
A HOL theory of Euclidean space

John Harrison

Intel Corporation, JF1-13
Hillsboro OR 97124

johnh@ichips.intel.com

Abstract. We describe a formalization of the elementary algebra, topology and
analysis of finite-dimensional Euclidean space in the HOL Light theorem prover.
(Euclidean space isRN with the usual notion of distance.) A notable feature is
that the HOL type system is used to encode the dimensionN in a simple and
useful way, even though HOL does not permit dependent types. In the resulting
theory the HOL type system, far from getting in the way, naturally imposes the
correct dimensional constraints, e.g. checking compatibility in matrix multiplica-
tion. Among the interesting later developments of the theory are a partial decision
procedure for the theory of vector spaces (based on a more general algorithm due
to Solovay) and a formal proof of various classic theorems of topology and analy-
sis for arbitraryN -dimensional Euclidean space, e.g. Brouwer’s fixpoint theorem
and the differentiability of inverse functions.1

1 The problem with RN

Since the pioneering work of Jutting [9], several people including the present author [6]
have used computer theorem provers to formalize the construction of the real numbers
and/or the development of elementary real analysis. There has also been some work in
formalizing complex analysis, with proofs of the Fundamental Theorem of Algebra in
Mizar [12], HOL Light [7] and — constructively — in Coq [5]. However, as far as we
are aware the first serious formalization of arbitraryN -dimensional Euclidean space is
quite recent, undertaken by Hales in HOL Light as part of the Flyspeck project:2

One reason for this may be that the basic real line suffices for many interesting
applications such as the verification of floating-point algorithms. Another reason is that
the proofs forN -dimensional space tend to be a bit technical, with a lot of summations
and indexing, which makes them more tedious to formalize. A more substantial reason,
however, may be that several theorem provers, including the numerous variants of HOL
(HOL Light and Isabelle/HOL included) are based on a simple type theory where the
type system seems to be more a hindrance than a help in formalizingN -ary Cartesian
products. This applies not just toRN but in other cases too — for example if one wants
to formalizeN -bit words as anN -ary Cartesian productbit N for some2-element type

1 The proofs and tools described are available within the ‘Multiviariate ’ directory of re-
cent HOL Light releases available fromhttp://www.cl.cam.ac.uk/users/jrh/
hol-light .

2 See http://www.math.pitt.edu/˜thales/flyspeck/index.html for more
about the project and theJordan subdirectory of HOL Light for some of Hales’s theories.

bit . The problem with simple type theory is that a compound type can only depend
on othertypeslike R or bit , and not ontermslike N . So how areN -ary Cartesian
productsAN usually defined in HOL? We can identify two common approaches.

One can use a larger type such as(A)list or N → A and identify subsets of it
for particularN . While quite workable — this is what Hales’s formalization does —
it seems disappointing that the type system then makes little useful contribution, for
example in ‘automatically’ ensuring that one does not take dot products of vectors of
different lengths or wire together words of different sizes. All the interesting work is
done by set constraints, just as if we were using an untyped system like set theory.

Alternatively, one can define specific instances for theN that are actually to be
used; for example justbit 16 and bit 32 for a verification project or justR2 for a
proof in plane geometry. However one may then need to duplicate structurally identical
definitions, theorems and proofs for many different cases. One can use programmability
to ease this burden; for example in HOL4 one can invoke an ML functor to create a
specific word theory simply by:

structure word8Theory = wordFunctor (val bits = 8)

However, writing such a general theory requires a lot of rather tedious parametriza-
tion, and it seems inelegant to have various incompatible versions of what are naturally
thought of as just instances of the same general result.

Of course, no problem arises in systems based on traditional set theory (such as
Mizar) or those based on richer dependent type theories (such as Coq, Nuprl or PVS).
So one might argue that it would be preferable to start from some such foundation rather
than find ingenious ways to work around the deficiencies of a simpler one. However,
simple type theory is a well-understood system with some appealing technical quali-
ties such as efficiently decidable inference of most general types. Moreover, there has
already been a considerable effort expended in developing comprehensive libraries of
theorems and suites of proof tools for several provers based on simple type theory, and
from a social point of view it would be difficult to abandon it.

