
J Autom Reasoning (2009) 43:243–261
DOI 10.1007/s10817-009-9145-6

Formalizing an Analytic Proof of the Prime
Number Theorem

John Harrison

Received: 13 July 2009 / Accepted: 14 July 2009 / Published online: 19 August 2009
© Springer Science + Business Media B.V. 2009

Abstract We describe the computer formalization of a complex-analytic proof of the
Prime Number Theorem (PNT), a classic result from number theory characterizing
the asymptotic density of the primes. The formalization, conducted using the HOL
Light theorem prover, proceeds from the most basic axioms for mathematics yet
builds from that foundation to develop the necessary analytic machinery including
Cauchy’s integral formula, so that we are able to formalize a direct, modern and
elegant proof instead of the more involved ‘elementary’ Erdös-Selberg argument.
As well as setting the work in context and describing the highlights of the for-
malization, we analyze the relationship between the formal proof and its informal
counterpart and so attempt to derive some general lessons about the formalization of
mathematics.

Keywords Analytic proof · Prime number theorem · Computer formalization

1 Formalizing Mathematics: Pure and Applied

I’ve always been interested in using theorem provers both for “practical” applications
in formally verifying computer systems, and for the “pure” formalization of tradi-
tional mathematical proofs. I particularly like situations where there is an interplay
between the two. For example, in my PhD thesis [12], written under Mike Gordon’s
supervision, I developed a formalization of some elementary real analysis. This was
subsequently used in very practical verification applications [13], where in fact I even
needed to formalize more pure mathematics, such as power series for the cotangent
function and basic theorems about diophantine approximation.
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I first joined Mike Gordon’s HVG (Hardware Verification Group) to work on an
embedding in HOL of the hardware description language ELLA. Mike had already
directed several similar research projects, and one concept first clearly articulated
as a result of these activities was the now-standard distinction between ‘deep’ and
‘shallow’ embeddings of languages [5]. Since I was interested in formalizing real
analysis, Mike encouraged me to direct my attention to case studies involving
arithmetic, and this was the starting-point for my subsequent research. Right from
the beginning, Mike was very enthusiastic about my formalization of the reals from
first principles using Dedekind cuts. Mike had been involved in Robin Milner’s group
developing the original Edinburgh LCF [10], a central feature of which was the idea
of extending the logical basis with derived inference rules to preserve soundness.
Mike had emphasized that the LCF approach is equally applicable to a wide variety
of logics [8], and he applied it to higher-order logic to produce the HOL system
[9]. Since the HOL logic is suitable as a general foundation for mathematics, it was
possible to extend this idea and even develop mathematical concepts themselves in
a ‘correct by construction’ way using definitions. So a definitional construction of the
reals fitted in very well with the ideals Mike had for the HOL project, an interest in
applications combined with an emphasis on careful foundations that has now become
commonplace.

In this paper I will describe a formalization that was undertaken purely for fun,
involving complex analysis and culminating in a proof of the Prime Number Theo-
rem. Nevertheless, it doesn’t seem entirely far-fetched to imagine some “practical”
applications of this result in the future. For example a weak form of the PNT is
implicitly used to justify the termination of the breakthrough AKS primality test [1],
and some simpler properties of prime numbers have been used in the verification of
arithmetical algorithms [15]. But I certainly don’t need to give any such justification,
because Mike Gordon, as well as introducing me to the fascinating world of theorem
proving, has always placed a welcome emphasis on doing “research that’s fun”.

2 The Prime Number Theorem

Let us write π(x) for the number of prime numbers no greater than x, i.e.

π(x) = |{p | prime(p) ∧ 0 ≤ p ≤ x}|

We can think of π as a function out of the set of natural numbers, or as a step
function out of the set of real numbers that only changes for integral values. The
Prime Number Theorem asserts that

π(x) ∼ x
log(x)

or in other words π(x)

x/ log(x)
→ 1 as x → ∞, where log denotes the natural (base

e) logarithm function. It is not hard to show that x/ log(x) ∼ li(x) where li(x) =∫ x
0 dt/ log t, so one can interpret the PNT as saying roughly that ‘the probability that n

is a prime is about 1/ log(n)’. Table 1 below gives an idea of the rate of convergence
for a moderate range of numbers; in fact li(x) is an even better fit to π(x) at the
low end.
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Table 1 Numerical illustration of the PNT

x π(x)
x

log(x)
Ratio

101 4 4.34 0.9217
102 25 21.71 1.1515
103 168 144.76 1.1605
104 1229 1085.74 1.1319
105 9592 8685.89 1.1043
106 78498 72382.41 1.0845
107 664579 620420.69 1.0712
108 5761455 5428681.02 1.0613
109 50847534 48254942.43 1.0537
1010 455052511 434294481.90 1.0478
1011 4118054813 3948131653.67 1.0430
1012 37607912018 36191206825.27 1.0391
1013 346065536839 334072678387.12 1.0359
1014 3204941750802 3102103442166.08 1.0331
1015 29844570422669 28952965460216.79 1.0308
1016 279238341033925 271434051189532.38 1.0288
1017 2623557157654233 2554673422960304.87 1.0270
1018 24739954287740860 24127471216847323.76 1.0254
1019 234057667276344607 228576043106974646.13 1.0240
1020 2220819602560918840 2171472409516259138.26 1.0227
1021 21127269486018731928 20680689614440563221.48 1.0216
1022 201467286689315906290 197406582683296285295.97 1.0206

The PNT was conjectured around 1800 by several mathematicians including
Gauss, but no real progress was made towards a proof. The first breakthrough
came when Chebyshev proved in 1847 that π(x)

x/ log(x)
is bounded quite close to 1

asymptotically, and that if it tends to a limit, this limit must be 1. While this is
tantalizingly close to the Prime Number Theorem, the additional step of proving that
the limit does indeed exist resisted attack for some time afterwards.

