
Optimizing Proof Search in Model Elimination

John Harrison

�

Abo Akademi University

Department of Computer Science

Lemmink�aisenkatu 14a

20520 Turku

FINLAND

jharriso@abo.fi

http://www.abo.fi/~jharriso/

11th January 1996

Abstract

Many implementations of model elimination perform proof search by it-

eratively increasing a bound on the total size of the proof. We propose an

optimized version of this search mode using a simple divide-and-conquer re-

�nement. Optimized and unoptimized modes are compared, together with

depth-bounded and best-�rst search, over the entire TPTP problem library.

The optimized size-bounded mode seems to be the overall winner, but for each

strategy there are problems on which it performs best. Some attempt is made

to analyze why. We emphasize that our optimization, and other implemen-

tation techniques like caching, are rather general: they are not dependent on

the details of model elimination, or even that the search is concerned with

theorem proving. As such, we believe that this study is a useful complement

to research on extending the model elimination calculus.

1 Model elimination and PTTP

For some time after its proposal by Loveland (1968), model elimination was pushed

to the background by the intense urry of activity in resolution theorem proving.

It was given a new lease of life by the work of Stickel. A natural procedural imple-

mentation of model elimination calculi, Loveland's MESON procedure in particular,

is a modest change to Prolog's standard search strategy, viz. backward chaining

on Horn clauses with uni�cation and backtracking. We assume that the �rst order

formula to be proved is negated and reduced to clausal form, so the task is to refute,

i.e. prove falsity (?) from, an implicitly conjoined set of clauses, each one of the

form:

P

1

_ : : : _ P

n

Here each P

i

is a literal, meaning either an atomic formula or the negation of

one. Variables occurring in each clause are implicitly universally quanti�ed. Now

from each input clause of the above form, a set of n + 1 pseudo-Horn clause rules

called `contrapositives' is created.

1

We will write `�' for a (syntactic) negating

1

Recall that a Horn clause is a clause which contains at most one unnegated literal. Here we

just single out each literal in turn to act as the head clause in a Prolog-style search, even if this

literal and some or all of its antecedants in the clause are negative.

1

operation on literals; that is �(:P) is P , whereas �P is :P for atomic P . First

there are n rules of the form:

�P

1

^ : : : ^ �P

i�1

^ �P

i+1

^ : : : ^ �P

n

) P

i

and then there is one more of the form:

�P

1

^ : : : ^ �P

n

) ?

We could emphasize the Prolog connection by writing P :- P

1

, ..., P

n

in-

stead of P

1

^ : : :^P

n

) P (and putting any variables in speci�c instances in upper

case). Anyway, the idea is to use these rules in a Prolog-style backward proof of

the goal ?. Stickel (1988) developed a Prolog Technology Theorem Prover (PTTP)

based on just a few basic changes to a standard Prolog implementation:

� Perform sound uni�cation. Most Prolog implementations omit an occurs

check, allowing for example f(X) and X to be uni�ed. This is, according

to the logic programming folklore, necessary for e�ciency reasons, or desir-

able in order to permit cyclic structures.

� At each stage, retain a list of the ancestor goals (i.e. those which have already

been expanded on the path between ? and the current goal), and as well as

the input rules, allow uni�cation of the current goal with the negation of one

of its ancestors. This gives an alternative way of solving a goal, instead of

expanding it using one of the rules. The ancestor goal �P can be seen as

a rule with P as conclusion and no hypotheses, except that its variables are

�xed relative to those in the goal and the other ancestors.

� Replace Prolog's unbounded depth-�rst search with some complete alterna-

tive. The choice of alternative is the main topic of this paper, but we might

note now that even in the propositional case, Prolog's standard search strat-

egy could lead to an in�nite loop. We can simply check the ancestor list for

repetition | to do so is a worthwhile optimization anyway. However in gen-

eral this is not su�cient. For example, a rule of the form P (f(x))) P (x)

leads to larger and larger goals of the form P (f

n

(x)), without limit.

A set of clauses is contradictory i� there is a proof of ? by the usual Prolog

backward chaining (with the above modi�cations), the appropriate variable instanti-

ations being discovered by uni�cation and backtracking. Soundness of the procedure

is easy to prove. Plaisted (1990) proposes the following interpretation in terms of

sequents. A goal P in the context of an ancestor list P

1

; : : : ; P

n

can be seen as a

sequent goal �P

1

; : : : ;�P

n

` P . Now the rule for uni�cation with the negation of

an ancestor is evidently sound; it just amounts to �; P ` P . And if we are trying

to prove � ` P given a rule P

1

^ : : : ^ P

n

) P , we can perform case analysis on P ;

if it is true we are �nished, otherwise it is false, so we may add �P to the list of

assumptions, giving subgoals �;�P ` P

i

for each 1 � i � n. Hence the process of

adding ancestor goals to the list is also justi�ed. Plaisted (1990) goes on to prove

completeness, even given two re�nements:

1. It is only necessary to use the second kind of rule (with ? as conclusion) for

certain `support' clauses C. Informally, these are the ones which contribute

to the inconsistency of the original clause set S. More formally, it is only

necessary to try C if there is an S

1

� S such that S

1

is inconsistent yet

S

1

�fCg is consistent.

2

Of course this can't be decided in general, but what we

do know is that any set of clauses where each clause contains a positive literal

2

This was probably known to earlier workers, but was not made explicit.

2

is satis�able (choose an interpretation which maps each predicate to true). So

it is enough to try each all-negative clause as a support. Quite often there

is only one such clause; for example when trying to derive an equation from

the axioms of group theory, the only all-negative clause will be the negation

of the desired equation. Hence the �rst subgoal will be the `conclusion' of the

desired theorem, making the search appealingly goal-directed.

2. The process of unifying with ancestors need only be tried for negative goals

with positive ancestors. (Or vice versa, or based on various other semantically-

based ways of splitting the literals in two, but this seems the most useful.) The

proofs given this `positive re�nement' may occasionally be longer, but this is

often more than repaid by the cutting back of the search space. Therefore it

is not even necessary to add negative ancestors to the list; although it's still

useful to store them to check for repetitions, they can otherwise be ignored.

2 An example

The following theorem was proposed by Lo�s, as an example of a relatively simple

purely logical assertion which is nevertheless not obvious.

3

It was introduced to

the automated theorem proving community and used by Rudnicki (1987) as an

example of an assertion which is indeed not obvious, in a certain technical sense of

`obvious'. It is now often referred to by some name such as nonobv in the theorem

proving literature; it is problem MSC006-1 in the TPTP Problem library (Suttner

and Sutcli�e 1995).

(8x y z: P (x; y) ^ P (y; z)) P (x; z))^

(8x y z: Q(x; y) ^Q(y; z)) Q(x; z))^

(8x y: Q(x; y)) Q(y; x))^

(8x y: P (x; y) _Q(x; y))

) (8x y: P (x; y)) _ (8x y: Q(x; y))

Translating the negation of this formula into clausal form, introducing Skolem

constants a, b, c and d, we get the following clauses:

:P (x; y) _ :P (y; z) _ P (x; z)

:Q(x; y) _ :Q(y; z) _Q(x; z)

:Q(x; y) _Q(y; x)

P (x; y) _Q(x; y)

:P (a; b)

:Q(c; d)

Now all the contrapositives are generated, yielding the following rules:

P (y; z) ^ :P (x; z)) :P (x; y) (1)

P (x; y) ^ :P (x; z)) :P (y; z) (2)

P (x; y) ^ P (y; z)) P (x; z) (3)

Q(y; z) ^ :Q(x; z)) :Q(x; y) (4)

Q(x; y) ^ :Q(x; z)) :Q(y; z) (5)

Q(x; y) ^Q(y; z)) Q(x; z) (6)

3

\You may say it is trivial yet you will not say it is nothing".

3

Q(x; y)) Q(y; x) (7)

:Q(y; x)) :Q(x; y) (8)

:P (x; y)) Q(x; y) (9)

:Q(x; y)) P (x; y) (10)

:P (a; b) (11)

:Q(c; d) (12)

P (a; b)) ? (13)

Q(c; d)) ? (14)

Here is a MESON proof of ?. Each step is marked either with its rule number

or with `A' indicating uni�cation with the negation of an ancestor.

:Q(c; d)

12

P (c; d)

10

:P (a; d)

A

:P (a; c)

1

Q(a; c)

9

Q(c; a)

7

:Q(c; d)

12

:Q(a; d)

5

P (a; d)

10

:Q(c; d)

12

:Q(d; c)

8

P (d; c)

10

:P (d; b)

A

:P (c; b)

2

Q(c; b)

9

:Q(c; d)

12

:Q(b; d)

5

:Q(d; b)

8

P (d; b)

10

P (a; b)

3

?

13

3 Search strategies

As we have already noted, the usual Prolog depth-�rst left-to-right search will go

into an in�nite loop on most nontrivial problems. In the Lo�s example, the �rst

subgoal P (a; b) would result in application of the transitivity rule for P to give

P (a;X) and P (X; b). Then P (a;X) would get similarly expanded in its turn, and

so ad in�nitum. In order to achieve completeness, i.e. guarantee eventually �nding

a proof such as the one given above, it is necessary to force enumeration of all

possible expansions so that each one is explored eventually. How is this to be done?

The most obvious way is to use breadth-�rst search. Each level in the space of

proof trees gets fully explored before further expansion is attempted. Hence a proof

of depth n will always get found at the n

th

level of expansion.

A re�nement of this idea is to use best-�rst search, as implemented by Paulson

in the Isabelle theorem prover (Paulson 1994).

4

That is, based on some heuristic

such as size and number of subgoals, a particular goal state is tried �rst, and all the

possible subgoal states are inserted into a priority queue. This is then repeated until

a solution is found. Since the strict enumeration of levels is no longer guaranteed, the

danger of in�nite looping is reintroduced. However this can easily be circumvented

by appropriately including the number of ancestor goals in the heuristic.

We will give some results for best-�rst search later. However, breadth-�rst and

best-�rst search have the substantial disadvantage that they require storage of all

the goal states explored. In nontrivial examples this requires large amounts of

4

Isabelle di�ers somewhat from most other theorem provers in the LCF family (Gordon, Milner,

and Wadsworth 1979) in that its subgoaling mechanism, used for backward proof, allows multiple

possible goal states with backtracking, and can perform Prolog-style uni�cation (in fact higher

order uni�cation) of variables. Hence Prolog-like search methods are very easy to implement.

4

memory. Moreover, it moves the system further away from a conventional Prolog

implementation. Instead, Stickel (1988) originally used depth-�rst iterative deepen-

ing. This means that depth-�rst search is performed in the usual Prolog style, but

failing immediately if it ever gets beyond a certain depth; complete failure at a given

depth bound results in the bound's being increased and the entire search attempted

again. As Stickel remarks, this is very much like breadth-�rst search, except that

intermediate levels of expansion are recalculated on demand rather than stored. At

�rst sight this looks wasteful, but since the number of possible proofs tends to grow

exponentially with the depth bound, the �nal level usually dominates and recalcu-

lation increases total computation by only a modest constant factor. Memory usage

is practically nil and the implementation need only tweak a standard Prolog system

to carry the depth bound as it expands goals.

Despite the talk of depth, Stickel's original implementation did not use a bound

on the depth (height) of the proof tree, but rather on the number of nodes in the

tree (= inferences in the proof). The blowup in the number of possibilities is often

more graceful than it is with depth, and it avoids a bias towards highly symmetrical

proof trees. Nevertheless, Letz, Schumann, Bayerl, and Bibel (1992) have discovered

that actually using a depth bound seems to be better on average.

5

Let us see how

these di�erent methods perform on the Lo�s example. We have implemented all the

di�erent search strategies, but tried to use the same code where possible. More

implementation details are given below.