A different approach to the problem of formalizing real vector spaces is to avoid
Cartesian products by not using a ‘basis’ representation. For example, the IMPS system,
which is also based on simple type theory, has been used to formalize analysis at a quite
abstract level [3]. One can work in a theory of vector spaces over an arbitrary type ‘V’,
and then where necessary deduce the dimensions or choose a basis. However, one then
needs a degree of overparametrization in all the results to indicate the ambient vector
space operations and assert that they satisfy the required properties. By contrast, our
solution below needs no such parametrization.

2 Our formalization of RN

While HOL’s version of simple type theory does not permit dependent types, it does
feature polymorphic type variables. Our basic idea is to use types in place of numeric
parameters, with the cardinality of the type being the dimension of the Cartesian prod-
uct. That is, our formalization ofAN for a variableN is essentially the function space
N → A whereN is a typevariable. In order to instantiateN to a particular value in

a theorem, we simply type-instantiate it so that the type replacingN has the appropri-
ate size. For example, given a theorem aboutRN with N a type variable, we can later
specialize it toR3 by type-instantiatingN to a 3-element type, which we can define as
follows (there is no problem using the numeral3 as the name of a type since types and
terms belong to different namespaces):

let three_INDUCT,three_RECURSION =
define_type "3 = three_1 | three_2 | three_3";;

One may object that, just as with the HOL4 word theory, one still needs to define
a new type for each concrete instance required. However, this is now only an indexing
type. All the definitions and theorems are generic, and one just needs to type-instantiate
them to get specific instances. And in fact, one does not need to define new types for
each instance. One can already create anN -element type by applying the sum-type
constructor ‘+’ to the one-element type ‘1’:

N times︷ ︸︸ ︷
1 + · · ·+ 1

This amounts to expressing the size of the indexing set in unary. More exotically,
one can define type constructors for the construction of a binary or decimal representa-
tion [1].

Variants

Actually, there are at least three slightly different variants of the idea that we have
considered:

– Literally use the function spaceN → R. This allows any indexing type, finite or
infinite.

– Use a subset of functionsN → R with ’finite support’, i.e. so that{x : N | f(x) 6=
0} is finite.

– Use a subset of the set of functionsN → R that somehow ‘forcesN to be finite’.

These all have different strengths and weaknesses. The first alternative is the sim-
plest and most transparent, but if certain theorems depend onN ’s finiteness we need to
add an explicit hypothesisFINITE(UNIV:N->bool) . The second approach would
probably be the most appropriate for a theory of vector spaces with finite or infinite di-
mension. But since we are mainly concerned with the finite-dimensional case, we have
adopted the third alternative. More explicitly, we have defined a binary type constructor,
written as infix ‘̂ ’, such that the type ‘AˆN ’ is isomorphic to the usual function space
N → A if N is finite and toA itself if N is infinite. In other words, we force infinite
indexing sets to be treated as if they had size 1. This is accomplished by the following
definition of a unary type constructorfinite_image :

let finite_image_tybij =
new_type_definition "finite_image" ("mk_finite_image","dest_finite_image")

(prove(‘ ∃x:A. (x = @z. T) ∨ FINITE(UNIV:A->bool)‘,MESON_TAC[]));;

This ensures that the type(A)finite_image has the same size asA when that
size is finite, and size1 otherwise. The size of(A)finite_image can be determined
by applying this function:

|- dimindex(s:A->bool) = if FINITE(UNIV:A->bool) then CARD(UNIV:A->bool) else 1

Now the binary type constructorˆ is defined so thatAˆN is isomorphic to the mod-
ified function space(N)finite_image->A , which yields the desired effect. These
encoding tricks may be a bit obscure, but the end effect is that we can freely use the
naive notationAˆN while assuming whenever necessary thatN is finite.