In 1859 Riemann started a new chapter when he pointed out the deep relationship
between the distribution of primes and the complex zeta function, which is the
analytic continuation of the function defined for �z > 1 (we use �z and �z denote
the real and imaginary components of a complex number z) by the series

ζ(z) =
∞∑

n=1

1/nz

The key to the relationship between the zeta function and the distribution of primes
is the Euler product formula, again valid for �z > 1, where the product is taken over
all primes p:

ζ(z) =
∏

p

1/(1 − p−z)

In 1894, von Mangoldt was able to reduce the PNT to the conjecture that the zeta
function has no zeros on the line �z = 1. This was finally proved two years later,
independently, by both Hadamard and de la Valée Poussin, hence completing the
proof of the PNT.
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All these proofs made extensive use of contour integrals and other ideas from
complex analysis. Since the PNT itself doesn’t talk about complex numbers at all, just
making basic use of real logarithms, the question naturally arose whether there might
be a proof not relying on complex analysis. For some time, there was scepticism about
whether any such proof could be found that wasn’t just an artificial reformulation
of one of the established analytic proofs. Nevertheless, just such a proof was found
in 1948 by Selberg and Erdös. On the other hand, this “elementary” proof is
only elementary in the sense of avoiding analytic machinery. It is markedly more
complicated and intricate than the modern versions of the analytic proof, indicating
that there is a price to be paid for avoiding analysis.

3 Mathematical Machinery versus Brute Force

Typically, the direct formalization of a completely explicit argument at the level of
a paper or textbook takes a fairly predictable amount of time and the result has a
more or less predictable length. An emerging rule of thumb is that formalizing one
page of a textbook takes about a work-week [26]. The de Bruijn factor, an adjusted
ratio between sizes of the formalized and informal text defined in more detail below,
is quite often found [25] to be about 4. But it is common for proofs in mathematics to
call on an infrastructure of established, standard, results. If these results already exist
in the library of the proof assistant, these references to the literature simply become
corresponding references to the prover’s library of theorems. But if not, then we
need to deal with these results from scratch, so all bets are off: we may end up doing
an arbitrarily large amount of work formalizing what the informal source regards as
standard background. In such cases, when the de Bruijn factor for the direct proof
underestimates the actual work, a potentially easier alternative is to adopt a different
proof, one that may in itself be significantly longer or more difficult, but which at least
does not rely on such a quantity of existing ‘machinery’ and is hence more practical
to formalize.

There isn’t a perfect match between what humans find easy and what proof
assistants find easy [7, 22, 27], so it’s possible that a proof that a human would regard
as more difficult is actually easier to formalize, even setting aside a comparison of
the amount of knowledge assumed. For example, proofs involving extensive ‘brute-
force’ case analysis can be almost trivial to formalize with a programmable proof
assistant, perhaps obviating the need for more sophisticated symmetry arguments.
An instance is the proof of the Kochen-Specker paradox from quantum mechanics.
A typical human-oriented proof [6] would make use of symmetry to reduce case
analysis without loss of generality: ‘the three coordinate axes are all orthogonal, so
we have a combination 0, 1, 1 in some order, so let’s assume the zero is in the x
direction...’. By contrast, in a computer formalization it’s even easier just to program
the computer to run through all the cases [17].

An interesting example of the tension between using mathematical machinery and
computational power is proving the associativity of the chord-and-tangent addition
operation on elliptic curves. This has been done formally in Coq by Laurent Théry
and Guillaume Hanrot [24], with some of the key parts using enormous algebraic
computations that were on the edge of feasibility; indeed similar computational
issues have obstructed a related project by Joe Hurd. On the practical difficulties
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caused by this example, Dan Grayson suggested, in an email to the present author, a
more ‘human-oriented’ proof:

But why not enter one of the usual human-understandable proofs that + is
associative? Too many prerequisites from algebraic geometry? [. . . ] The proof
I like most is to use the Riemann-Roch theorem to set up a bijection between
the rational points of an elliptic curve and the elements of the group of iso-
morphism classes of invertible sheaves of degree 0. That’s a lot of background
theory, probably too much for this stage of development, but then the “real”
reason for associativity is that tensor product of R-modules is an associative
operation up to isomorphism.

It seems likely that formalizing mathematical machinery on that level is still many
years away. In this case, therefore, the ‘elegant’ proof is not a practical option for
formalization, and so we need to make the best of it by exploiting the prover’s ability
to do fast computation, even if that brings problems of its own. It is slightly depressing
to reflect that we may be forced to formalize unnatural or ‘hacky’ proofs because of
a lack of general mathematical machinery.