1. Best �rst search performs best of all; it takes just 1.0 seconds of user CPU

time,

6

performs 1,378 successful uni�cations (we will follow the tradition in

calling these `inferences') and accumulates just 519 goal states in its priority

queue. Against that, the proof it �nds is rather larger than the above. The

heuristic used was:

SIZE = �

subgoals

g=1

10size

g

+ jancestors

g

j

that is, each goal is allocated a size which is the number of its ancestors plus 10

times the `size' (roughly, the total number of function symbols and variables

in the formula) of the main goal. These sizes are then added together.

2. Depth-bounded iterative deepening takes only slightly longer: 1.2 seconds of

CPU. The proof (almost the one given above) is found at level 7, after 7,627

exploratory inferences.

7

3. Inference-bounded iterative deepening performs very badly. It takes over half

an hour (1,829.3 seconds) of CPU time to �nd the proof given above, and

performs 5,360,067 inferences.

Why does inference-bounded search perform so badly? Well, most obviously

because the proof is su�ciently long that by the time it is found, the search space

has blown up too much. Depth-bounded search succeeded quickly because there

is a relatively symmetrical proof which is therefore not too deep. The success of

5

Of course, inference-bounded search will always �nd the `shortest' proof, in a reasonable sense.

The size of the proof is usually minuscule in comparison with the number of possibilities explored,

so this has little relevance to the runtime. However our original interest in MESON was as a

subsystem whose proofs would be translated into LCF inferences. From this point of view, short

proofs are nice to have, though even then there is little di�erence in speed.

6

All times given in this paper are user CPU times on a Sparc 4 with 48M of physical memory.

7

The overhead of maintaining the priority queue and conducting more careful checks for an-

cestor repetition slow down the inference rate of best-�rst search; so many more `inferences per

second' are performed here.

5

best-�rst search is rather harder to understand; in some cases it performs well, in

others badly.

So why is the proof so long? The model elimination calculus is rather weak

in that it does not permit the multiple instantiation of lemmas. If two instances

of �[x] are used in the proof, then the proofs of �[a

1

] and �[a

2

] (say) must be

given separately. This is often expressed by saying that the model elimination

calculus is `cut-free', since a characteristic of cut-free sequent proofs (or normal

natural deduction proofs) is that a universal formula cannot be nontrivially deduced

and then specialized. By contrast, resolution does allow multiple instantiations of

lemmas.

8

A careful look at the MESON proof above reveals that there are essentially two

proofs of the fact :Q(x; d); they are not precisely identical because the symmetry

rules are applied in di�erent places, but they could be made exactly identical except

that one uses a for x, the other b. Indeed, a proof which a human would naturally

�nd is the following. If 8x y: P (x; y), then we are �nished. Otherwise there are

a, b with :P (a; b), and hence Q(a; b). Now if 8x: Q(a; x), then by transitivity and

symmetry of Q, we have 8x y: Q(x; y) as required. Otherwise there is a c with

:Q(a; c) and therefore P (a; c). Now either (i) P (c; b), so by transitivity P (a; b);

or (ii) Q(c; b), so by symmetry and transitivity Q(a; c); in either case we have a

contradiction. The MESON analog requires a duplication to pass from 8z: Q(a; z)

to 8x y: Q(x; y).

There are essentially two ways in which the model elimination procedure can be

beefed up to allow multiple instantiation of lemmas.

1. The underlying calculus can itself be changed. For example, SETHEO re-

searchers (Letz, Mayr, and Goller 1994) have recently been experimenting

with incorporating so-called `folding up' and `folding down'. The present au-

thor is not really au fait with the technical details, but the results seem very

promising.

2. The implementation technique can be altered to remember lemmas and avoid

re-proving them. Such ideas have been explored by Astrachan and Stickel

(1992), with promising results. The Lo�s theorem is one of the best examples,

where the use of lemmas cuts back runtimes by a factor of several hundred.

However, we will stick to the basic model elimination calculus, and try to un-

derstand how inference-bounded search can be improved. Such optimization might,

of course, turn out to be all the better in conjunction with one or both of the above

extensions.

4 A divide-and-conquer optimization

Suppose that when solving a goal g, we have used a rule which gives rise to two

subgoals, g

1

and g

2

, and that we have n inferences left. Now if we are to solve

both g

1

and g

2

without overstepping the inference limit of n, we know that one or

the other of g

1

and g

2

must have a proof of size � n=2 (where division truncates

downwards if n is odd.) Now in typical proofs:

� the number of possible proofs increases exponentially with the inference bound;

and

8

Although its close relative, Maslov's inverse method (Lifschitz 1986), is motivated by and

presented as forward search for a cut-free sequent proof, it nevertheless permits variables in any

facts deduced to be treated as universal. In a sense, it performs meta-level proof search.

6

� most expansions do not result in a successful proof, even locally, let alone

globally.

This suggests the following algorithm. First, attempt to solve g

1

with inference

bound n=2. If that succeeds, then solve g

2

with whatever is now left over from n.

If this fails (or the solution of the remaining subgoals fails under all the resulting

instantiations), reverse the roles of g

1

and g

2

and try it that way round. Now explo-

ration of g

1

and g

2

to the full depth is often avoided where it is clearly unnecessary.

Against that, pairs of solutions to both g

1

and g

2

with size � n=2 will be found twice.

(If the other subgoals cannot be solved with that instantiation and backtracking oc-

curs, which will almost always happen.) One would expect, on average, that this

is a small price to pay; this is emphatically borne out in the results below, though

there are a few exceptional cases. What is important is that the remaining subgoals

are not solved twice, since then the duplication could amplify exponentially across

the proof tree. We will see below how to make sure of this.

The above generalizes easily to more subgoals, g

1

; : : : ; g

m

. One alternative would

be to start by trying each in turn with depth bound n=m. However this implicitly

leads to m! di�erent reorderings. It's probably better to recursively divide the goals

into two approximately equal parts, and treat them as above (with g

1

and g

2

now

standing for sets of subgoals). In this way, instead of examining all m! permutations

we `only' get 2

m�1

.

9

Even with small branching factors this is an improvement,

and in the (admittedly unlikely) event of very large branching factors, a signi�cant

one.

Using this optimization, the Lo�s example is handled much more easily: it runs

in 5.6 seconds, and requires 25,613 inferences. To be sure, it is still worse than

best-�rst and depth-�rst search, but we will see below that the opposite is more

often true.

5 Redundancy in the proof skeleton

Anticipating later results, we will see that optimized inference-bounded search does

better on average than depth-�rst search. Nevertheless, the margin is small enough

to seem quite surprising at �rst sight. After all, the blowup of the search space with

depth is usually dramatically exponential, so there's no real hope of �nding proofs

with even one longish branch. The conclusion might be that a large number of the

TPTP theorems have rather symmetric, and therefore shallow, proofs. This does

not imply that the only proofs are highly symmetric. On the contrary, there are

many situations in mathematics where there is a great deal of redundancy in the

proof skeleton.

Consider proofs in equational logic; there are a certain number of axioms to-

gether with reexivity, symmetry and transitivity of equality, and congruence prop-

erties for all the function symbols involved. Most reasonably large proofs can be

rearranged in myriad ways without greatly changing the proof size. (To say nothing

of pointless detours like a = b = a = b = a = b.) First of all, transitivity chains can

be implemented by various di�erent associations of the one-step transitivity rule.

Symmetry rules can be intermixed with transitivity rules in various di�erent ways,

e.g.

c = a

a = c

SYM

c = b

a = b

TRANS

versus

9

The recursion equations C

1

= 1, C

2k

= 2C

2

k

and C

2k+1

= 2C

k

C

k+1

must have a unique

solution and C

k

= 2

k�1

is a solution.

7

c = b

b = c

SYM

c = a

b = a

TRANS

a = b

SYM

Moreover, instances of congruence rules can be oated up the proof tree past

symmetry rules, and, at the cost of some duplication, past transitivity rules. One

could easily arrive at a normal form theorem for equational proofs. For example,

consistently oating symmetry and congruence rules up past transitivity rules, then

symmetry rules past congruence rules, would yield something like: each equational

theorem has a proof which is either immediate reexivity or else a right-associated

transitivity chain, each equation in which is derived by applying congruence rules

(possibly zero times) to either an axiom or the reversal of an axiom. By analogy with

Gentzen's cut-elimination theorem and its application in tableaux, even though such

proofs might be longer (e.g. congruence rules are duplicated by oating them up

past transitivity rules) the search space is dramatically reduced, making automated

proof search easier. Actually, tableaux enforce a canonical order beyond what is

already present in cut-free proof systems, since rule applications are always done in

a �xed order (be it based on clever heuristics or simply on a round-robin basis).

The above gives one reason why throwing in equality axioms is a poor way of

extending a proof procedure to deal with equality, a fact universally acknowledged

in the ATP community. The axioms allow enormous redundancy, blowing up the

search space dramatically. Unfortunately many of the more mathematical TPTP

problems do just throw in the equality axioms like that. Even when they don't,

it seems likely that there are similar redundancies lurking. A reduction to simple

primitives always seems liable to lead to many ways of proving the same theorem.

By the way, the above remarks suggest that a better set of equational axioms may

be possible by introducing several semantically equivalent equality symbols. For

example, the transitivity rule could be:

x =

1

y ^ y = z) x = z

to force right-association. Some kind of weak `normal form' could be enforced by

such methods; compare the way operator precedences and associativities are en-

coded in programming language grammars by the introduction of extra nontermi-

nals. Additional redundancy control mechanisms would still be desirable, though.

In any case, that's another story. The above was mainly meant to emphasize

that (i) it isn't so surprising that inference-bounded search can perform badly,

since there are still many redundancies involved, and (ii) it may be that there are

both highly symmetric and highly skewed proofs of the same fact, and focusing

the search on either of them may be an equally defensible policy, and better than

allowing both. Accordingly, we experimented with biasing the proof search in the

optimized inference-bounded case.

First, instead of forcing one half of the subgoals or the other to be solved with

size � n=2, we force one to be solved with size � n=3, or � n=4 or � n=5. This

of course means that not all proofs of size n will be found with the nominal size

limit of n, but all will be solved at some larger value of n, while skewed proofs are

encouraged. We will refer to the above as `a skew of 3' (or 4, 5, etc.) This is a very

simple modi�cation of the divide-and-conquer re�nement. To favour symmetric

proofs, we simply insist that each of m subgoals is solved with size limit n=m. If

one takes less than this, the di�erence is not made available to the others; if it fails

then no alternative orders need to be tried.

8

6 Implementation

All versions of the algorithm were coded in CAML Special Light, a compilable

version of the CAML language (Weis and Leroy 1993). This was because our original

interest was in integrating the MESON procedure into an LCF-style interactive

theorem prover (Gordon, Milner, and Wadsworth 1979; Paulson 1987; Gordon and

Melham 1993) which is written in CAML Light; compare the work of Tarver (1990).

However the CAML language stands on its own merits: it's perfectly suited for

this kind of work, providing garbage-collected recursive data structures, uniform

support for higher order functions, and a range of imperative features if required.

Actually the programs are mostly applicative. In particular, instantiation is done

by maintaining instantiation lists, not by destructive assignment. Apart from the

ags controlling options and the incrementing of the inference counter, the only

uses of imperative features are the arrays used to implement priority queues in

the best-�rst case, and the caching of continuations in the others (see below). It

would probably be possible to achieve a signi�cant improvement in performance by

recoding in carefully optimized C, but at the cost of a much less clear and elegant

implementation. It was not our objective to compete with leading-edge theorem

proving systems.