Since this is not actually the usual function space constructor, we need a corre-
sponding notion of application and abstraction. Actually, the actual indexing type itself
is of no interest, only its size. When we use it as for indexing, we would prefer, for con-
formance with informal convention, to use natural number indices from1 to N . So we
define an indexing operator, written as an infix$ symbol, and with typeAN → N → A,
which internally picks some canonical way of mapping{1, . . . , N} bijectively into the
indexing type and then applies it. We also define a corresponding notion of function
abstraction (lambda written with binder syntax), and these satisfy the key property:

|- ∀i. 1 <= i ∧ i <= dimindex(UNIV:B->bool) ⇒ (((lambda) g:AˆB) $i = g i)

For most purposes, one can now forget the coding details and use ‘x$i ’ where
informally one would writexi for indexing.

3 Vectors and linear algebra

It’s now straightforward to define the basic operations on vectors. Addition and similar
‘pointwise’ operations are defined according to the following pattern:

|- x + y = lambda i. x$i + y$i

Note that we overload the usual arithmetic symbols like ‘+’, but that the under-
lying constant on the left is actuallyvector_add:realˆN->realˆN->realˆN ,
whereas the ‘+’ on the right is the usual addition of real numbers. We define scalar
multiplication of vectors by constants:

|- c % x = lambda i. c * x$i

and an injection from natural numbers, useful to denote the zero vector byvec 0 :

|- vec n = lambda i. &n

More interesting is the inner (‘dot’) product. We show here the definition with the
appropriate type annotations. Note that this looks quite close to the way this would be
written informally,x · y =

∑n
i=1 xiyi, except that since ourN is a type, we need to

convert it to a number by applyingdimindex to its universe set:

|- (x:realˆN) dot (y:realˆN) =
sum(1..dimindex(UNIV:N->bool)) (λi. x$i * y$i)

A simple decision procedure

The basic algebraic properties of vectors can be derived fairly mechanically from the
above definitions. In fact, we’ve hacked together a crude proof procedure that is able to
prove most of the basic algebraic properties automatically by reducing them to the real
case on the subcomponents. This is very convenient for generating the kinds of simple
algebraic identities one often needs in proofs. Some of these (such as associativity of
vector addition) are so useful that we bind them to names. More ad hoc lemmas can be
generated dynamically.

VECTOR_ARITH ‘∀x y:realˆN. (x - y = vec 0) ⇔ (x = y)‘;;
val it : thm = |- ∀x y. (x - y = vec 0) ⇔ (x = y)
VECTOR_ARITH ‘∀a b x:realˆN. a % (b % x) = (a * b) % x‘;;
val it : thm = |- ∀a b x. a % b % x = (a * b) % x
VECTOR_ARITH ‘∀x y z:realˆN. (x + y) dot z = (x dot z) + (y dot z)‘;;
val it : thm = |- ∀x y z. (x + y) dot z = x dot z + y dot z
VECTOR_ARITH ‘∀c x y:realˆN. x dot (c % y) = c * (x dot y)‘;;
val it : thm = |- ∀c x y. x dot c % y = c * (x dot y)

The reduction process inside is, for many ‘pointwise’ theorems, a simple equiva-
lence, e.g.x + y = y + x to ∀i. 1 ≤ i ≤ n ⇒ xi + yi = yi + xi. In more general
cases involving dot products and richer logical structure, the componentwise versions
are proved anyway. For example, to provex · y = 0 ⇒ y · x = 0, it is first reduced
to the equivalent

∑n
i=1 xiyi = 0 ⇒

∑n
i=1 yixi = 0 and that is deduced from the (a

priori stronger) componentwise implications∀i. 1 ≤ i ≤ n ⇒ xiyi = 0 ⇒ yixi = 0,
which are trivial. Note that assuming the postulated fact is true without regard to di-
mension, then it is in particular true for 1-dimensional space (n = 1 above), so the
componentwise form isnot in fact any stronger.