Returning to the Prime Number Theorem, it seems that the elementary proof
offers no such advantages in itself from the point of view of formalization: the various
manipulations don’t offer any great scope for automation. Yet the lack of analytic
machinery seems to make it a more attractive target, and in fact the elementary proof
was formalized several years ago in a landmark achievement by a team led by Jeremy
Avigad [3]. As those authors note, it was hardly practical to contemplate formalizing
the analytic proof:

Since the libraries we had to work with had only a minimal theory of the
complex numbers and a limited real analysis library, we chose to formalize the
Selberg proof.

Even within the established framework of the elementary proof, some parts were
done in a different and arguably less natural way, again to provide a better match to
the available libraries [3]:

But similar issues arose even with respect to the mild uses of analysis required
by the Selberg proof. Isabelle’s real library gave us a good theory of limits,
series, derivatives and basic transcendental functions, but it had almost no
theory of integration to speak of. Rather than develop such a theory, we found
that we were able to work around the mild uses of integration needed in the
Selberg proof. Often, we also had to search for quick patches to other gaps in
the underlying library.

On the other hand, with respect to some aspects of the mathematical machinery,
Avigad et al. were motivated to develop general libraries that could be of use in
other contexts. In particular, their paper [2] presents a general formalization of ‘big
O’ asymptotic expressions.

In our own theorem prover, HOL Light, we now have a solid library of results
about analysis in Euclidean space [16] and, based on that, of elementary complex
analysis including versions of the Cauchy integral formula for topologically simple
regions [18]. Thus, it seemed that it ought to be possible to formalize an analytic proof
of the PNT in a fairly direct fashion. Indeed, formalizing such a proof was proposed
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by Robert Solovay as a good challenge in the formalization of mathematics [26], and
this challenge was a significant motivation for us in the work described here.

4 Our Mathematical Machinery

Our formal proof of the Prime Number Theorem rests on an extensive body of
formalization that has been developed, on and off, over the course of more than a
decade. We will not go into great detail here, but will explain where the reader can
look for more details while explaining some of the basic definitions and syntactic
constructs that will be used when describing parts of the PNT formalization. As
usual in logical systems based on lambda-calculus, we will sometimes write function
applications f (x) by simple juxtaposition f x unless the bracketing is needed to
establish precedence.

The first traditionally ‘mathematical’ step is the construction of the real numbers
and the proof that they form a complete ordered field. The first version of this
construction in HOL88 [11] used Dedekind cuts, but the version we now use in
HOL Light [12] is based on an encoding of Cauchy sequences using nearly-additive
functions. In any case, once the ‘axioms’ for a complete ordered field are derived, the
way in which the structure was constructed is no longer used. We will just note a few
syntactic points, especially the presence of the injection ‘&’ from natural numbers to
reals.

HOL Standard Meaning
& (none) Natural map N → R

--x −x Unary negation of x
inv(x) x−1 Multiplicative inverse of x
abs(x) |x| Absolute value of x
log(x) log(x) Natural logarithm of x
x pow n xn Real x raised to natural power n

The next step is the formalization of analysis in Euclidean space R
N [16]. The

HOL logic does not have dependent types, but that paper describes how to encode
N as a type (basically, N is the cardinality of the type’s universe) so that HOL’s
polymorphism naturally gives rise to theorems for general N. Since we mainly use R

2

in what follows, the more general features of this theory are not important here, but
we note that many of the analytic theorems that get applied to the complex numbers
are in fact applicable to broader classes of functions R

M → R
N . The norm ‖z‖ of a

vector z is written norm(z); in the case of the complex numbers we have ‖x + iy‖ =√
x2 + y2, and the distance between two vectors w and z is dist(w,z). We also

define the concept of an open ball (actually a disc in the complex case) B(x, ε) in the
usual way as B(x, ε) = {y | ‖y − x‖ < ε}:
|- dist(x,y) = norm(x − y)

|- ball(x,e) = { y | dist(x,y) < e}

The theory of complex numbers is then built on top, using complex (C) as a
mere abbreviation for real^2 (R2). Most of the very basic setup was taken over
with trivial changes from an earlier theory [14] that was constructed more explicitly
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from pairs of reals. After being transferred to the new formulation, this theory was
slightly revised and greatly extended to include analytic properties like complex
derivatives and complex line integrals. This new theory [18], described in a Festschrift
tribute to Andrzej Trybulec, another great pioneer in interactive theorem proving,
is the direct foundation for the PNT proof. Since that paper was written, we have
made only a few incompatible changes, e.g. introducing a subtle distinction between
analytic_on and holomorphic_on as described later. But we (and others) have
further extended it with new results, and in the process of proving the PNT we still
sometimes needed to go back and add some additional general lemmas to this library.
In the rest of this section, we will summarize the main points that are necessary to
understand the remainder of the paper.

The usual operations like addition, multiplication, and natural number powers
are defined on complex numbers, and we overload the same symbols as are used
for the reals; for example z pow n for zn. We use Cx for the injection R → C and
Re and Im, both with type C → R, for the real and imaginary parts of a number.
The cnj function denotes complex conjugation and ii the imaginary unit i. The
more general power function with a complex exponent, also written wz informally, is
w cpow z, and we define it for w 
= 0 by just ez log(w) using the complex exponential
(cexp) and logarithm (clog). While in general the properties of the complex
logarithm and power function can be subtle (for example, log(xy) = log(x) + log(y)

and (xy)z = xz yz fail in general) we will only use wz or log(w) in cases where w has
zero imaginary part and positive real part, in which case they holds no surprises.