First of all, the input clauses are reordered to put the smaller ones, i.e. those with

fewer literals, �rst. Hence the rules which generate smaller numbers of subgoals will

be tried �rst. This seems a reasonable policy in general, though it actually makes

the runtimes longer for the Lo�s example. Moreover, the literals within each rule

are reordered to put those with fewest free variables �rst (this being equal, those

with the fewest variables which are not free in the conclusion). The idea is that

these subgoals permit fewer choices of rules with which to unify, and so will lead

to fruitless exploration being abandoned more quickly. Observe however that our

divide-and-conquer optimization tends to negate the e�ect of this second kind of

reordering, since it often leads to the solution of the subgoals in di�erent orders.

Note that, in contrast to the original PTTP and many of its descendants, the rules

are not compiled into code, but are interpreted at runtime.

The best-�rst version is somewhat di�erent from the others. It maintains a

heap-based priority queue of the current goal states, each goal state being a list

of goal-ancestor pairs. At each iteration, the front of the queue is taken o�; if

it is empty then the goal is solved, otherwise its head goal is expanded using each

possible rule; the possible subgoals generated are appended to the tail of the current

subgoals, and each such new subgoal state is inserted into the queue, its priority

having been computed.

The other versions are implemented using a continuation-passing style. Rather

than retain a list of `additional goals to solve', a continuation is passed which will

attempt to solve any additional goals under the instantiation given it as one of its

arguments (other arguments include the total size left for the solution). This gives

the program a very simple control structure, since backtracking can be initiated

when the continuation fails. It also allows greater exibility. For example, to

generate multiple possible solution instantiations for a goal containing variables,

one could pass a toplevel continuation which stores the solution then fails; this

would initiate backtracking. Such exibility is convenient for the divide-and-conquer

optimization, though of course it could be implemented in other ways.

Variables in rules which are free in some or all of the hypotheses but not in

the conclusion do not become instantiated when the rule is applied, and must be

replaced with fresh variables to be later candidates for instantiation. This is done

implicitly during uni�cation: variables are all given numbers, and those less than

a certain value only appear in the rules. Consequently these can be bumped up

by the currently active `o�set' value when they are encountered during uni�cation.

9

This o�set value is also passed along through the chain of continuations, so that it

only gets incremented once per successful proof step.

Continuations also allow a simple form of caching. First, note that if we are

solving two goals g

1

and g

2

, and a solution of g

1

is found which does not produce

any new instantiations, then if the solution of g

2

fails, no further solutions to g

1

need be tried, because these could only achieve greater instantiation of g

2

and

so there is no chance of its succeeding. This gives a simple search optimization;

however, as pointed out by Stickel, it can interact badly with inference-bounded

iterative deepening: the point is that an alternative solution to g

1

might use fewer

inferences, and hence g

2

could succeed even under the same or a more special

instantiation because there are more inferences available. Stickel restricted this

optimization to cases where the solution of g

1

took just one inference (i.e. was

solved by a rule with no hypotheses or by the negation of an ancestor), though an

option was experimented with to treat non-instantiating solutions as if they were

of zero size.

We generalize this as follows: each continuation has a cache or `memo' (Michie

1968), so that it remembers the arguments it has already seen and failed on. Now if

the continuation is called with an instantiation � and size n, and there was already a

call with instantiation � and size m � n, the call fails at once (the sizes are ignored

if depth-bounded search is used). This seems to be quite a useful optimization in

practice, as indicated by some results below. We could adopt the re�nement of also

failing with an instantiation �

0

which is no more general than �. That would require

more costly checks, but these might get repaid by eliminating many more redundant

searches. Such a facility has been incorporated into SETHEO; these remembered

instantiations are there called `anti-lemmata'. We prefer the more neutral term

`caching' because the name emphasizes that it isn't tied to theorem proving in

particular, but is applicable to Prolog-style search generally.

10

However the term

`anti-lemma' usefully emphasizes that the cache is only used in a negative way: \this

has already been tried, and it didn't work" rather than \this has already succeeded

and here are the instantiations it gave rise to that time". This more general kind of

caching, where moreover the cache is more persistent (ours exists only ephemerally

with the continuation), has been explored by Astrachan and Stickel (1992).

Caching is enough to deal with the problem which we have already mentioned

in the optimized version: if a given pair of solutions is repeated in di�erent orders,

it will generate the same instantiations, and caching will prevent the continuation's

body from being called twice. However since setwise comparison of instantiation

lists is expensive

11

we pre-empt this �ltering out by an additional wrapper which

makes the continuation fail immediately if the second goal is solved with size � n=2

and then the �rst one is too (the other way round is permitted).

It is never necessary to repeat a goal, so if a goal ever appears in its own ancestor

list, search of that branch can be abandoned immediately. This optimization was

already included by Stickel. Of course, it may only happen that a repetition occurs

after additional instantiations are performed. For example, applying a transitivity

rule to P (a; b) gives P (a;X) and P (X; b) as subgoals, but if a later instantiation

sets X to a or b, there is a repetition. For simplicity, we only check when adding

a goal as an ancestor that it is not already in the list, under the currently pending

instantiations. The best-�rst version does a complete check of the ancestor list

each time; this is rather costly, but otherwise that version can get stuck on rather

long dead ends. In the other versions, such additional checks reduce the number of

inferences, but usually still increase runtimes.

10

Though of course from one point of view, that is theorem proving too. Some related techniques

for avoiding redundant search are common in Prolog implementations.

11

To reduce consing, instantiation lists are augmented from the head, rather than being main-

tained in a canonical order.

10

In some situations, it is impossible for a small increment in the inference bound

to result in any new proofs. For example, if all the rules either have no hypotheses

or 2, then it is impossible to generate new proofs by an increment of 1. As noted by

Stickel (1988), it is possible to record, each time a proof fails because it overows

the size limit, the amount by which it overspilled; the least such value can then be

chosen as the next increment. We did not implement this optimization as Stickel

did since there seemed to be rather few situations where it is useful.

7 Results

Thanks to the TPTP problem library (Suttner and Sutcli�e 1995), there are well

over 2,000 problems in clausal form available as a test suite. We decided to use

this, rather than some smaller collection, in the hope that it would exercise the

di�erent search strategies on a representatively wide range of problems. Version

1.2.0 of the TPTP library contains 2,755 �xed-size problems; there are `generators'

to produce di�erent sizes of generic ones, but we just took the single instance which

is also provided. Of these problems, our programs immediately detected that 4

were satis�able, since there were no all-negative support clauses available to start

the search (recall that the rules with falsity as conclusion need only be tried for all-

negative clauses).

12

By the way, just about half the problems (1,378) have precisely

one possible support clause; most of the rest have just a few. There are 20 problems

which have more than 10, the record-holder being PUZ028-3 with 432 supports.

Given such a large set of problems, it was necessary to set quite low limits on

CPU time in order to complete the tests in a reasonable time. We split the tests over

20 Sparc-4 workstations, making some e�ort to compensate for small di�erences in

hardware characteristics. Each problem was allocated a CPU time limit of 300

seconds (5 minutes) and a (virtual) store limit of 12 megabytes (the latter is only

really relevant for the best-�rst implementation). Successful problems were rerun

on a �xed machine to make the CPU times completely normalized. Of course it's

possible that a few problems took just over 5 minutes on the �rst machine even

though they would have taken less on the second. We believe that such cases are

rare, as is the converse situation of �nal runtimes exceeding 5 minutes; however the

attentive reader may notice below a few instances of the latter phenomenon.

7.1 Comparison of search strategies

First, we will give some statistics for the general success of each search strategy.

We will just make explicit what the names stand for:

� best: best-�rst search with the heuristic given above.

� sym: inference-bounded search where each of the subgoals is given an equal

share of the inference limit and leftovers are not made available to the others.

� deep: depth-bounded iterative deepening.

� unopt: unoptimized inference-bounded search.

� opt: optimized inference-bounded search.

� skew-3: optimized inference-bounded search with a skew of 3.

� skew-4: optimized inference-bounded search with a skew of 4.

12

There are probably plenty of others which are in fact satis�able; the TPTP library is intended

to contain a few such, as well as some whose status is open, such as the \Robbins conjecture".

11

� skew-5: optimized inference-bounded search with a skew of 5.

We give the number of TPTP problems solved in the 5 minute time and 12M

space limits, the number which only that strategy solved, and the number on which

that strategy was at least equal fastest. With some strategy or other, 976 problems

were solved; 495 problems were solved by every strategy. As already stated, this is

from a total stock of 2,755 problems, 4 of which were agged as satis�able.

Strategy Successes Only Fastest

best 593 22 219

sym 768 1 332

deep 816 43 397

unopt 717 0 383

opt 850 1 330

skew-3 873 2 435

skew-4 871 0 453

skew-5 869 7 480

From this table it is apparent that most modes have at least a few problems on

which they shine, though it appears that the divide-and-conquer optimization with

a skew of 3 is best on average. But the large number of di�erent strategies, and the

many variants of our optimized version, tends to obscure individual comparisons,

so let's also look at some interesting pairs, on the same basis. First, it is evident

that the optimization is a clear improvement.

Strategy Successes Only Fastest

unopt 717 3 618

opt 850 136 827

It gets over a hundred more problems, while only 3 become impossible. Almost

all runtimes are signi�cantly reduced by the optimization, often by one or two

orders of magnitude (see the large table of results below). We tried the three

rogues without resource limits with the divide-and-conquer optimization to see just

how much worse they became. Problem LCL097-1 took 12:32.7 minutes `optimized'

against 2:59.3 minutes `unoptimized'; and LCL107-1 took 8:21.2 against 2:16.9. The

most dramatic was NUM283-1.005, which took 46:54.8 instead of just 0:41.4 without

the divide-and-conquer optimization. We examined this theorem, and discovered

that it is rather atypical: it essentially calculates 5! in unary arithmetic based on

recursive de�nitions of the arithmetic operations. As such the proof is (a) very long

(150 inferences) and (b) completely deterministic. So it's not too surprising that the

optimization performs badly, since it explores alternative ways of making choices

even where no choice exists. Most of the few instances where the optimization slows

things down are also concentrated in the LCL100 area. These problems involve

discovering proofs from complicated single axioms in equivalential calculus. The

only rules are the axioms and the rule of `condensed detachment' (from ` a � b

and ` a, deduce ` b). Once instantiation has made a goal su�ciently specialized

that it cannot be an instance of an axiom, failure is quick. Though not completely

deterministic as NUM283-1.005 is, these are clearly not good candidates for the

optimization.

Our experience echoes that of SETHEO researchers (Letz, Schumann, Bayerl,

and Bibel 1992), in that depth-bounded search seems to do better on average than

unoptimized inference-bounded search, though where inference bounded search suc-

ceeds it is often faster:

12

Strategy Successes Only Fastest

unopt 717 54 680

deep 816 153 634

However our optimized version works out signi�cantly better than depth-bounded

search:

Strategy Successes Only Fastest

deep 816 70 571

opt 850 104 709

Slightly surprisingly, notwithstanding the justi�cation above, our optimization

in conjunction with a slight skew (3) seems even better:

Strategy Successes Only Fastest

deep 816 60 510

skew-3 873 117 749

We will now give a fairly comprehensive list of runtimes for di�erent strategies

on di�erent problems. To save space and focus on the more interesting cases, we

include only those where at least one strategy took over a minute (which includes

exceeding the 5 minute limit), but at least one succeeded. That is, we exclude

problems which are either very easy or too di�cult.