Norms

We next define the usual norm:

|- norm x = sqrt(x dot x)

and the corresponding distance function:

|- dist(x,y) = norm(x - y)

While apparently straightforward, this does raise a slight bootstrapping problem.
Although the existing HOL analysis theory includes a large suite of theorems about
square roots, our long-term goal is to subsume that theory in the present more general
one. Therefore, we want to generate from scratch any results about square roots that we
need. Before commencing analysis proper we prove the following lemma:

|- a <= b ∧ f(a) IN e1 ∧ f(b) IN e2 ∧
(∀e x. a <= x ∧ x <= b ∧ &0 < e

⇒ ∃d. &0 < d ∧ ∀y. abs(y - x) < d ⇒ dist(f(y),f(x)) < e) ∧
(∀y. y IN e1 ⇒ ∃e. &0 < e ∧ ∀y’. dist(y’,y) < e ⇒ y’ IN e1) ∧
(∀y. y IN e2 ⇒ ∃e. &0 < e ∧ ∀y’. dist(y’,y) < e ⇒ y’ IN e2) ∧
¬(∃x. a <= x ∧ x <= b ∧ f(x) IN e1 ∧ f(x) IN e2)
⇒ ∃x. a <= x ∧ x <= b ∧ ¬(f(x) IN e1) ∧ ¬(f(x) IN e2)

This looks somewhat ugly and complicated, but it condenses to a more natural state-
ment using concepts yet to be defined. It simply says that given a continuous mapping
out of the real interval[a, b] that mapsa andb respectively into points of open setse1

ande2 that have no common points in the imagef [a, b], there must be a pointx in the
interval such thatf(x) is contained in neither of those sets.

Later this is used to yield some standard theorems of analysis such as the fact that
a convex set is connected. But in the short term, we use it to justify the existence of
square roots, so we can proceed with our theory. It’s now fairly easy to prove the usual
norm properties such as the triangle law

|- ∀x y. norm(x + y) <= norm(x) + norm(y)

and the Cauchy-Schwarz inequality:

|- ∀x y. abs(x dot y) <= norm(x) * norm(y)

An arguably more elegant alternative used by Arthan in the development of analysis
in the ProofPower version of HOL is to start the development based on theL1 norm
||x|| =

∑n
i=1 |xi| and develop analysis normally. Once this infrastructure is set up,

properties of square roots are trivial, and it’s then straightforward to show that all the
basic topological properties are the same under theL1 and usual norms and so map any
earlier theorems across.

Linear algebra

For us, linear algebra is only a tool for use in analytical results, and we have not de-
veloped it very comprehensively. We define a summation operatorvsum over vectors,
define orthogonality

|- orthogonal x y ⇔ (x dot y = &0)

and linearity of functions:

|- linear (f:realˆM->realˆN) ⇔
(∀x y. f(x + y) = f(x) + f(y)) ∧
(∀c x. f(c % x) = c % f(x))

We do not define a specific type of matrices, but representM × N matrices using
our Cartesian product twice. The usual arithmetic operations are then defined by by
a further pointwise lifting, with ‘** ’ overloaded for matrix-matrix and matrix-vector
multiplication. For example matrix-matrix multiplication is defined by:

|- (A:realˆNˆM) ** (B:realˆPˆN) =
lambda i j. sum(1..dimindex(UNIV:N->bool)) (λk. Aik * Bkj)

Note that to make the indexing correspond to the usual row-column convention, we
needed to representM ×N matrices as(RN)M , not (RM)N . If this is not considered
palatable, it would be strightforward to define a new type, say(M,N)matrix and
an indexing function on pairs of numbers. But if we ignore such details, note how

nicely our typed formalization enforces the compatibility requirements in operations
like matrix multiplication: one can only multiply anM × N matrix by aN × P one
and the result is anM × P one.