We define complex differentiation in the standard way. We assert that f is
differentiable at point z by f complex_differentiable (at z), while f ′(z),
the complex derivative of f at z, is written complex_derivative f z. The
more refined variant f complex_differentiable (at z within s) indi-
cates complex differentiability where limits at z are restricted to the set s. The
distinction between at z and at z within s appears in the same way in several
other limit concepts, e.g. in the following:

|- f holomorphic_on s ⇔
∀z. z IN s ⇒ f complex_differentiable (at z within s)

|- f analytic_on s ⇔
∀z. z IN s ⇒ ∃e. &0 < e ∧ f holomorphic_on ball(z,e)

When s is an open set (that is, for each x ∈ s there is an ε > 0 with B(x, ε) ⊆ s) the
concepts ‘ f is holomorphic on s’ and ‘ f is analytic on s’ coincide, but in general the
latter, asserting differentiability in an open ball around each point, is stronger.1

The most interesting results are connected with line integrals of analytic func-
tions along paths. We use a notion of ‘valid path’ in these theorems, where
valid_path g means that g is a piecewise differentiable function out of the
canonical interval [0, 1], which strictly speaking is an interval not in R but in the
distinct but equivalent type of 1-dimensional vectors R

1. The function vec n here

1This is a change compared with [18], where analytic_on was used for what we now call
holomorphic_on. We were persuaded by the experience of the proof to be described below that
our earlier usage was non-standard.
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gives a vector with all components—in the present case of R
1 there is only one

component—equal to the natural number n.

|- valid_path (f:realˆ1->complex) ⇔
f piecewise_differentiable_on interval[vec 0,vec 1]

We discuss some of the theorems about line integrals below, and establish there
the notation that is used in our formalization.

5 Formalizing Newman’s Proof

There are several significantly different analytic proofs of the PNT. The best-
established methods, clearly presented in Ingham’s book [19], calculate residues for
a somewhat involved contour that goes to infinity. A more recent approach, due to
Newman, relies only on Cauchy’s integral formula applied to a bounded, roughly
semicircular contour. Jameson’s book [20] is an excellent source for the PNT in
general, these various proofs, and related topics like Dirichlet’s theorem. Jameson
notes that Newman’s proof is commonly formulated in two different ways, either in
terms of summing a series or in terms of a real ‘Laplace transform’ integral. We
took the former approach, following the presentation by Newman himself in his
textbook [21]. In fact, it may well have been somewhat easier to use the ‘Laplace
transform’ version instead, e.g. the slick presentation by Zagier [28]. Subjectively,
we guessed that it was likely to be harder to formalize a proof involving additional
transcendental functions and a mix of real and complex variables, but perhaps this
belief was mistaken.

More specifically, from Newman’s book [21] we formalized the “second proof”
on pp. 72–74 using the analytic lemma on pp. 68–70. Newman’s book is a graduate-
level textbook, and while it is written in a friendly and accessible style, it sometimes
assumes quite a lot of background or leaves some non-trivial steps to the reader.
In particular, the PNT proof assumes some major properties of the zeta function
without proof. In formalizing these we used a variety of sources, taking the proof
that ζ(z) has no zeros for �z = 1 directly from the textbook [4] by Bak and Newman
(the same Newman). The overall PNT proof naturally splits up into six parts, which
are presented by Newman in somewhat distinct styles and with widely varying levels
of explicitness.

1. The Newman-Ingham “Tauberian” analytic lemma.2

2. Basic properties of the Riemann ζ -function and its derivative, including the
Euler product.

3. Chebyshev’s elementary proof that
∑

p≤n
log p

p − log n is bounded.

4. Deduction using analytic lemma that
∑

n(
∑

p≤n
log p

p − log n + c)/n is summable
for some constant c.

2According to MathWorld, “A Tauberian theorem is a theorem that deduces the convergence of
an infinite series on the basis of the properties of the function it defines and any kind of auxiliary
hypothesis which prevents the general term of the series from converging to zero too slowly.”
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5. Derivation from that summability that
∑

p≤n
log p

p − log n tends to a limit.
6. Derivation of the PNT from that limit using partial summation.

We have compared the main parts of our formalization against reverse-engineered
TeX for corresponding passages in Newman’s book (thanks to Freek Wiedijk for
composing these!) The de Bruijn factor [25], the size ratio of a compressed formal
proof text versus the compressed TeX of its informal counterpart (compressed,
currently using gzip, for a crude approximation to information content), varies
widely:

Part of proof de Bruijn factor
1 Analytic lemma 8.2
2 ζ -function 81.3
3 Chebyshev bound 28.2
4 Summability 11.0
5 Limit 5.4
6 PNT 30.4

It is commonly found that the de Bruijn factor for formalizations is about 4, so
these seem very high. However, the very high figures in parts 2, 3 and 6 arise where
Newman is not giving a proof in any explicit sense. The quotations that follow are
the sum total of Newman’s text for these parts, which take over half of the 4939 lines
in the complete HOL Light formalization. In no cases can Newman’s passage really
be called a proof, so the comparison is hardly fair; two are really assumptions of
background knowledge and the third is the merest hint of how a proof might go:

2 Let us begin with the well-known fact about the ζ -function: (z − 1)ζ(z) is analytic
and zero free throughout �z ≥ 1.

3 In this section we begin with Tchebyshev’s observation that
∑

p≤n
log p

p − log n
is bounded, which he derived in a direct elementary way from the prime
factorization on n!