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

BOO003-1 [B2 part 1] 2:20.0 5.5 4.4 3.6 3.6

BOO003-2 [prob2 part1.ver2.in] 3:52.2

BOO003-4 [TA] 4:38.6 2:25.7 1:15.6 57.1 39.8

BOO004-1 [B2 part 2] 3.2 2:24.5 5.4 4.5 3.6 3.8

BOO004-2 [prob2 part2.ver2.in] 5:04.6

BOO004-4 [TA] 2:09.0 1:04.5 45.0 33.2

BOO005-1 [B3 part 1] 5.9 2:36.3 9.9 8.1 6.6 7.0

BOO006-1 [B3 part 2] 2:32.6 9.3 7.4 6.1 6.6

BOO012-1 [B8] 2.2 3.8 1:25.2 1:03.2 50.2 44.7

BOO012-3 [B8] 46.6 1:01.5

BOO013-1 [B9] 3:58.4 3:03.6

CAT001-3 [C1] 12.7 22.5 32.0 7.1 5.2 4.7 3.5

CAT001-4 [C1] 6.3 8.6 7.3 4.9 3.7 3.4 2.5

CAT002-3 [C2] 34.4 5.8 3.1 2.4 2.2 1.7

CAT002-4 [C2] 3:06.0 15.6 2.4 2.3 1.8 1.6 1.3

CAT003-3 [C3] 9.4 9.9 0.7 0.5 0.4 0.4 0.4

CAT003-4 [C3] 4.1 3.6 0.3 0.4 0.3 0.3 0.3

CAT004-3 [C4] 39.5 26.9 22.7 1:33.7

CAT004-4 [C4] 1:13.8 27.5 18.5 14.1 53.5

CAT005-1 [C5] 1.9 9.5 6.1 1:11.7

CAT006-1 [C6] 1.8 6.4 6.1 1:09.7

CAT008-1 [C8] 4:20.5

CAT017-4 18.7 0.3 0.3 0.2 0.2 0.2 0.2

CAT018-1 [p18.ver1.in] 11.5 16.8 10.2 17.4 16.6

CAT019-3 [p15.ver3.no2.in] 4.1

COL001-1 [C1] 11.2 4:34.7 2:44.1 2:21.0

COL001-2 [C1] 2.2 0.5 1.6 1.3 1.0 1.0 1.0

COL002-1 [C1.1] 1.1 0.1 0.2 0.2 0.2 0.2 0.2

COL002-2 [C1] 0.2 0.4 0.2 0.2 0.2 0.2 0.1

COL002-3 [C1] 0.2 0.0 0.0 0.1 0.1 0.1 0.1

COL008-1 [Question 13] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL009-1 0.8 0.1 0.6 0.5 0.5 0.4 0.5

COL010-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL011-1 4:52.5

COL015-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL017-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL019-1 0.9 0.0 0.2 0.1 0.2 0.2 0.1

COL020-1 0.8 0.1 0.2 0.1 0.1 0.2 0.2

COL021-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL022-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL023-1 36.9 1.2 0.6 0.5 0.4 0.4 0.3

COL024-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL025-1 [stage1.in & stage2.in] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL026-1 36.6 1.1 0.5 0.4 0.4 0.4 0.3

COL027-1 38.8 1.2 0.6 0.5 0.4 0.4 0.4

COL028-1 39.1 1.2 0.6 0.5 0.4 0.4 0.4

COL030-1 0.4 6.8 0.8 0.3 0.3 0.2 0.2

COL032-1 14.6 4.7 48.8 2.8 1.6 1.1 1.0

COL033-1 1:48.4 50.6 27.3 21.1

COL035-1 2.7 4.0 56.3 5.8 3.1 2.6 2.5

13

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

COL039-1 2.2 1.9 0.6 0.4 0.3 0.3 0.3

COL040-1 [Question 5] 4:45.2 3:07.2 1:08.5 41.7 27.4

COL041-1 3:26.0 2:09.0 1:16.7

COL044-1 [CL3] 4:58.6 3:07.2 1:09.8 39.2 27.7

COL045-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL048-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL050-1 [bird1.ver1.in] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

COL051-1 [bird2.ver1.in] 0.4 0.1 0.1 0.1 0.0 0.1 0.1

COL052-1 [bird4.ver1.in] 32.5 2.1 5.4 1.7 1.1 0.8

COL052-2 [bird4.ver2.in] 2:28.6 3.0 2.6 1.0 0.7 0.6

COL054-1 [bird6.ver1.in] 0.3 0.1 0.4 0.3 0.2 0.2 0.3

COL056-1 [bird8.ver1.in] 2:20.9 0.6 0.9 0.7 0.4 0.4 0.4

COL057-1 [CL5] 5:00.9

COL058-2 2:24.0 36.6 1:52.5 47.9 24.1

COL060-1 [CL-1] 3:56.6 1:44.8 1:10.1

COL060-2 [CL-1] 0.5 1:31.5 2:45.0 1:34.3 1:09.8

COL060-3 [CL-1] 0.5 1:23.6 4:38.8 1:56.6 1:02.0 35.9 25.2

COL061-1 [CL-2] 3:28.0

COL061-2 [CL-2] 0.5 5:03.5 2:55.0

COL061-3 [CL-2] 0.5 4:32.4 3:06.9 1:40.5 1:12.1

COL062-2 [CL-3] 0.8

COL062-3 [CL-3] 0.7

COL063-2 [CL-4] 0.7

COL063-3 [CL-4] 0.7

COL063-4 [CL-4] 0.9

COL063-5 [CL-4] 0.9

COL063-6 [CL-4] 0.7

COL064-10 [CL-5] 1.3

COL064-11 [CL-5] 1.0

COL064-2 [CL-5] 1.0

COL064-3 [CL-5] 0.9

COL064-4 [CL-5] 1.2

COL064-5 [CL-5] 1.2

COL064-6 [CL-5] 0.9

COL064-7 [CL-5] 1.0

COL064-8 [CL-5] 1.0

COL064-9 [CL-5] 1.4

COL066-2 [CL-7] 4:50.3 3:19.7

COL066-3 [CL-7] 4:43.9 3:20.5

COL070-1 [Question 11] 38.2 0.7 0.5 0.4 0.3 0.3 0.3

COL075-1 2:30.4

COL075-2 10.2 10.5 23.1 12.3 8.3 18.7

COM004-1 0.2 20.1 6.0 2.8 1.0

GEO001-1 [T1] 1:40.0

GEO003-1 [T3] 1.3 0.5 0.4 0.4 0.4 0.4 0.3

GEO003-2 [T3] 1.1 0.4 3:10.7 0.4 0.3 0.3 0.3 0.3

GEO011-2 [T11] 0.3 0.4 0.3 0.3 0.3 0.3 0.3

GEO011-3 [T11] 1.4 1.1 1.4 1.4 1.4 1.5 1.5

GEO011-4 [T11] 0.3 0.3 0.3 0.3 0.3 0.3 0.3

GEO017-2 [D4.1] 1:13.6 32.6 0.9 0.8 0.8 0.8

GEO018-2 [D4.2] 0.5 9.0 0.4 0.4 0.3 0.3 0.4

GEO020-2 [D4.4] 1.6 1:16.0 32.4 0.9 0.7 0.7 0.7

GEO022-2 [D5] 1:16.3 32.6 1.0 0.8 0.8 0.8

GEO022-3 [D5] 1.7 17.2 0.5 0.6 0.6 0.6 0.6

GEO024-2 [D7] 1.1 0.5 3:14.5 0.4 0.4 0.3 0.4 0.3

GEO026-2 [D9] 59.6

GEO027-3 [D10.1] 8.1 2:18.8 14.4 11.1 10.8 10.8

GEO039-2 [B1] 29.6 20.4 13.1

GEO039-3 [B1] 2:13.7 2:11.3 2:11.7 2:07.6 2:10.4

GEO040-2 [B2] 42.7

GEO041-3 [B3] 22.2 29.3 30.6

GEO047-3 [B9] 1:34.7 2:33.6 2:33.6

GEO055-3 [R2.2] 2.1 5.2 0.7 0.6 0.7 0.7 0.7

GEO056-2 [R3.1] 1.2 1.8 2.1 1.4 1.4 1.5

GEO058-2 [R4] 1.6 8.4 6.0 3.0 2.8

GEO058-3 [R4] 1:08.1 0.8 - 1.1 1.0 0.9 1.0 1.0

GEO059-3 [R5] 4.7 1:06.4 4.2 4.2 4.1 3.9 4.1

GEO064-3 [C2.1] 1.6 1.3 1.3 1.3 1.3 1.3 1.3

GEO065-3 [C2.2] 1.6 1.3 1.2 1.2 1.3 1.3 1.3

GEO066-3 [C2.3] 1.5 1.3 1.2 1.3 1.2 1.2 1.2

GRP001-1 [wos10] 9.2 5.7 5.1 4.9

GRP003-2 0.7 1.6 2.6 0.8 0.6 0.5 0.5

GRP004-2 0.5 0.9 0.1 0.1 0.1 0.0 0.1

GRP006-1 [EX6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GRP008-1 [wos4] 17.1 2.4 4:01.3 5.1 16.4 2:17.6

