) * real_integral (real_interval[a,c]) f +
g(b) * real_integral (real_interval[c,b]) f

This file often acts as a confluence of earlier threads that are brought together
in a number of non-trivial theorems including the Stone-Weierstrass theorem and
invariance of domain and dimension, e.g. INVARIANCE_OF_DOMAIN:

|- ∀f:realˆN->realˆN s.
f continuous_on s ∧ open s ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ f x = f y ⇒ x = y)
⇒ open(IMAGE f s)

3 Additional Inference Rules

As well as theorems, we have defined several convenient inference rules to improve
the level of automation. These include tools for automatically ‘differentiating by
proof’ expressions involving real and complex transcendental functions, or for prov-
ing that they are continuous, by automatically recursing through combining theorems
like the chain rule. While valuable, there is not much novelty since the idea already
appears in much older work [7].

We have also implemented a simple tool for proving routine algebraic properties
of vector expressions by reducing them to componentwise real operations. A more
interesting one decides the universal additive theory of normed spaces, which is very
useful for intricate ‘triangle law’ reasoning. This is a simple case of one of the decision
procedures discussed in [18].

Another interesting and unusual tool supports the common style of picking
convenient coordinate axes ‘without loss of generality’ by exploiting translation,
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scaling and orthogonal transformation. It works by automatically using a database
of theorems asserting invariances of various properties under such transformations
[10]. This is invaluable for more intricate results in geometry, where a convenient
choice of frame can make the eventual algebraic reduct of a geometrical problem
dramatically easier.

4 Related Work

The formalization of properties of real numbers in theorem provers goes back at
least to Jutting [13]. Since this pioneering work, many people have worked on
formalizations in various theorem provers of real and complex analysis, topology,
measure theory etc. that have significant overlap with our work [2, 4, 7, 12, 16]. In
some cases this work is more limited in scope, in that it only tackles properties of R

or R
2 rather than the significantly richer domain of R

N for arbitrary N. In other cases
it is actually more general, for example covering arbitrary measure spaces instead of
just Lebesgue measure in R

N , though this generality can come at the cost of more
intricate statements that are more difficult to apply in concrete cases.

By most measures the largest and most systematically developed library of for-
malized mathematics is the Mizar Mathematical Library; according to [21] a recent
version contains approximately 2 million lines of proof scripts, covering a wide range
of mathematical domains. This includes quite a lot of results that are similar to those
in our formalization. There are too many individual articles for us to summarize
them all here, but the reader is encouraged to browse the table of contents at
http://mizar.org/fm/. However, it has been developed in a more piecemeal way by
many authors, and not motivated as clearly by a real application like Flyspeck, so
there is not yet such a systematic feel to this collection of results.

5 Conclusions and Future Work

After about 7 years of development, this theory is becoming quite a comprehensive
compendium of results about Euclidean space, and we continue to extend it all the
time, partly driven by applications. By far the most significant application is Flyspeck
[5], but we have also recently been experimenting with formalization of Lp spaces
and Fourier series, Pick’s theorem and Euler’s polyhedron formula. With each new
application we find some fundamental results missing, but the gaps are getting less
and less significant over time, and the library is attaining the feel of a satisfying whole.

Occasionally the restriction to R
N is a hindrance, and we wish that some parts of

the work had been done more generally. Even with the restriction to R
N accepted,

the technical details of representing this space in the limited HOL type system cause
some complications. In particular, proofs by induction over dimension are usually
done in a somewhat intricate style by mapping R

M for M ≤ N into R
N as a subset,

since we cannot directly perform induction on the size of types. But for the most part
we are satisfied with the uncluttered feel of the library and its easy applicability to a
wide range of interesting problems including Flyspeck.

One glaring omission is any serious machinery for algebraic topology, which might
provide a more natural route to some of our existing results and to new ones like the

http://mizar.org/fm/
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Borsuk-Ulam theorem. We do have various basic results about homotopy including
what are in effect the ‘fundamental group’ properties, and we have sufficient material
on polyhedra to support the definition of homology groups, but none of this algebraic
machinery has actually been set up. The results on multiple integrals and change of
variable in integrals are rudimentary, with only fairly weak Fubini-like results. There
is also currently no material on differential forms or differentiable manifolds, though
eventually we hope our geometric algebra development will provide a suitable basis
for such formalizations.

There is certainly scope for more automation, since many of the current proofs
are quite long and technical. HOL Light has a built-in first-order prover MESON
which can help to bridge simple logical gaps. There has been considerable work
going back at least to [11] on exploiting more powerful ‘off-the-shelf’ first-order
provers. This kind of support would certainly enable larger gaps to be bridged and
make it possible to omit explicit references to lemmas to be used since the prover
is capable of determining useful lemmas itself; experience indicates that this can be
quite productive [17]. Nevertheless, first-order logic only covers a relatively small
part of the proofs here, which often involve higher-order reasoning, arithmetic and
algebra. Combining all these in an effective way is not easy. One common and slightly
tedious pattern is the need to instantiate index variables for coordinates before being
able to use purely automated arithmetic or algebraic reasoning, e.g. to deduce from
∀i. 1 ≤ i ≤ n ⇒ xi ≥ 0 and ∀i. 1 ≤ i ≤ n ⇒ yi ≥ 0 that ∀i. 1 ≤ i ≤ n ⇒ xi + yi ≥ 0. We
believe that this can be substantially automated using ideas from [1], and this might
be a useful step.

Given the large investment of time and effort put into this formalization, it would
be appealing if the work could be re-used in other systems. For example, it might
be possible to extend the work on importing HOL Light into Coq [14] to cover this
domain of mathematics. Moreover, if we or somebody else did want a more general
formalization in HOL Light (e.g. in the setting of arbitrary normed spaces), many
proofs are ‘morally the same’ and it would be appealing to be able to use similar
technology to generalize the proofs in a mechanical way. This should be possible, but
we are not aware of any actual work in this area.

Acknowledgements The author is grateful to everyone who has helped with the development of
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