6 The point is that the Prime Number Theorem is easily derived from ‘
∑

p≤n
log p

p −
log n converges to a limit’ by a simple summation by parts which we leave to the
reader.

If we restrict ourselves to parts 1, 4 and 5, the de Bruijn factor is about 8, still
higher than normal, but not outrageously so. And indeed, although the proof did
not present any profound difficulties, we found that it took more time to formalize
Newman’s text than we have grown to expect for other formalizations. This may
indicate that Newman’s style is fairly terse and leaves much to the reader (this does
seem to be the case), or that in this area, we sometimes have to work hard to prove
things that are obvious informally (this is certainly true for the winding number of
the contour mentioned later).

It is also instructive to compute a de Bruijn factor for our formal proof that the
ζ -function has no zeros on �z ≥ 1 relative to our source for a ‘real proof’, the text
by Bak and Newman [4]. We find in this case that the de Bruijn factor is only 3.1,
actually somewhat lower than usual. Although we may be extrapolating too much
from a few data points, we believe that this difference is natural given that Newman’s
analytic number theory text is at the graduate level whereas Bak and Newman is at
the undergraduate level. It certainly doesn’t seem implausible on general grounds
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that we should find larger de Bruijn factors at higher levels of mathematics, where
more can be assumed of the reader. It would be interesting to see if this kind of
relationship does seem to hold in general.

6 The Analytic Lemma

The centrepiece of Newman’s approach is the analytic lemma; this is the only part
that uses non-trivial facts about the complex numbers and is thus the place where
most of the analytic ‘machinery’ plays a role.

Threorem Suppose |an| ≤ 1, and form the series
∑

ann−z which clearly converges to
an analytic function F(z) for �z > 1. If, in fact, F(z) is analytic throughout �z ≥ 1,
then

∑
ann−z converges throughout �z ≥ 1.

Here is our HOL formalization of the statement of the theorem, which corre-
sponds pretty directly to the informal one, with (f sums l) (from k) corre-
sponding to the traditional notation

∑∞
n=k f (n) = l:

|- ∀f a. (∀n. 1 <= n ⇒ norm(a(n))<= &1) ∧
f analytic_on {z | Re(z) >= &1} ∧
(∀z. Re(z)>&1 ⇒((λn. a(n) / Cx(&n) cpow z) sums (f z))(from 1))

⇒ ∀z. Re(z) >= &1

⇒ ((λn. a(n) / Cx(&n) cpow z) sums (f z))(from 1)

We might note in passing, as an indication of how casual Newman is about
minor details, that the theorem is later applied to a particular case where ‖an‖ is
bounded, but not necessarily by 1. Since we formalized the analytic lemma before
looking closely at its application, we took the above statement at face value, and
only later discovered that we needed to generalize it to ‖an‖ ≤ B for general B. The
generalization is indeed rather trivial, just by assuming without loss of generality that
B > 0 and applying the basic lemma to a′

n = an/B. Yet we took another 34 lines of
proof script to state and prove the more general version in this way, whereas it would
probably have been more efficient to prove this generalization from the start.

|- ∀f a b. (∀n. 1 <= n ⇒ norm(a(n)) <= b) ∧
f analytic_on {z | Re(z) >= &1} ∧
(∀z. Re(z) > &1 ⇒ ((λn. a(n) / Cx(&n) cpow z) sums (f z))(from 1))

⇒ ∀z. Re(z) >= &1

⇒ ((λn. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)

Generally speaking, the formalization is a pretty direct translation of Newman’s
proof. One systematic change is that we state most integration results in a relational
form, i.e. rather than

∫
γ

f (z) dz = I in the informal text, use the formal rendering
(we could eta-reduce λz. f (z) to just f , but maintaining the bound variable z keeps
us closer to the original)

((λz. f(z)) has_path_integral I) gamma

This is because our HOL formalizations use straightforward total functions for
notions like ‘integral’. Thus, the mere assertion that

∫
γ

f (z) dz = I does not imply
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that f is indeed integrable on the contour γ , since
∫
γ

f (z) dz is always equal to some-
thing. In informal mathematics, by contrast, some convention about partial functions
is usually assumed when writing s = t, typically ‘either s and t are both undefined or
both are defined and equal’ [12]. Nevertheless, it might have been preferable to stay
closer to the original by separating out the assertion of integrability:

(λz. f(z)) path_integrable_on gamma ∧ path_integral gamma (λz. f(z)) = I

The proof of the analytic lemma involves applying Cauchy’s integral formula
round a contour and then performing some careful estimations of the sizes of the
various line integrals involved. The contour we use, traversed counterclockwise, is
shown in Fig. 1. This is slightly different from Newman’s, though the distinction is
hard to see in the diagram: Newman continues the circular arc into the left-hand
side of the complex plane whereas we use an exactly semicircular arc connected to
the vertical portion by horizontal straight-line segments. (We only diverged from
Newman because we found this version easier to understand informally, not because
of any problem specific to formalization.) There are only two points where our formal
proof really looks complicated relative to Newman’s original, both instances where
things that are very easy to see informally require some work to formalize.