GRP009-1 [wos6] 0.6 1.4 8.2 2.7 2.3 2.2 2.2

GRP010-1 [wos7] 1.5 0.7 0.4 0.3 0.2 0.2 0.2

GRP012-1 [wos9] 8.1 18.4 0.7 0.6 0.5 0.5 0.5

GRP012-2 [ls36] 2:11.5 1:16.4 1:07.2 1:00.1

GRP012-3 2:25.7 1:30.5 1:15.6 1:08.7

GRP013-1 [wos11] 51.1 1:13.4 15.5 10.3 8.9 8.2 7.0

GRP022-1 [wos8] 0.2 0.1 0.1 0.1 0.1 0.1 0.1

GRP022-2 [Established lemma] 49.8 43.8 24.5 17.3 11.7

GRP025-1 [G8] 2.0 0.6 20.5 2.6 6.0 7.2

GRP025-2 [G8] 9.6 1.5 3.6 2.1 2.1 2.0 2.1

GRP025-3 [G8] 1.3 0.6 17.9 2.4 5.8 6.7

GRP025-4 [G8] 26.4 1.8 7.9 4.6 4.6 4.7 4.7

GRP026-1 [G9] 3.1 0.7 33.8 4.0 8.3 10.5

GRP026-2 [G9] 35.3 3.6 14.5 3.9 4.1 3.8 3.7

GRP026-3 [G9] 1.9 0.6 29.4 4.0 8.5 9.9

GRP026-4 [G9] 1:39.6 4.2 36.3 9.0 8.5 8.5 8.9

14

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

GRP027-1 0.2 0.2 0.2 0.2 0.2 0.2 0.2

GRP027-2 [cyclic.ver3.in] 0.1 0.2 0.2 0.1 0.2 0.1 0.2

GRP029-1 [wos1] 1:46.3 8.3 6.8 2.3 1.7 1.7

GRP029-2 [G5] 23.5 7.9 5.5 2.2 1.7 1.7

GRP030-1 [wos2] 1.4 2.9 1:15.9 2.5 1.4 1.1 1.1

GRP031-1 [wos5] 21.3 6.3 1.8 0.3 0.3 0.3 0.3

GRP031-2 [ls23] 0.1 0.2 0.1 0.1 0.1 0.1 0.1

GRP034-3 [wos14] 0.2 0.2 0.1 0.1 0.1 0.1 0.0

GRP036-3 [wos16] 5.4 3.2 0.7 0.8 0.5 0.5 0.5

GRP037-3 [wos17] 35.3 12.3 6.7 5.3 5.0 5.3

GRP046-2 1.8 0.7 0.1 0.1 0.1 0.1 0.1

GRP047-2 0.3 2.4 4.2 2.3 1.4 1.4 1.3

GRP123-1.003 [Bennett QG1] 1:28.8 3.6 1:06.1 51.5 1:03.7 1:11.1

GRP123-2.003 1:36.2 4.0 1:09.1 55.0 1:06.6 1:13.0

GRP123-3.003 1:41.3 5.6 1:16.3 57.8 1:05.3 1:15.8

GRP123-4.003 2:24.7 7.0 1:28.2 58.6 1:07.2 1:19.1

GRP123-6.003 [QG1a] 2:10.3 14.5 2:30.6 1:46.1 2:07.0 2:25.1

GRP123-7.003 2:19.3 15.0 2:31.0 1:52.2 2:09.7 2:29.1

GRP123-8.003 2:23.7 16.8 2:33.1 1:50.9 2:10.7 2:31.6

GRP123-9.003 2:19.2 14.2 2:30.0 1:48.9 2:08.2 2:19.7

GRP124-1.003 [Bennett QG2] 1:34.1 3.6 1:06.1 53.6 1:02.1 1:06.6

GRP124-2.003 1:38.0 4.0 1:11.0 56.4 1:05.8 1:14.4

GRP124-3.003 1:42.9 5.5 1:13.8 59.0 1:07.8 1:12.8

GRP124-4.003 2:26.2 6.9 1:22.6 59.1 1:08.7 1:13.3

GRP124-6.003 [QG2a] 2:18.5 14.5 2:28.2 1:48.4 2:05.9 2:23.9

GRP124-7.003 2:19.0 13.8 2:28.3 1:46.6 2:04.2 2:28.6

GRP124-8.003 2:20.7 16.0 2:31.6 1:53.2 2:10.9 2:19.8

GRP125-1.003 [Bennett QG3] 1:35.8 7.6 2:20.9 1:50.6 1:55.7 2:01.8

GRP125-2.003 1:35.8 9.6 2:36.9 1:56.0 2:04.6 2:13.0

GRP125-3.003 1:50.7 13.6 2:39.5 1:59.7 2:08.7 2:18.5

GRP125-4.003 40.4 3:39.2

GRP127-1.003 [Bennett QG5] 1:32.8 8.9 2:13.8 1:38.5 1:48.6 2:11.9

GRP127-2.003 1:41.0 12.1 2:27.1 1:45.0 1:57.5 2:12.2

GRP127-3.003 1:50.2 18.3 2:30.8 1:47.5 2:01.2 2:17.1

GRP127-4.003 41.4

GRP129-1.002 [Bennett QG7] 1:08.7 5.5 4:24.8 2:58.3 2:38.9 2:45.3

GRP129-2.002 1:15.8 6.9 3:20.6 2:58.6 3:14.4

GRP129-3.002 1:33.3 10.0 4:38.1 4:21.0 4:47.0

GRP129-4.002 10.6 41.1 44.8 7.4 6.5 8.8

GRP130-1.002 [Bennett QG8] 10.3 1:22.4 5.6 37.9 29.5 31.2 36.7

GRP130-2.002 10.0 1:33.4 7.4 44.0 33.6 35.7 42.4

GRP130-3.002 16.1 1:52.7 10.5 59.0 50.8 54.0 1:05.9

GRP130-4.002 7.5 13.5 3.6 53.9 5.8 7.3 8.7

GRP131-1.002 [QG1-ni] 46.4

GRP131-2.002 1:06.1

GRP132-1.002 [QG2-ni] 43.3

GRP132-2.002 1:02.5

GRP133-1.002 [QG3-ni] 9.2 4:07.9 2:53.8 2:33.1 2:40.6

GRP133-2.002 17.6 4:33.6 3:08.8 2:45.1 2:56.9

GRP134-1.002 [QG4-ni] 1:14.0 2.9 3:47.4 3:10.0 3:18.5

GRP134-2.002 1:29.8 4.9 4:13.0 3:44.5 3:42.1

GRP135-1.002 [QG5-ni] 14.6 2:09.3 4.8 38.6 32.9 34.3 40.3

GRP135-2.002 13.1 2:20.4 6.9 43.5 37.5 38.7 46.4

GRP139-1 [ax glb1b] 3.6 0.5 0.9 1.1 1.0 0.8 1.5

GRP140-1 [ax glb1c] 2:22.0 4:54.9 2:32.2 1:53.9 1:26.2

GRP143-1 [ax glb2b] 0.3 0.1 0.2 0.4 0.3 0.2 0.3

GRP145-1 [ax glb3b] 0.1 0.1 0.1 0.2 0.2 0.2 0.2

GRP146-1 [ax lub1a] 3.5 0.5 1.0 1.1 0.9 0.8 1.6

GRP148-1 [ax lub1c] 2:09.4 2:43.4 2:04.4 1:34.7

GRP150-1 [ax lub2a] 0.1 0.1 0.1 0.1 0.1 0.1 0.1

GRP152-1 [ax lub3a] 0.4 0.3 1.0 1.2 2.5 2.2 1.9

GRP156-1 [ax mono1c] 0.4 8.1 1:31.4 11.6 7.6 6.3 4.9

GRP159-1 [ax mono2c] 4.9 4:47.5

GRP162-1 [ax transa] 39.2 1:48.5 55.2 1:19.0 1:05.1

GRP163-1 [ax transb] 32.3 3:21.4 1:48.0 1:21.7 1:04.5

GRP165-1 [lat1a] 14.9 25.1 2:22.0 1:12.2 51.3 38.5

GRP166-3 [lat3a] 15.5 24.7 2:24.4 1:15.6 50.1 38.3

GRP167-5 0.1 0.2 0.2 0.2 0.2 0.2 0.3

GRP168-1 [p01a] 0.2 33.8 3:23.2 35.2 21.9 18.3 16.4

GRP168-2 [p01b] 0.2 35.1 3:22.6 34.6 22.1 18.5 16.8

GRP186-4 [p23x] 2.1 2:31.1 3:57.5 3:06.6

GRP188-1 0.4 0.3 1.0 1.3 2.5 2.2 1.9

GRP188-2 [p38a] 0.5 0.3 1.2 1.5 3.0 2.7 2.2

HEN003-1 [H3] 2:10.1 1:55.5 2:09.1

HEN003-2 [H3] 4:38.7 2:34.1 1:44.9

HEN003-3 [HP3] 10.3 4.9 3.6 3.0

HEN003-4 [H3] 5:01.4 19.1 8.6 5.9 4.9

HEN003-5 [H3] 20.5 9.5 6.8 5.6

HEN004-2 [H4] 4:18.0

HEN004-4 [H4] 41.7 18.8 12.7 9.7

HEN004-5 [H4] 4:33.2 3:01.2

HEN005-2 [H5] 1:44.9 2:14.3 3:47.7

HEN005-3 [HP5] 4:23.5 2:21.4 1:40.3

HEN005-6 [H5] 4:40.3 3:12.9

HEN006-4 [H6] 40.8 5.6 4.0 3.2 3.0

HEN007-2 [H7] 3:51.7 26.7 19.3 15.7 15.3

HEN007-4 [H7] 0.2 2.8 0.2 0.2 0.2 0.2 0.2

HEN007-6 [H7] 53.0 3:21.6 20.6 14.7 11.2 11.6

HEN008-1 [H8] 1:09.1 18.7 17.0 20.6 28.9

HEN008-2 [H8] 36.0 25.2 20.8 19.1

HEN008-3 [HP8] 52.5 4.7 2.8 2.2 1.7

15

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

HEN008-4 [H8] 2:06.1 4.6 15.2 9.4 6.2 5.2 4.4

HEN008-5 [H8] 53.7 18.7 9.7 7.3 5.8

HEN008-6 [H8] 34.3 6.6 4.1 3.1 2.7

HEN009-2 [H9] 1:25.6 1:15.5

HEN009-4 [H9] 0.4 7.3 2.7 0.7 0.6 1.8 7.2

HEN009-5 [H9] 7.1 12.0 20.9

HEN010-4 [H10] 2:22.2 1:38.8 16.1 10.0 8.5 6.3

HEN010-6 [H10] 1:02.3 1:21.3 9.6 5.7 4.6 3.5

HEN011-4 [H11] 1:32.5 1:41.9 4:42.4

HEN012-1 2:53.1 2:22.8 2:40.9

HEN012-3 [new.ver2.in] 12.4 6.1 4.5 3.4

LCL006-1 [EC-69] 3:57.3 3:18.7

LCL008-1 [EC-71] 2:57.5 6.7 0.5 0.6 0.4 0.3 0.3

LCL009-1 [EC-72] 5:02.0

LCL010-1 [EC-73] 3:00.5 6.9 20.6 13.5 30.1 49.2 1:56.7

LCL022-1 [ec.in part 1] 4:41.2 1:19.8

LCL023-1 [ec.in part 2] 4:50.7

LCL033-1 [C0-45] 5.6 4.2 4.6 2.4 1.5 0.8

LCL035-1 [C0-47] 1:12.5 2.8 1.1 0.9 0.5 0.7 1.2

LCL045-1 [CN-6] 51.0 49.8 2:43.3 4:05.6 2:46.9

LCL064-2 [morgan.six.ver1.in] 3:11.5 2:22.3 1:25.3 1:06.9 50.3

LCL066-1 [CN-27] 3:51.4

LCL076-3 [morgan.four.ver1.in] 1:43.7 48.3 36.4 26.9 28.4

LCL077-2 [morgan.two.ver1.in] 1:36.3 2:06.7 3.7 2.8 2.2 2.0 2.1

LCL081-1 [ls1] 2:33.4 1:20.5 1:50.1 56.7 35.3

LCL082-1 [ls2] 3.5 2.7 1.5 0.8 0.5

LCL096-1 [LG-89] 18.1 15.5 19.3 47.3 44.3

LCL097-1 [CD-90] 4:11.8 3:24.3 2:59.3

LCL098-1 [LG-91] 2.3 13.4 8.1 11.8 41.7 3:17.5 3:46.5 3:29.3

LCL102-1 [LG-95] 43.4

LCL106-1 [LG-99] 1.0 1:22.9 56.0 1.0 1.2 1.0 0.9 0.9

LCL107-1 [LG-100] 1:04.3 8.4 2:16.9

LCL111-1 [CADE-11 Competition 6] 16.3 17.3 1:05.3 1:02.6 54.5 43.4

LCL118-1 [R-86] 3:35.4 23.0 28.3 18.8 13.5 30.8

LCL120-1 [R-88] 6.2 15.4 11.9 29.9 1:32.8

LCL130-1 [RG-111] 32.0 3.3 13.6 1:19.0

LCL132-1 [Lemma 1] 22.4 2:55.9 1:10.2 35.9 1:07.3

LCL143-1 [Lattice structure theorem 2] 17.6 28.5 1:49.2 1.2 0.8 0.8 0.7

LCL174-1 [Problem 2.06] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LCL178-1 [Problem 2.12] 0.2 0.1 0.1 0.0 0.0 0.0 0.0