The crucial theorems for our later work involve the correspondence between ma-
trices and linear operators, withmatrix mapping from a linear operator to the corre-
sponding matrix:

|- ∀A:realˆNˆM. linear(λx. A ** x)

|- ∀f:realˆM->realˆN. linear f ⇒ ∀x. matrix f ** x = f(x)

|- ∀f g. linear f ∧ linear g ⇒ (matrix(g o f) = matrix g ** matrix f)

We have undertaken only a very rudimentary formalization of dimension, linear
independence etc., just enough to reach one lemma that we need later on, that left and
right invertibility coincide forN ×N matrices.

|- ∀A:realˆNˆN A’:realˆNˆN. (A ** A’ = mat 1) ⇔ (A’ ** A = mat 1)

It would however be a nice exercise in formalization to round out this theory with
all the usual results of linear algebra, along the lines of Japser Stein’s formalization in
Coq.

4 A decision procedure

While the naiveVECTOR_ARITHabove is very useful, it is incapable of proving deeper
facts about vectors. We spent some time looking for information on the decidability
of theories of vector spaces. In contrast to the detailed catalogue of decidability and
undecidability results that are known for groups, rings and fields, we were unable to
find any such results. We therefore asked Robert Solovay about the subject. He was
also unaware of any existing body of results, but within a few days had invented and
described to us via email [16] a comprehensive set of quantifier elimination procedures
for several variants of the first-order theory of real vector spaces. (Solovay is of the
opinion that he is probably not the first to arrive at these results, and if any readers have
seen such things before, the author would be very interested to know about them.)

Although the full quantifier elimination procedures are probably impractical, we
thought it worthwhile to implement a cut-down version which, in principle, will suc-
cessfully prove all theorems in the first-order language of real vector spaces where (i)
all quantifiers over vectors are universal, and (ii) they are true in infinite-dimensional
space. The reader will see shortly where these restrictions arise.

Initial reduction

The first step in the procedure is to eliminate most vector operations, in fact all except
dot products between pairs of variables.

First we eliminate the norm, which is already taken to be defined by|x| =
√

x · x,
by replacing any atomic formulaP (||x||) involving a norm by∀c. 0 ≤ c ∧ x · x =

c2 ⇒ P (c). In fact we optimize this reduction in common special cases, e.g. mapping
||x|| < ||y|| to x · x < y · y. We also write away the distance functiondist using its
definition.

Now note that any vector equalityx = y is equivalent tox − y = 0, which is in
its turn equivalent to|x − y| = 0 and so to(x − y) · (x − y) = 0. This allows us
to eliminate vector equality. Actually we follow Solovay’s original procedure in using
x · x = y · y ∧ x · y = x · x (the chain of implications between these equivalents is easy
to establish).

Now we can distribute dot products through any composite terms and constants
using various obvious rules. Note that these can be applied until the dot product is
applied to pairs of variables only.

0 · x = 0

x · 0 = 0

(cx) · y = c(x · y)
x · (cy) = c(x · y)
−x · y = −(x · y)
x · −y = −(x · y)

(x + y) · z = x · z + y · z
x · (y + z) = x · y + x · z
(x− y) · z = x · z − y · z
x · (y − z) = x · y − x · z

These steps are easily packaged up as a HOL tacticSOLOVAYINIT TACwhich
reduce the initial goal. For example, here we set the Cauchy-Schwarz inequality as our
goal:

g ‘ ∀x y:realˆN. x dot y <= norm x * norm y‘;;
val it : goalstack = 1 subgoal (1 total)

‘ ∀x y. x dot y <= norm x * norm y‘

and apply the tactic:

e SOLOVAY_INIT_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘&0 <= u1 ∧ (u1 pow 2 = y dot y)
⇒ &0 <= u2 ∧ (u2 pow 2 = x dot x)
⇒ x dot y <= u2 * u1‘

Elimination of dot products

Note that given a vectorw and a list of vectorsv1, . . . , vn, we can expressw as a linear
combination of thevi together with one more vectoru that is orthogonal to all thevi.

