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1 Formalizing mathematics: pure and applied

I’ve always been interested in using theorem provers both for “practical” applications
in formally verifying computer systems, and for the “pure” formalization of traditional
mathematical proofs. I particularly like situations where there is an interplay between
the two. For example, in my PhD thesis [5], written under Mike Gordon’s supervision,
I developed a formalization of some elementary real analysis. This was subsequently
used in very practical verification applications [6], where in fact I even needed to for-
malize more pure mathematics, such as power series for the cotangent function and
basic theorems about diophantine approximation.

I first joined Mike Gordon’s HVG (Hardware Verification Group) to work on an
embedding in HOL of the hardware description language ELLA. Mike had already
directed several similar research projects, and one concept first clearly articulated as a
result of these activities was the now-standard distinction between ‘deep’ and ‘shallow’
embeddings of languages [3]. Since I was interested in formalizing real analysis, Mike
encouraged me to direct my attention to case studies involving arithmetic, and this
was the starting-point for my subsequent research. Right from the beginning, Mike
was very enthusiastic about my formalization of the reals from first principles using
Dedekind cuts. Mike had been involved in Robin Milner’s group developing the original
Edinburgh LCF [4], a central feature of which was the idea of extending the logical basis
with derived inference rules to preserve soundness. Now that Mike had applied the LCF
approach to higher-order logic, suitable as a general foundation for mathematics, it was
possible to extend this idea and even develop mathematical concepts themselves in a
‘correct by construction’ way using definitions. So a definitional construction of the
reals fitted in very well with the ideals Mike had for the HOL project, an interest in
applications combined with an emphasis on careful foundations that has now become
commonplace.

In this paper I want to describe a formalization that was undertaken purely for fun,
involving complex analysis [8] and culminating in a proof of the Prime Number The-
orem. Nevertheless, it doesn’t seem entirely far-fetched to imagine some “practical”
applications of this result in the future. For example a weak form of the PNT is im-
plicitly used to justify the termination of the breakthrough AKS primality test [1], and



some simpler properties of prime numbers have been used in the verification of arith-
metical algorithms by the present author [7]. But I certainly don’t need to give any such
justification, because Mike Gordon, as well as introducing me to the fascinating world
of theorem proving, has always placed a welcome emphasis on doing “research that’s
fun”.

2 Mathematical machinery versus brute force

Formalizing the PNT in itself is not a new accomplishment, since that has already been
done very impressively by a team led by Jeremy Avigad [2]. However, that formal-
ization was of the so-called “elementary” Erdös-Selberg proof — elementary in the
sense that no higher analysis is used, not in the sense of simplicity. The usual proof
in analytic number theory textbooks relies on Cauchy’s residue theorem from complex
analysis, and the fact that there are no zeros of the Riemann ζ-function for<z ≥ 1. This
analytic proof in itself is simpler and clearer than the elementary one, but at the price
of requiring much more mathematical “machinery” as a precondition. For this reason,
Robert Solovay has suggested an analytic proof of the PNT as a good challenge in the
formalization of mathematics [12]. In the full version of this paper we plan to give a
more detailed comparison of the elementary and analytic proofs and expand on some
of the issues briefly sketched below.

Of course, it might sometimes make sense to play to the particular strengths of com-
puter theorem provers by using a different proof from the one that humans might find
appealing; cf. the comments in [13]. For example, see the proof of the Kochen-Specker
paradox from quantum mechanics, worked out as an extended example in the present
author’s HOL Light tutorial. In presenting the proof informally, one would naturally
reduce the number of cases by cleverly exploiting symmetry, whereas with a theorem
prover it’s simpler just to run through the cases by brute force. For a more challenging
example, consider proving the associativity of the chord-and-tangent addition operation
on elliptic curves. This has been done formally in Coq by Laurent Théry and Guillaume
Hanrot [10], with some of the key parts using enormous algebraic computations that
were on the edge of feasibility; indeed similar computational issues have obstructed a
related project by Joe Hurd. When I mentioned the practical difficulties caused by this
example to Dan Grayson, he suggested a more ‘human-oriented’ proof:

But why not enter one of the usual human-understandable proofs that + is as-
sociative? Too many prerequisites from algebraic geometry? [. . . ] The proof I
like most is to use the Riemann-Roch theorem to set up a bijection between
the rational points of an elliptic curve and the elements of the group of iso-
morphism classes of invertible sheaves of degree 0. That’s a lot of background
theory, probably too much for this stage of development, but then the “real”
reason for associativity is that tensor product of R-modules is an associative
operation up to isomorphism.

Indeed, it seems to the present author that formalizing mathematical machinery on
that level is probably still many years away. So it is slightly depressing to reflect that we
may be forced to formalize unnatural or ‘hacky’ proofs because not enough people are



working on the systematic development of general mathematical machinery. The work
reported in this paper is modest by comparison with the reasoning mentioned in that
quotation, but still it represents a small step in the direction of formalizing non-trivial
proofs in analytic number theory in the style of a mainstream textbook or research paper.

3 Formalizing Newman’s proof of the PNT

There are numerous different analytic proofs of the PNT, but there seems to be a general
consensus that an approach developed by Newman, just using Cauchy’s integral formula
for a simple bounded contour, is the simplest known. We took as our text to formalize
the book by Newman himself [9], more specifically the “second proof” on pp. 72-
74 using the analytic lemma on pp. 68-70. While Newman writes in a friendly and
accessible style, he sometimes assumes quite a lot of background or leaves some non-
trivial steps to the reader. The overall PNT proof naturally splits up into five parts, which
are presented by Newman in somewhat distinct styles and with widely varying levels of
explicitness.