LCL182-1 [Problem 2.16] 21.8 15.8 13.2 13.1

LCL187-1 [Problem 2.24] 0.2 0.1 0.1 0.1 0.0 0.1 0.0

LCL189-1 [Problem 2.26] 0.2 0.1 0.1 0.1 0.1 0.1 0.0

LCL193-1 [Problem 2.36] 0.4 0.4 0.3 0.1 0.1 0.1 0.1

LCL194-1 [Problem 2.37] 5.1 2.4 2.4 0.8 0.6 0.5 0.5

LCL195-1 [Problem 2.38] 30.2 21.3 18.3 17.6

LCL196-1 [Problem 2.4] 2:37.3 2:13.5 2:11.2

LCL199-1 [Problem 2.45] 7.0 4.6 3.8 3.4

LCL200-1 [Problem 2.46] 1:48.9 44.7 51.2 1.4 0.9 0.8 0.7

LCL201-1 [Problem 2.47] 11.7 7.8 6.5 6.0

LCL202-1 [Problem 2.48] 47.8 26.2 21.2 20.6

LCL203-1 [Problem 2.49] 12.6 8.5 6.9 6.7

LCL204-1 [Problem 2.5] 12.9 8.5 7.3 6.8

LCL205-1 [Problem 2.51] 1:04.7 38.9 33.9 30.3

LCL206-1 [Problem 2.52] 13.3 9.0 8.0 7.5

LCL207-1 [Problem 2.521] 1:51.2 44.9 52.0 2.2 1.5 1.3 1.3

LCL208-1 [Problem 2.53] 1:57.6 1:21.5 1:10.2 1:07.9

LCL210-1 [Problem 2.55] 4:05.1 3:32.0 3:24.8

LCL211-1 [Problem 2.56] 2:38.2 1:36.3 1:47.1 3.3 2.7 2.1 2.1

LCL213-1 [Problem 2.61] 3:04.7 1:41.8 1:53.9 7.1 5.8 5.2 4.9

LCL214-1 [Problem 2.61] 2:51.4 1:41.8 1:53.6 5.6 4.5 4.0 3.8

LCL215-1 [Problem 2.62] 26.3 17.9 16.4 14.7

LCL216-1 [Problem 2.64] 2:18.1 1:02.9 1:12.9 3.5 2.6 2.2 2.1

LCL217-1 [Problem 2.65] 2:31.3 1:03.8 1:14.3 5.4 4.2 3.8 3.6

LCL218-1 [Problem 2.67] 22.2 15.8 13.5 12.5

LCL226-1 [Problem 2.8] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LCL230-1 [Problem 2.85] 3:41.1 2:39.8 2:12.4 2:07.7