One is the observation that because f (z) is analytic for �z ≥ 1, for any R > 0
there is a δ > 0 such that f (z) is analytic for �z ≥ 1 − δ and |�z| ≤ R. Recall that f is
analytic on a set iff it is holomorphic on an open neighbourhood of each point. Thus,
for any point z with �z = 1 there is some ε > 0 such that f is holomorphic in the open
disc B(z, ε) = {w | ‖w − z‖ < ε}. With a little experience of such concepts, one can
immediately see “by compactness” that the required result follows. Yet in the formal
proof this intuition has to be replaced by an explicit paving of a suitable compact set

Fig. 1 Contour used in
application of Cauchy’s
integral theorem
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with rectangular open sets and the application of the Heine-Borel theorem, requiring
164 lines of proof script.

The other place where formalization presents a striking contrast with informal
perception is in the application of Cauchy’s integral formula. The formal version we
use is quite standard in its statement and hypotheses, though it is limited to cases
where the function concerned is analytic on a convex set. (A more general version
would certainly be appealing, but is not needed for this and many other non-trivial
applications.)

|- ∀f s g z.
convex s ∧ f holomorphic_on s ∧
z IN interior(s) ∧
valid_path g ∧ (path_image g) SUBSET (s DELETE z) ∧
pathfinish g = pathstart g
⇒ ((λw. f(w) / (w − z)) has_path_integral

(Cx(&2) ∗ Cx(pi) ∗ ii ∗ winding_number(g,z) ∗ f(z)))g

The difficulty comes in verifying the intuitively obvious requirements that arise
when applying this result: our contour, composed of three line segments and one
semicircular arc, satisfies the conditions (is a valid path whose start is the same as
its finish etc.) and has a winding number of 1 about the origin, indicating that it
winds exactly once round the origin counterclockwise, where the winding number
of γ about z is formally defined as

1

2π i

∫

γ

dz/z

These facts are so obvious, based on the picture and an intuitive understanding
of what winding numbers mean, that it requires a conscious effort to think about
things in a formal way and arrive at the right general lemmas. But when approached
systematically, it is not so difficult. The lemmas we use include results like the
following, which show how to deduce properties of a ‘joined’ path g1 ++ g2
composed of two other paths g1 and g2:

|- ∀g1 g2. pathstart(g1 ++ g2) = pathstart g1

|- ∀g1 g2. pathfinish(g1 ++ g2) = pathfinish g2

|- ∀g1 g2.
pathfinish g1 = pathstart g2
⇒ (valid_path(g1 ++ g2) ⇔ valid_path g1 ∧ valid_path g2)

|- ∀g1 g2 z.
valid_path g1 ∧ valid_path g2 ∧
¬(z IN path_image g1) ∧ ¬(z IN path_image g2)
⇒ winding_number(g1 ++ g2,z) =

winding_number(g1,z) + winding_number(g2,z)

Proving that the winding number is exactly 1 is a bit more subtle. We take the two-
step approach, which perhaps looks a bit strange, of proving that (i) the real part of
the winding number is > 0, (ii) it is < 2. (Note that we regard the winding number as
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a complex number defined for any valid path, and don’t restrict ourselves to closed
paths.) These results suffice, since we already have a formally proved lemma that the
winding number of a closed path is an integer; indeed it is an integer if and only if the
path is closed:

|- ∀g z. valid_path g ∧ ¬(z IN path_image g)
⇒ (complex_integer(winding_number(g,z)) ⇔

pathfinish g = pathstart g)

Proving that the winding number is > 0 is again something that we can inherit for
a path with multiple components from corresponding results about the components.
In fact, we get smoother ‘stepping’ theorems if we prove such things together with
other properties we need anyway:

|- ∀g1 g2 z.
(valid_path g1 ∧ ¬(z IN path_image g1) ∧
&0 < Re(winding_number(g1,z))) ∧

(valid_path g2 ∧ ¬(z IN path_image g2) ∧
&0 < Re(winding_number(g2,z))) ∧

pathfinish g1 = pathstart g2
⇒ valid_path(g1 ++ g2) ∧ ¬(z IN path_image(g1 ++ g2))∧

&0 < Re(winding_number(g1 ++ g2,z))

Straightforward theorems assert that the real part of the winding number is
positive for basic path components. For example, for a straight-line path from a to
b we have the following sufficient condition for the winding number to be positive
around z, based just on components of a, b and z (recall that cnj is complex
conjugation):

|- ∀a b z. &0 < Im((b − a) ∗ cnj(b − z))
⇒ &0 < Re(winding_number(linepath(a,b),z))

For the dual inequality, proving that the real part of the winding number is < 2,
we split the path into two parts, one consisting of the three straight-line segments
on the left-hand side of the complex plane, and the other the semicircle on the
right. Using the additivity theorem above, it suffices to show that each of these
two path components has a winding number with real part < 1. This is justified
by the following theorem, asserting that if some semi-infinite ray drawn from z
does not meet the curve, then the curve’s winding number about z must have real
part < 1:

|- ∀g w z. valid_path g ∧ ¬(z IN path_image g) ∧ ¬(w = z)∧
(∀a. &0 < a ⇒ ¬(z + (Cx a ∗ (w − z)) IN path_image g))
⇒ Re(winding_number(g,z)) < &1

This in turn is derived from the contrapositive observation that if the real part of
the winding number is ≥ 1, it must pass through every value between 0 and 1 at some
point along the curve. (This depends on the fact that the integral is a continuous
function of the parameter, so we can use the Intermediate Value Theorem.) Since
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the real part of the winding number corresponds to angles as a proportion of a full
2π rotation, the result follows.