1. The Newman-Ingham “Tauberian” analytical lemma.
2. Basic properties of the Riemann ζ-function and its derivative, including the Euler

product.
3. Chebyshev’s elementary proof that

∑
p≤n

log p
p − log n is bounded.

4. Application of analytic lemma to get summability of
∑

n(
∑

p≤n
log p

p −log n−c)/n
for some constant c.

5. Derivation from that summability that
∑

p≤n
log p

p − log n tends to a limit.
6. Derivation of the PNT from that limit using partial summation.

We have compared the main parts of our formalization against reverse-engineered
TeX for corresponding passages in Newman’s book (thanks to Freek Wiedijk for com-
posing these!) The de Bruijn factor [11], the size ratio of the gzipped formal proof text
versus the gzipped TeX (gzipped for a crude approximation to ‘information content’),
varies widely:

Part of proof dB factor
1 Analytical lemma 8.2
2 ζ-function 81.3
3 Chebyshev bound 28.2
4 Summability 11.0
5 Limit 5.4
6 PNT 30.4

It is commonly found that the de Bruijn factor for typical formalizations is about
4, so these are very high. However, the really high figures are for parts where Newman
is not really giving a proof in any sense. The quotations that follow are the sum total
of Newman’s text for parts 2, 3 and 6, which take over half of the 4939 lines in the
complete HOL Light formalization. In no cases can Newman’s passage really be called
a proof, so the comparison is hardly fair:



2 Let us begin with the well-known fact about the ζ-function: (z− 1)ζ(z) is analytic
and zero free throughout <z ≥ 1.

3 In this section we begin with Tchebyshev’s observation that
∑

p≤n
log p

p − log n is
bounded, which he derived in a direct elementary way from the prime factorization
on n!

6 The point is that the Prime Number Theorem is easily derived from ‘
∑

p≤n
log p

p −
log n converges to a limit’ by a simple summation by parts which we leave to the
reader.

If we restrict ourselves to parts 1, 4 and 5, the de Bruijn factor is about 8, still higher
than normal, but not outrageously so. And indeed, although the proof did not present any
profound difficulties, we found that it took more time to formalize Newman’s text than
we have grown to expect for other formalizations. This may indicate that Newman’s
style is fairly terse and leaves much to the reader (this does seem to be the case), or
that in this area, we sometimes have to work hard to prove things that are obvious
informally (this is certainly true for the winding number of the contour mentioned later).
For instance, a simple transformation in part 4, reversing the order of summation in this
double series for <z > 1, needed to be justified by a proof, even if not a very difficult
one, whereas it is simply posited without comment by Newman:

f(z) =
∞∑

n=1

1
nz

( ∑
p≤n

log p

p

)
=

∑
p

log p

p

[ ∑
n≥p

1
nz

]
.

To give something of the flavour of the proof, the centerpiece of Newman’s approach
is the analytical lemma; this is the only part that uses non-trivial facts about the complex
numbers and is thus the locus of the analytical ‘machinery’:

Theorem. Suppose |an| ≤ 1, and form the series
∑

ann−z which clearly
converges to an analytic function F (z) for <z > 1. If, in fact, F (z) is analytic
throughout <z ≥ 1, then

∑
ann−z converges throughout <z ≥ 1.

The proof involves applying Cauchy’s integral formula round a contour and then
performing some careful estimations of the sizes of the various line integrals involved.
The contour we use, traversed counterclockwise, is shown in figure 1; this is slightly dif-
ferent from Newman’s (using horizontal straight-line segments rather than continuing
the arc of the circle), though only because we found it easier to understand informally,
not because of any particular problem of formalization. The place where formalization
presents a striking contrast with informal perception is that in order to apply Cauchy’s
integral formula, one must verify that the winding number of this contour, formally

1
2πi

∫
γ

dz/z

is indeed 1, indicating that the curve winds exactly once round the origin counterclock-
wise. Intuitively this is obvious. When formalized in the right way, it is not difficult, but
it needs some systematic general lemmas about winding numbers of composite paths.



Fig. 1. Contour used in application of Cauchy’s integral theorem

Nevertheless, despite these reservations, the proof presents no fundamental prob-
lems and we finally derive the Prime Number Theorem. The usual informal statement
is that π(n) ∼ n/ log(n), where π(x) denotes the number of prime numbers ≤ x and
‘∼’ indicates that the ratio of the two sides tends to 1 as n → ∞. In our HOL formal-
ization we do not use the auxiliary concepts π(x) and ‘∼’ (though we easily could), but
spell things out, where ‘&’ is the type cast N → R:

|- ((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))
---> &1) sequentially
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10. L. Théry and G. Hanrot. Primality proving with elliptic curves. In K. Schneider and J. Brandt,
editors, Proceedings of the 20th International Conference on Theorem Proving in Higher
Order Logics, TPHOLs 2007, volume 4732 of Lecture Notes in Computer Science, pages
319–333, Kaiserslautern, Germany, 2007. Springer-Verlag.

11. F. Wiedijk. The de Bruijn factor. See http://www.cs.ru.nl/∼freek/factor/,
2000.

12. F. Wiedijk. The Seventeen Provers of the World, volume 3600 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

13. L. Wos and G. W. Pieper. A Fascinating Country in the World of Computing: Your Guide to
Automated Reasoning. World Scientific, 1999.