LCL231-1 [Problem 2.86] 4:01.0 3:24.6 3:19.7

LDA003-1 [Problem 3] 19.6 7.0 3.7 2.4

LDA007-3 [Problem 8] 55.4

MSC002-1 [DBABHP] 0.7 4.2 1.3 1.1 0.7 0.8

MSC002-2 0.5 3.7 1.2 0.9 0.7 0.7

MSC006-1 [nonob.lop] 1.0 5.0 1.2 5.6 6.2 8.2 9.9

MSC007-2.002 [Pelletier 73 (Size 4)] 11.6 9.3 0.6 1:32.5 0.8 0.8 0.7 0.9

MSC008-1.002 1:08.8

MSC008-2.002 51.6

NUM002-1 [ls29] 0.2 0.3 1.5 0.7 0.7 0.6 0.6

NUM003-1 [Chang-Lee-10c] 4.2 1.3 0.4 0.3 0.3 0.3 0.3

NUM004-1 [Chang-Lee-10d] 0.2 0.3 1.2 0.6 0.5 0.5 0.5

NUM020-1 [ls55] 0.1 0.0 0.0 0.0 0.0 0.0 0.0

NUM021-1 [ls65] 2.4 8.2 3.8 2.9 2.6 2.1

NUM024-1 [ls75] 9.5 9.0 13.5 14.6 13.3 12.0 22.0

NUM027-1 [ls87] 53.0 1:22.8 46.5 30.7 25.1 23.2

NUM180-1 [LIM2.1] 32.5 27.0 6.2 5.8 5.7

NUM283-1.005 [fac2.lop (Size 2)] 2.2 6.0 41.4

NUM284-1.010 [fib3.lop (Size 3)] 6.9 53.6

PLA001-1 6.7 25.0 44.2 31.2 29.2 29.3

PLA002-1 [Problem 5.7] 46.4 0.1 3.7 3.9 3.7 8.8 20.2

PLA004-1 20.5

PLA004-2 5.0

PLA005-1 0.6

16

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

PLA005-2 1.9

PLA006-1 0.4 0.1 0.2 0.2 0.1 0.1 0.1

PLA007-1 3.6

PLA008-1 43.3

PLA009-1 2.3 4:42.8

PLA009-2 10.3 21.1 5.8 3:25.8 3:56.7

PLA010-1 2:45.1

PLA011-1 1.9

PLA011-2 0.7

PLA012-1 1:25.7

PLA013-1 3.6

PLA014-1 24.8

PLA014-2 6.4

PLA015-1 2:52.6

PLA016-1 1.7

PLA017-1 1.1 0.5 4.6 4.6 1:50.3

PLA018-1 46.2

PLA019-1 1.7

PLA021-1 3.0

PLA022-1 0.9 12.1 0.3 3.1 1.6 1.4 1.1

PLA022-2 1.8 0.5 3.5 1.8 1.5 1.2

PLA023-1 1:24.5

PRV001-1 [PV1] 12.4 6.5 3.3 1.3 1.5 1.7

PRV005-1 [E4] 0.1 0.1 0.1 0.1 0.1 0.1 0.1

PRV006-1 [E5] 1.2 1.8 0.4 0.4 0.4 0.4 0.4

PUZ006-1 [mars venus.in] 3:49.5 33.8 15.8 9.9

PUZ007-1 [mars venus2.in] 6.9 2:32.7 2:29.9 3:36.1

PUZ008-3 5.2 2.2 10.7 3:13.6 54.0 34.3 29.4

PUZ014-1 [The School Boys] 0.6 57.5 9.7

PUZ016-2.003 0.3 0.6 1.9 0.6 0.3 0.3 0.3

PUZ023-1 [Problem 27] 0.9 0.7 6.9 2:22.8 1.2 1.4 2.2 3.9

PUZ024-1 [Problem 31] 0.4 0.1 0.3 0.2 0.2 0.2 0.2

PUZ025-1 [Problem 35] 54.8 31.5 5.5 4.5 5.8 7.0

PUZ027-1 [Problem 42] 2:59.5 3:22.1

PUZ031-1 [Pelletier 47] 12.3 3.0

PUZ032-1 [Problem 26] 21.4 1.8 23.0 1:04.3 3:25.2

PUZ033-1 [winds.ver1.in] 0.7 0.0 0.3 0.5 0.3 0.2 0.2

RNG001-1 [R1] 1:15.5 49.3 44.6 36.4

RNG001-3 [EX6-T] 15.1 59.6 15.9 9.4 43.5 3:20.7

RNG001-4 [R1] 2:19.0 5.2 4.5 3.9 3.9

RNG001-5 [wos21] 1:14.0 49.5 42.9 37.9

RNG002-1 [Established lemma] 0.5 0.9 20.8 3.8 2.9 2.7 2.7

RNG003-1 [Established lemma] 0.7 1.8 22.4 4.5 3.5 3.3 3.3

RNG005-2 [wos23] 0.1 0.1 0.1 0.1 0.1 0.1 0.2

RNG006-1 [Problem 25] 0.4 38.0 0.3 0.2 0.2 0.2 0.2

RNG006-2 [wos25] 0.5 1:49.8 0.3 0.2 0.2 0.2 0.2

RNG023-6 1.5 0.2 0.2 0.2 0.2 0.2 0.2

RNG023-7 1.9 0.3 0.2 0.3 0.2 0.2 0.2

RNG024-6 1.6 0.2 0.1 0.2 0.1 0.1 0.2

RNG024-7 1.9 0.3 0.2 0.3 0.2 0.2 0.2

RNG037-2 [wos24] 0.1 0.1 0.2 0.1 0.1 0.2 0.1

RNG038-1 [Problem 27] 3:55.7 2:48.4 2:45.2 2:31.4

RNG038-2 [wos27] 0.2 0.1 0.2 0.2 0.1 0.2

RNG040-1 [Problem 29] 0.2 0.2 0.2 0.2 0.2 0.2 0.2

RNG040-2 [wos29] 1.1 1:14.4 19.8 6.0 21.8 1:19.3

RNG041-1 [wos30] 17.9 3.2 3.3 3.3 3.2 3.3

ROB010-1 [Lemma 3.3] 9.3 45.4 46.5 23.6 16.6 10.9

ROB013-1 [Lemma 3.5] 1.0 14.2 16.8 4.6 2.6 5.1 11.0

ROB016-1 [Corollary 3.7] 0.3 5.3 3.1 2.2 1.8 1.6

ROB021-1 4.9 4:58.0 13.9 3:02.7 44.7 29.3 1:18.4

SET005-1 [ls108] 2:13.0 28.2

SET008-1 [ls115] 0.4 0.2 0.4 0.2 0.2 0.2 0.2

SET009-1 [ls116] 31.4 3:16.4 19.9 1.6 0.7 0.5 0.4

SET011-1 [ls121] 2:21.0 18.4 1:10.0

SET014-2 [EST-S4] 3:43.5

SET016-7 [OP4] 2.4 3.2 2.3 2.4 2.4 2.4 2.4

SET018-7 [OP5] 2.5 3.2 2.5 2.4 2.5 2.5 2.5

SET024-3 [Lemma 9] 1:51.8

SET024-4 [Lemma 9] 1:53.4

SET024-7 [SS2] 4:07.9 19.1 8.1 8.1 8.3 8.4

SET025-3 [Lemma 10] 1:48.8 18.0 15.7 15.6 15.6 15.5

SET025-4 [Lemma 10] 1:46.1 17.1 14.9 15.1 15.0 15.3

SET025-7 [OP1] 2.1 2.8 2.1 2.1 2.1 2.1 2.1

SET027-6 1.9 9.8 8.5 8.2 6.6

SET027-7 [PO3] 2.0 10.8 9.1 9.0 6.9

SET041-3 [Lemma 26] 2:39.8

SET047-5 [p43.in] 0.4 0.1 0.1 0.4 1.0 3.7 10.0

SET050-6 1.4 3.4 1:55.4 1.5 1.5 1.4 1.4 1.4

SET051-6 1.4 3.4 1:50.5 1.5 1.5 1.4 1.5 1.4

SET055-6 1.3 1.3 1:33.2 6.8

SET059-7 [EQ2.4] 1.6 1.1 1.5 1.3 1.3 2.3 9.6 1:04.3

SET061-7 [SP2] 9.6 25.5 9.9 10.3 10.3 10.0

SET065-7 [SP5] 7.1 3:12.5 17.7 7.6 7.7 7.8 7.9

SET073-7 [UP6.1] 7.3 2:21.7 20.0 7.7 7.7 8.0 8.1

SET074-7 [UP6.2] 7.2 2:15.8 19.8 7.8 7.7 8.1 8.2

SET075-7 [UP6 cor.] 7.8 2:21.2 19.7 7.9 7.7 8.0 7.8

SET077-7 [SS1] 1.6 2.0 1.6 1.6 1.6 1.6 1.5

SET079-7 [SS2 cor.1] 7.0 3.5 20.0 7.7 7.7 7.9 8.0

SET080-6 1.7 1:18.6 1:12.3 1:11.3 1:09.6

SET081-6 1.8 17.8 15.9 2.2 2.0 1.9 1.9

SET081-7 [SS3] 4:14.3

17

PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5

SET082-7 [SS4] 4:27.4

SET083-6 2.3

SET090-7 [SS7] 4:58.0 20.9 9.4 9.5 9.4 9.3

SET093-6 1:11.6 2.4 2.4 2.3 2.3 2.2 2.2

SET094-6 [SS10] 4.6

SET098-7 [SS13 cor.1] 9.5 22.3 9.9 9.9 10.3 10.0

SET101-6 1.7 23.2 1:28.6 11.3 10.2 10.4 9.9

SET101-7 [OP2.1] 23.5 9.7 9.7 9.8 10.3

SET102-7 [OP2.2] 22.9 9.4 9.3 9.8 9.8

SET108-6 2:05.0 3.6 3.2 3.2 3.2 3.2

SET117-6 1:10.1 2.4 2.5 2.2 2.1 2.2 2.3

SET152-6 [C2.2] 2.3 6.3 1:51.6 1:35.0 1:36.4 1:38.4 1:33.1

SET153-6 [C3.1] 2.3 1:48.2 6.1 1:59.7 1:44.4 1:40.0 1:44.7 1:40.9

SET184-6 [SU2] 2.3 14.0 22.3 4.4 3.9 3.7 3.8

SET187-6 [SU5] 2.8

SET196-6 [LA1.3] 1.9 1.5 2:19.8 1.4 1.4 1.4 1.4 1.3

SET197-6 [LA1.4] 2.0 1.4 2:20.5 1.4 1.4 1.4 1.4 1.4

SET203-6 [CP1 cor.] 2:01.3 2.5 2:26.6

SET204-6 [CP2] 2.5 3.1 2.1 3.7 3.4 16.1 1:50.8

SET231-6 [CP14.1] 1.4 1.7 1.4 1.4 1.4 1.4 1.4

SET234-6 [CP14.4] 2:05.2 1:55.2 1:54.8 1:48.0 1:54.9

SET236-6 [CP15.2] 3:48.7 3:27.9 3:29.3 3:18.5

SET239-6 [RS1] 9.7 21.0 2.7 2.5 2.6 2.5 2.5

SET240-6 [RS2] 22.2 16.6 5.0 5.0 4.8 4.8

SET241-6 [RS3] 36.3 49.2 7.0 6.6 6.2 6.5

SET242-6 [RS4] 2.1 1:26.2 1.9 3.3 3.0 2.9 3.0 2.9

SET252-6 [RS10.1] 2.9 13.5 22.4 4.7 4.2 4.0 4.0

SET253-6 [RS10.2] 14.2 23.2 4.9 4.4 4.2 4.2

SET411-6 [CO15] 4:12.5 3:50.2 3:50.2

SET451-6 [SR1] 13.9 53.5 5.0 4.6 4.4 4.3

SET479-6 [RP2.1] 7.6 32.6 2.3 2.4 2.3 2.3 2.3

SET553-6 [CA1] 14.1 30.1 5.2 4.7 4.6 4.6

SYN002-1.007:008 [eder7-8.lop] 1:06.3 56.7 1:57.3 3:51.4

SYN004-1.007 [Problem 5.3] 0.1 0.3 0.2 5.9 1.7 16.3

SYN010-1.005:005 [Example 5.1] 5.2 5.6 3.5

SYN012-1 [Example] 33.2

SYN038-1 [EX4-T] 31.1

SYN058-1 [Pelletier 28] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SYN067-2 16.5 3:58.7

SYN070-1 [p46.in] 29.8 0.4 1:04.1 25.3 27.5 29.8

SYN071-1 [Pelletier 48] 1.4 5.3 4.1 2.2 2.5 3.0 3.4

SYN072-1 [Pelletier 49] 9.9 51.2 9.9 11.6 12.9

SYN074-1 [Pelletier 51] 2:23.8 5.7 5.5 6.3

SYN075-1 [Pelletier 52] 7.8 7.6 9.3

SYN081-1 [Pelletier 59] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SYN090-1.008 [T3n] 9.9

SYN094-1.005 [U(T3n)] 51.2

SYN096-1.008 [M(T3n)] 12.7

SYN098-1.002 [Sym(U(T3n))] 1.2 0.3 2:00.6 1.4 1.5 1.7 2.1

SYN099-1.003 [Sym(M(T2n))] 0.5 0.5 0.5 0.5 0.5 0.5 0.5

SYN100-1.005 [Sym(M(T3n))] 28.5 3:46.1 1:32.6 50.5 31.8

SYN102-1.007:007 [N(T3n))] 25.0

SYN137-1 5.0 58.8 5.0 4:03.3 7.2 4.8 4.6 4.7

SYN139-1 35.5 1:17.1 4.4 2:34.7 7.3 5.9 5.5

SYN140-1 35.6 1:18.0 4.3 4:41.9 13.3 8.4 7.4

SYN142-1 2:42.4 4.5 1:40.0

SYN143-1 2:36.8 4.5 1:38.3

SYN155-1 14.6 14.1 4.8 4.8 5.0

SYN156-1 14.8 20.5 4.8 9.1 1:14.5

SYN159-1 13.9 14.3 12.5 13.4

SYN163-1 17.0 4:04.4 13.2 12.0 12.9

SYN171-1 6.1 9.8 4.5 2:50.1 56.9 35.3

SYN178-1 9.8 5.7 7.4 4.3 4.1 4.2 4.2

SYN179-1 1:33.7 49.9 22.1 7.7 7.8 8.9

SYN180-1 5.3 23.4 5.7 5.2 5.1

SYN190-1 11.9 6.3 12.8 6.3 5.6 5.7

SYN202-1 7.6 5.6 6.9 4.3 4.2 4.2 4.3

SYN204-1 29.1 40.8 4.4 1:19.4 15.8 5.2 4.7 4.9

SYN205-1 29.2 40.5 4.3 1:19.5 15.3 5.2 4.7 4.7

SYN213-1 9.6 2:17.0 4.5 5.0 4.3 4.3 4.2

SYN214-1 5.5 1:56.1 4.5 4.7 4.3 4.2 4.2

SYN215-1 5.7 1:52.2 4.5 5.0 4.4 4.3 4.4

SYN252-1 35.1 1:18.6 4.3 3:10.1 11.0 7.1 6.4

SYN253-1 34.5 1:17.1 4.3 19.5 11.3 10.0

SYN254-1 34.0 1:15.4 4.4 1:28.4 9.1 6.3 5.4

SYN269-1 6.0 10.1 4.5 2:09.5 43.2 31.1

SYN271-1 6.0 10.3 4.6 2:57.5 59.2 37.0

SYN311-1 [H2] 0.1 4:06.0 3:27.7 3:58.2 3:41.2 3:41.9 3:42.4

SYN328-1 [Ch12N3] 38.5 2.2 1:16.4 22.6 51.5 1:10.4

SYN334-1 [Ch14N6] 29.1

SYN347-1 [Ch17N3] 9.3 6.5 1.9 2:23.8 6.6 4.7 4:01.2 3:20.5

SYN349-1 [Ch17N5] 11.0 1.3 0.4 3.1 6.0 12.6 23.1

TOP001-2 [Lemma 1a] 11.8 1.6 10.1 8.0 5.7 5.0

TOP005-2 [Lemma 1e] 7.2 1:05.9 14.8 23.7 3:10.9

7.2 The value of caching

On the basis of these examples, caching is unmistakably worthwhile. Almost every

problem is solved more quickly and with fewer inferences if caching is used (of

course it is inevitable that caching cannot increase the number of inferences, but

the time performing cache lookup may swamp any improvements). The di�erence

is not usually spectacular, but signi�cant. Caching permitted the solution of 40

problems not solved without it, whereas only 3 were solved without and not with.

Here are the situations where the runtimes are at least a minute (or not within 5

18

minutes) in one or both cases. Note that even if the number of inferences is the

same in both cases, a longer runtime in the no-caching case need not be put down

to experimental error: caching may provide a cheaper way of discovering that no

rule applications at all are possible.

Run times Inferences

PROBLEM with without with without

BOO003-4 2:25.7 3:47.0 159,185 259,953

BOO004-4 2:09.0 3:25.9 137,484 227,705

BOO012-1 1:25.2 2:35.8 150,869 261,774

CAT008-1 4:20.5 450,863

COL033-1 1:48.4 2:08.1 42,044 49,283

COL040-1 3:07.2 3:41.4 62,727 76,417

COL044-1 3:07.2 3:46.5 62,727 76,417

COL060-3 1:56.6 3:39.5 82,422 149,162

GEO039-2 2:37.5 154,897

GEO039-3 2:11.3 2:13.7 189,818 193,121

GEO040-2 3:49.1 233,073

GEO047-3 2:33.6 2:38.9 228,579 235,054

GRP012-2 2:11.5 2:36.0 192,809 230,074

GRP012-3 2:25.7 3:07.9 192,119 238,679

GRP022-2 43.8 1:03.8 56,719 86,825

GRP123-1.003 1:06.1 3:02.4 225,810 591,981

GRP123-2.003 1:09.1 3:18.2 236,541 631,936

GRP123-3.003 1:16.3 3:10.7 245,418 622,364

GRP123-4.003 1:28.2 3:26.8 274,002 645,597

GRP123-6.003 2:30.6 521,931

GRP123-7.003 2:31.0 522,064

GRP123-8.003 2:33.1 530,070

GRP123-9.003 2:30.0 521,931

GRP124-1.003 1:06.1 3:01.0 225,810 591,990

GRP124-2.003 1:11.0 3:18.4 236,541 631,945

GRP124-3.003 1:13.8 3:12.6 245,418 622,373

GRP124-4.003 1:22.6 3:22.0 274,002 645,606

GRP124-6.003 2:28.2 521,580

GRP124-7.003 2:28.3 521,713

GRP124-8.003 2:31.6 529,719

GRP125-1.003 2:20.9 452,451

GRP125-2.003 2:36.9 469,749

GRP125-3.003 2:39.5 482,600

GRP127-1.003 2:13.8 411,861

GRP127-2.003 2:27.1 430,332

GRP127-3.003 2:30.8 439,273

GRP129-1.002 4:24.8 914,465

GRP129-4.002 44.8 1:12.1 140,807 240,859

GRP130-2.002 44.0 1:05.8 157,509 236,495

GRP130-3.002 59.0 1:22.1 209,928 295,491

GRP130-4.002 53.9 1:19.2 176,369 252,369

GRP133-1.002 4:07.9 872,714

GRP133-2.002 4:33.6 972,901

GRP135-2.002 43.5 1:01.9 164,029 228,835

GRP140-1 4:54.9 160,911

GRP162-1 1:48.5 1:55.6 79,665 93,281

GRP163-1 3:21.4 3:42.2 139,252 166,843

GRP165-1 2:22.0 3:06.9 81,756 117,876

GRP166-3 2:24.4 3:07.7 81,813 117,933

HEN004-4 41.7 1:05.3 68,435 117,368

HEN005-2 1:44.9 2:52.4 206,307 382,583

HEN008-2 36.0 1:11.4 73,288 157,874

HEN009-2 1:25.6 2:10.5 171,004 264,807

LCL045-1 2:43.3 2:44.0 26,693 26,693

LCL064-2 2:22.3 2:24.3 22,504 23,771

LCL081-1 1:20.5 1:24.0 12,748 12,748

LCL111-1 1:02.6 1:08.0 16,883 16,883

LCL130-1 1:19.0 1:26.1 8,251 8,251

LCL132-1 2:55.9 4:41.4 146,118 239,709

LCL196-1 4:28.4 148,815

LCL205-1 1:04.7 58.6 37,867 37,867

LCL208-1 1:57.6 1:51.8 71,728 71,728

LCL230-1 3:41.1 3:35.2 105,707 105,707

PUZ006-1 3:49.5 972,547

PUZ008-3 3:13.6 313,948

PUZ014-1 57.5 509,410

RNG001-1 1:15.5 2:11.7 123,792 217,499

RNG001-5 1:14.0 2:04.2 120,279 211,509

RNG038-1 3:55.7 386,374

ROB010-1 46.5 1:05.6 30,225 42,479

SET005-1 2:13.0 377,191

SET011-1 2:21.0 385,106

SET080-6 1:18.6 1:23.9 112,094 112,149

SET152-6 1:35.0 1:38.3 182,665 182,777

SET153-6 1:44.4 1:44.9 182,195 182,307

SET203-6 2:26.6 2:29.9 168,151 168,151

SET234-6 1:55.2 1:47.1 182,364 182,366

SET236-6 3:48.7 3:50.5 333,608 334,497

SYN002-1.007:008 1:57.3 1:58.9 55,437 55,437

SYN067-2 3:58.7 799,398

SYN070-1 1:04.1 385,685

19

Run times Inferences

PROBLEM with without with without

SYN072-1 51.2 2:12.8 191,493 500,951

SYN074-1 2:23.8 314,333

SYN100-1.005 3:46.1 1,211,849

SYN139-1 2:34.7 438,113

SYN140-1 4:41.9 778,650

SYN155-1 14.1 34,340

SYN156-1 20.5 57,983

SYN163-1 4:04.4 767,717

SYN179-1 22.1 1:21.8 55,139 258,502

SYN180-1 23.4 65,199

SYN190-1 12.8 27,993

SYN204-1 15.8 31,569

SYN205-1 15.3 30,576

SYN252-1 3:10.1 531,046

SYN254-1 1:28.4 227,636

SYN311-1 3:58.2 3:41.1 278,299 278,299

SYN328-1 1:16.4 302,604

TOP005-2 1:05.9 2:02.5 155,369 288,657

We have already emphasized that caching can be regarded as a general Prolog

implementation optimization. For example, we have tried introducing caching of

continuations into a simple tableau prover roughly based on leanT

A

P (Beckert and

Posegga 1994), also coded in CAML Light, though running interpreted (so these

runtimes are inated). On some problems (generally, the harder ones), caching

makes a signi�cant improvement; in other cases it introduces only a modest loss.