7 The Rest of the Proof

The rest of the proof was relatively straightforward to formalize, and we content
ourselves with a few brief notes showing some of the main statements in their formal
guise.

7.1 Properties of the ζ -Function

We develop the necessary properties of the ζ -function in a fairly ad-hoc way, starting
with a definition of an auxiliary function

nearzetan(z) =
∞∑

m=n

(z − 1)/mz − (1/mz−1 − 1/(m + 1)z−1)

and then defining a general family of zeta-like functions with the summation starting
at n (the prime denotes the complex derivative):

genzetan(z) =
{

nearzeta′
n(1) if z = 1

(nearzetan(z) + 1/nz−1)/(z − 1) otherwise

The usual zeta function is defined as ζ = genzeta1, but results about the more general
versions are useful to give smoother proofs of some convergence results that crop
up now and again. The principal results we derive are the usual summation ζ(z) =∑∞

n=1 1/nz for �z > 1

|- ∀s. &1 < Re s
⇒ ((λn. Cx(&1) / Cx(&n) cpow s) sums zeta(s)) (from 1)

the fact that the function is analytic on a suitable domain

|- zeta holomorphic_on {s | Re(s) > &0 ∧ ¬(s = Cx(&1))}

the Euler product formula ζ(z) = ∏
p 1/(1 − p−z), again for �z > 1, where the limit

assertion (f --> l) sequentially corresponds to the informal f (n) → l as
n → ∞:

|- ∀s. &1 < Re s
⇒ ((λn. cproduct {p | prime p ∧ p <= n}

(λp. inv(Cx(&1) − inv(Cx(&p) cpow s))))
-> zeta(s)) sequentially

and the key fact that there are no zeros for �z ≥ 1:

|- ∀s. &1 <= Re s ⇒ ¬(zeta s = Cx(&0))
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7.2 The Chebyshev Bound

This part is a formalization of Newman’s observation that
∑

p≤n
log p

p − log n is
bounded. Newman attributes this to Chebyshev’s original investigations, but it seems
to be generally known as Mertens’s First Theorem. We formalized a proof from [23];
although we have not computed a de Bruijn factor for this, it might be interesting to
do so. Our formalization is as follows, including a loose but explicit bound of 24:

|- ∀n. ¬(n = 0)

⇒ abs(sum {p | prime p ∧ p <= n} (λp. log(&p) / &p) − log(&n))<= &24

7.3 The Summability Result

Here we use Mertens’s theorem to deduce the summability of
∑

n(
∑

p≤n
log p

p −
log n + c)/n for some constant c. To arrive at this result, Newman manipulates
various functions that one can see to be analytic modulo a few removable singular-
ities and which have series approximations subject to various constraints. Roughly
following his approach, we start by showing that there is a function, which we call
nearnewman, that is analytic and has a suitable series expansion for �z > 1/2. (This
is a case where we re-use our ‘nearzeta’ function, emphasizing that this is not only
used to get properties of the zeta function.)

|- ∀s. s IN {s | Re(s) > &1 / &2}

⇒ ((λp. clog(Cx(&p)) / Cx(&p) ∗ nearzeta p s −
clog(Cx(&p)) / (Cx(&p) cpow s ∗ (Cx(&p) cpow s − Cx(&1))))

sums (nearnewman s)) {p | prime p} ∧
nearnewman complex_differentiable (at s)

We use this to define a function

newman(z) = (nearnewman(z) − ζ ′(z)/ζ(z))/(z − 1)

then apply Mertens’s theorem to deduce the following series expansion, where vsum
gives the sum of a complex or vector-valued function over a set:

|- ∀s. &1 < Re s

⇒ ((λn. vsum {p | prime p ∧ p <= n} (λp. clog(Cx(&p)) / Cx(&p)) /

Cx(&n) cpow s)

sums (newman s)) (from 1)

Newman, who calls our nonce ‘newman’ function simply ‘ f ’, presents things a little
differently, starting by ‘defining’ f (z) for �z > 1 by the series expansion formalized
in the last box and writing

f (z) =
∞∑

n=1

1

nz

(∑

p≤n

log p
p

)
=

∑

p

log p
p

[ ∑

n≥p

1

nz

]
.

(The implied equality between these different orders of summation of the double
series, simply stated without comment by Newman, also occurs in our proofs, and
we needed a 116-line proof script to justify it. Note that this is an argument about
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double limits, not just rearranging a finite sum.) Newman then essentially proves
that the function f corresponds to our definition on a larger set.