Here are a few results on the �rst 46 Pelletier problems:

13

Problem Without caching With caching

1 0.00 0.01

11 0.00 0.00

21 0.01 0.01

33 0.00 0.01

34 118.56 68.08

35 0.01 0.01

36 0.01 0.08

37 0.13 0.13

38 0.78 0.83

43 11.51 0.61

44 0.01 0.03

45 0.88 0.88

46 0.15 0.11

7.3 The value of the positive re�nement

Throughout the above tests, we used Plaisted's positive re�nement. At least we used

a partial version: no ancestor solutions were tried for positive goals, but these were

always checked for repetition. Perhaps this is wasteful, but these equality tests are

quite cheap since the ancestor lists are seldom long. As Plaisted points out, there

is an advantage in not even storing certain ancestors: global caching schemes are

more likely to be useful because with short ancestor chains the probability of a

goal's arising in the same ancestor context is greatly increased.

The process of running this test suite seemed a good opportunity to assess

its usefulness; in the original article Plaisted (1990) gave an extensive theoretical

analysis but no practical results. Accordingly, we also ran the `opt' version without

the positive re�nement but with no other change. The results are not clear-cut.

Both versions solved exactly 850 problems within the time limit, but not the same

ones: each solved 15 problems which the other didn't. The following problems were

solved only with the positive re�nement:

13

Some of these, like Andrews's challenge (34) are not directly solvable in a reasonable time

by MESON, which might lead one to suppose that tableaux are better than MESON. In some

cases this is true; however if a preprocessing pass is added to split the problem into subproblems

(e.g. to refute (p_ q) ^ r, refute p ^ r and q ^ r separately), which happens implicitly in tableaux

anyway, then all the problems are trivial for MESON. For example Andrews's challenge splits into

32 independent subproblems (if bi-implications are expanded appropriately during translation to

clausal form), each of which is easy.

20

PROBLEM Run time Inferences Size

NUM228-1 2.6 35 3

PLA001-1 44.2 24,166 12

PLA002-1 3.9 4,798 11

PLA003-1 0.4 369 7

PLA006-1 0.2 157 6

PLA017-1 4.6 4,548 9

PLA020-1 0.1 22 4

PLA022-1 3.1 3,364 15

PLA022-2 3.5 3,790 15

PRV001-1 3.3 15,499 21

PRV003-1 0.0 52 3

PRV005-1 0.1 203 4

PRV006-1 0.4 977 5

SYN067-2 3:58.7 799,398 52

SYN140-1 4:41.9 778,650 29

while the following were solved only without it:

PROBLEM Run time Inferences Size

CAT019-3 3:40.7 452,699 11

GEO039-2 3:49.6 147,932 10

GRP129-2.002 29.4 106,842 27

GRP129-3.002 41.3 145,537 27

GRP131-1.002 3:14.0 704,975 37

GRP131-2.002 3:36.9 770,958 37

GRP132-1.002 2:58.6 648,976 37

GRP132-2.002 3:21.6 710,351 37

GRP134-1.002 31.9 114,314 27

GRP134-2.002 35.4 126,958 27

PUZ007-1 3:53.2 846,428 28

PUZ027-1 4:14.0 627,260 26

PUZ031-1 4:34.8 1,204,039 53

SET232-6 3:55.2 382,317 7

SET233-6 3:57.0 382,318 7

Otherwise, most of the results tend to be rather similar, with the positive re�ne-

ment slightly better on average. It's worth noting that in completely Horn problems

(and nearly half the TPTP problems are completely Horn), negative goals never

arise, so there is no substantial di�erence to be expected (the positive re�nement is

slightly quicker because it just takes one sign check instead of selecting an empty

set of possible ancestors to unify with). Here are a few where the di�erence seems

particularly clear-cut.

Run times Inferences Size

PROBLEM with without with without with without

GRP135-1.002 38.6 10.0 148,122 38,662 29 23

GRP135-2.002 43.5 11.5 164,029 42,695 29 23

MSC006-1 5.6 17.6 25,613 67,402 20 20

PUZ006-1 3:49.5 51.7 972,547 213,088 25 21

PUZ014-1 57.5 5.8 509,410 49,129 71 47

PUZ015-2.003 3.7 2.0 44,963 22,056 24 20

PUZ025-1 5.5 3.1 19,244 9,836 18 16

PUZ032-1 23.0 2.4 65,838 6,496 15 11

SET152-6 1:35.0 3.3 182,665 3,679 6 5

SET153-6 1:44.4 3.3 182,195 3,611 6 5

SYN002-1.007:008 1:57.3 2:46.5 55,437 55,437 32 32

SYN070-1 1:04.1 11.5 385,685 62,193 28 20

SYN072-1 51.2 1:13.9 191,493 260,458 26 26

TOP005-2 1:05.9 4.6 155,369 11,482 32 19

7.4 Full results

Because of space limitations, we cannot give a comprehensive listing of each search

mode, complete with runtimes, numbers of inferences and other statistics. However

this is available as a text �le on the Web from:

http://www.cl.cam.ac.uk/users/jrh/papers/me-results.txt.

8 Conclusions

It is clear that our optimization is a large advance on Stickel's original scheme for

iterative deepening. Moreover this and caching, the other implementation optimiza-

tion we have discussed, are rather general. The divide-and-conquer optimization is

applicable to any situation where search is bounded by a cumulative size measure.

And caching can be regarded as a general Prolog optimization. So our work is a nice

complement to the research that is being done on extending the model elimination

calculus. There are lots of areas worthy of future investigation.

21

1. Best-�rst search could be further explored. The present heuristics used are

extremely simplistic, and it would be interesting to experiment with alterna-

tives. More sophisticated search methods could be tried. In the above tests,

the rather low space limit may have crippled it unfairly. Given a priority

queue with reasonable locality properties, the queue size could be extended

well beyond the physical store limit of the machine.

2. The optimized form of inference-bounded search can be tried with other model

elimination calculi. For example, restart model elimination as developed by

Baumgartner and Furbach (1993) is a variant which only uses natural contra-

positives. The restart steps tend to introduce asymmetry into the proofs, so

it may be that optimized inference-bounded search will perform still better

here relative to depth-bounded search.

3. It seems there should be scope for integrating the divide-and-conquer opti-

mization more tightly with the iterative increase in the bound. For example,

increasing any even number n by 1 doesn't change n=2, which leads to even

greater duplication of results than is usually the case with iterative deepen-

ing. With some ingenuity, it ought to be possible to reduce this by combining

iterative deepening with descent down the subgoal tree.

4. Combinations of inference and depth bounds could be tried. For example,

inference bounded search in conjunction with a conservative but reasonable

depth bound might turn out to give the best of both worlds, avoiding excur-

sions into extremely skewed proofs. But some care must be taken to avoid

pointless reruns by the optimization if a search failed purely because of a

depth overspill.

Acknowledgements

Thanks to Larry Paulson for spurring my interest in the MESON procedure, and

to Ralph Back for letting me work on these topics. My work has been generously

funded by the European Commission under the Human Capital and Mobility pro-

gramme. Comments on a draft of this paper from Richard Boulton and Jim Grundy

were extremely helpful.

References

Astrachan, O. L. and Stickel, M. E. (1992) Caching and lemmaizing in model elimi-

nation theorem provers. In Kapur, D. (ed.), 11th International Conference on Au-

tomated Deduction, Volume 607 of Lecture Notes in Computer Science, Saratoga,

NY, pp. 224{238. Springer-Verlag.

Baumgartner, P. and Furbach, U. (1993) Model elimination without contrapositives

and its application to PTTP. Research report 12-93, Institute for Computer

Science, University of Koblenz, Rheinau 1, 56075 Koblenz, Germany.

Beckert, B. and Posegga, J. (1994) leanT

A

P : lean, tableau-based theorem prov-

ing. In Bundy, A. (ed.), 12th International Conference on Automated De-

duction, Volume 814 of Lecture Notes in Computer Science, Nancy, France,

pp. 793{797. Springer-Verlag. Extended version available on the Web from

http://i12www.ira.uka.de/~posegga/LeanTaP.ps.Z.

Gordon, M. J. C. and Melham, T. F. (1993) Introduction to HOL: a theorem proving

environment for higher order logic. Cambridge University Press.

22

Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979) Edinburgh LCF: A

Mechanised Logic of Computation, Volume 78 of Lecture Notes in Computer Sci-

ence. Springer-Verlag.

Letz, R., Mayr, K., and Goller, C. (1994) Controlled integrations of the cut rule into

connection tableau calculi. Technical Report AR-94-01, Technische Universit�at

M�unchen, Arcisstrasse 21, 80290 M�unchen, Germany.

Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992) SETHEO: A high-

performance theorem prover. Journal of Automated Reasoning , 8, 183{212.

Lifschitz, V. (1986) Mechanical Theorem Proving in the USSR: the Leningrad

School. Monograph Series on Soviet Union. Delphic Associates, 7700 Leesburg

Pike, #250, Falls Church, VA 22043. Phone: (703) 556-0278. See also `What is

the inverse method?' in the Journal of Automated Reasoning, vol. 5, pp. 1{23,

1989.

Loveland, D. W. (1968) Mechanical theorem-proving by model elimination. Journal

of the ACM , 15, 236{251.

Michie, D. (1968) \Memo" functions and machine learning. Nature, 218, 19{22.

Paulson, L. C. (1987) Logic and computation: interactive proof with Cambridge

LCF. Number 2 in Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press.

Paulson, L. C. (1994) Isabelle: a generic theorem prover, Volume 828 of Lecture

Notes in Computer Science. Springer-Verlag. With contributions by Tobias Nip-

kow.

Plaisted, D. A. (1990) A sequent-style model elimination strategy and a positive

re�nement. Journal of Automated Reasoning , 6, 389{402.

Rudnicki, P. (1987) Obvious inferences. Journal of Automated Reasoning , 3, 383{

393.

Stickel, M. E. (1988) A Prolog Technology Theorem Prover: Implementation by an

extended Prolog compiler. Journal of Automated Reasoning , 4, 353{380.

Suttner, C. B. and Sutcli�e, G. (1995) The TPTP problem library. Technical Report

AR-95-03, Institut f�ur Infomatik, TU M�unchen, Germany. Also available as TR

95/6 from Dept. Computer Science, James Cook University, Australia, and on

the Web.

Tarver, M. (1990) An examination of the Prolog Technology Theorem-Prover. In

Stickel, M. E. (ed.), 10th International Conference on Automated Deduction, Vol-

ume 449 of Lecture Notes in Computer Science, Kaiserslautern, Federal Republic

of Germany, pp. 322{335. Springer-Verlag.

Weis, P. and Leroy, X. (1993) Le langage Caml. InterEditions. See also the CAML

Web page: http://pauillac.inria.fr/caml/.

23