The next step is to analyze the behavior of various functions at 1 and show
that for a suitable c, the function F(z) = newman(z) + ζ ′(z) + cζ(z), with a suitable
assignment F(1) = a, is actually analytic for �z ≥ 1, even though the components
have singularities at z = 1:

|- ∃c a. (λz. if z = Cx(&1) then a

else newman z + complex_derivative zeta z + c ∗ zeta z)

analytic_on {s | Re(s) >= &1}

Finally we can apply the analytic lemma and deduce the result we want:

|- ∃c. summable (from 1)

(λn. (vsum {p | prime p ∧ p <= n} (λp. clog(Cx(&p)) / Cx(&p)) −
clog(Cx(&n)) + c) / Cx(&n))

7.4 The Limit Result

The next step derives from that summability the fact that
∑

p≤n
log p

p − log n tends to
a limit, or in our formalization

|- ∃c. ((λn. sum {p | prime p ∧ p <= n} (λp. log(&p) / &p) − log(&n))

--> c) sequentially

(Here ‘--->’ is a limit over real numbers, whereas ‘-->’ used earlier is over
complex numbers or other vectors. It is straightforward to map such theorems about
real-valued complex numbers to the actual type of real numbers.) Newman gives an
unusually clear and explicit proof of this part, with straightforward manipulations
of sums. This must explain the fact observed above that this part of the proof has a
relatively low de Bruijn factor.

7.5 The PNT

Here Newman teases the reader a little with his statement that the PNT is now ‘easily
derived by a simple summation by parts which we leave to the reader’. We came
up with a proof that might plausibly be what Newman had in mind when writing
that passage. We start with an artificial-looking expression for the number of primes
≤ n, where CARD s denotes the cardinality |s| of a (finite) set s and m..n is the set
{x ∈ N | m ≤ x ∧ x ≤ n}:

|- &(CARD {p | prime p ∧ p <= n}) =
sum(1..n)

(λk. &k / log(&k) ∗
(sum {p | prime p ∧ p <= k} (λp. log(&p) / &p) −
sum {p | prime p ∧ p <= k − 1} (λp. log(&p) / &p)))
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The proof then uses the standard partial summation identities, which are some-
times more convenient in ‘successor’ form:

|- sum (m..n) (λk. f(k) ∗ (g(k + 1) − g(k))) =
if m <= n then f(n + 1) ∗ g(n + 1) − f(m) ∗ g(m) −

sum (m..n) (λk. g(k + 1) ∗ (f(k + 1) − f(k)))

else &0

and sometimes in ‘predecessor’ form:

|- sum (m..n) (λk. f(k) ∗ (g(k) − g(k − 1))) =
if m <= n then f(n + 1) ∗ g(n) − f(m) ∗ g(m − 1) −

sum (m..n) (λk. g k ∗ (f(k + 1) − f(k)))

else &0

Following a series of routine algebraic calculations and bounds on the quantities
involved, we finally obtain the PNT. The usual informal statement is that π(n) ∼
n/ log(n). In our formalization we do not use the auxiliary concepts π(x) and ‘∼’
(though we easily could), but spell things out:

|- ((λn. &(CARD {p | prime p ∧ p <= n}) / (&n / log(&n)))
--> &1) sequentially

8 Conclusions

We have been able to formalize Newman’s proof without any undue difficulty. By this
we mean that once we understood a passage in the proof informally, its formalization
was generally fairly routine. Of course, the formalization presents a few unnatural
features, as formalizations often do, such as explicit casts between number systems
and relational versions of limits and integrals. But on the whole the structure of
the formalization is quite close to that of the underlying text. The most striking
exceptions, as we have noted, are those where our geometric understanding of
winding numbers and other properties of paths allow us to see at a glance something
that is quite hard to formalize. On the whole, we think we actually spent almost as
much effort trying to understand Newman’s proof and its prerequisites informally as
we did typing a formalization into HOL.

It is difficult to compare in any objective way the difficulty of our formalization
against the one undertaken by Avigad et al., because the latter involved different
people, and a different theorem prover. Our impression is that, as we might expect,
the analytic proof in itself was easier to formalize, but that if one includes the analytic
preliminaries like Cauchy’s theorem, it becomes substantially harder. Of course, the
appeal of using this approach is that Cauchy’s theorem and similar developments are
useful in other contexts and the hard work of formalizing them can be considered as
amortized across many future applications. It remains to be seen how this ideal plays
out in practice.

We made a conscious effort not to take ad hoc short-cuts and to develop back-
ground theory systematically, in an attempt to present a contrasting approach to
a heroic assault on the big theorem. Whenever we seemed to be doing something
ad hoc, we always tried to go back to our library of complex analysis and prove
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the most natural, general theorems. For example, we proved at one point that the
winding number of a simple closed curve (one that intersects itself only at the single
endpoint) is always either −1, 0 or +1, because this seemed potentially useful. In full
generality, this is a non-trivial result (we used a proof suggested by Tom Hales based
on Brouwer’s fixed point theorem), and it was never actually used in our PNT proof
in the end. Rather to our surprise, simply proving that the 4-component contour we
use is simple seemed rather laborious, since a priori one needs to consider all the
distinct pairs of components and show that they only intersect in the appropriate
way. The approach we actually used, as described in Section 6, gives a smoother way
of deducing the basic properties of our composite contour in a modular fashion from
those of the components.

In any case, we must admit that we have sometimes fallen short of our own ideals.
Some estimations of sums were done by comparing them to complex line integrals,
simply because we had all the theorems available, when it would have been much
more natural to use integrals over R. More significantly, we only proved analyticity of
the ζ -function on �z > 0 and z 
= 1, whereas it can actually be analytically continued
throughout the complex plane except for the point z = 1. It would be more consistent
with our approach to develop the general theory of the ζ -function in itself.
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