This result (essentially the Gram-Schmidt process) is easy to prove by induction. Here
is our HOL formalization using iterated operations over lists:

|- ∀w vs. ∃u as.
ALL (orthogonal u) vs ∧ (LENGTH as = LENGTH vs) ∧
(w = ITLIST2 (λa v s. a % v + s) as vs u)

This allows us to replace quantification over vectorsw, v1, . . . , vn with a quantifi-
cation overu, v1, . . . , vn whereu is orthogonal to all thevi:

|- (∀w:realˆN. P w vs) =
(∀as u. ALL (orthogonal u) vs ∧ (LENGTH as = LENGTH vs)

⇒ P (ITLIST2 (λa v s. a % v + s) as vs u) vs)

We can now expand out any dot productsw · vk into
∑n

i=1 ai(vi · vk); note that
u · vk vanishes because of the orthogonality hypothesis. We can similarly expand out
any instances ofw ·w, and it is only here that we get a dot product involvingu, namely
u · u.

Now note that in an infinite-dimensional space we can chooseu · u arbitrarily (so
long as it’s nonnegative), because we can find a vector of any length that is orthogonal
to a finite set of vectors. So for the formulaP [u · u] to hold for all vectorsu orthogonal
to the vi, it is necessary and sufficient thatP [c] should hold for allc ≥ 0. In the
general case, this is no longer an equivalence, because if thev1, . . . , vk already span the
whole space we can only haveu = 0. However, the implication is always valid in one
direction, so we simply prove the more general goal that∀c. 0 ≤ c ⇒ P [c]. We have
set up a generic HOL ruleSOLOVAYRULEwhich automatically generates a suitable
general theorem for each number of vectorsv1, . . . , vn, e.g.

SOLOVAY_RULE 2;;
val it : thm =

|- (∀v0 v1 c.
&0 <= c
⇒ (∀h h’.

P v0 v1 (v0 dot (h % v0 + h’ % v1))
(v1 dot (h % v0 + h’ % v1))
((h % v0 + h’ % v1) dot (h % v0 + h’ % v1) + c)))

⇒ (∀v0 v1 w. P v0 v1 (v0 dot w) (v1 dot w) (w dot w))

and thenSOLOVAYREDUCETACnormalizes dot products by symmetry then gener-
ates the right instance of the theorem and applies it. For our running example we get:

e(REPEAT SOLOVAY_REDUCE_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘&0 <= c’
⇒ &0 <= c

⇒ (∀h. &0 <= u1 ∧ (u1 pow 2 = h * h * (&0 + c’) + c)
⇒ &0 <= u2 ∧ (u2 pow 2 = &0 + c’)

⇒ h * (&0 + c’) <= u2 * u1)‘

We have successfully reduced the original assertion to an assertion over the reals
that always implies it, and will still be true provided the original assertion was true over
an infinite-dimensional vector space (or one with a sufficiently large dimension).

Solving the real problem

Of course, we still need to prove the resulting formula over the reals. Since it is purely
universal, we opt to use an experimental HOL implementation of techniques based on
finding sum-of-squares decompositions using semidefinite programming [14]. This, us-
ing the CSDP semidefinite programming system, solves our goal quite easily:

time e (CONV_TAC REAL_SOS);;
...
Iter: 33 Ap: 1.00e+00 Pobj: 1.5728640e+06 Ad: 8.34e-01 Dobj: 1.5728641e+06
Iter: 34 Ap: 1.00e+00 Pobj: 1.5728640e+06 Ad: 6.90e-01 Dobj: 1.5728640e+06
Iter: 35 Ap: 7.30e-01 Pobj: 1.5728640e+06 Ad: 8.49e-01 Dobj: 1.5728640e+06
Success: SDP solved
...
Trying rounding with limit 1
Translating proof certificate to HOL
CPU time (user): 4.44
val it : goalstack = No subgoals

Other examples

In the following example, applying the reduction yields a rather complicated-looking
formula. The result can still be proved automatically byREAL_SOS, but now it takes
about a minute:

|- ∀a x y:realˆN. (y - x) dot (a - y) > &0 ⇒ norm(y - a) < norm(x - a)

Although our present version of Solovay’s procedure is limited to universal vector
quantifiers, existential quantifiers over reals are quite acceptable, as in the following
lemma we used in connection with some separating hyperplane proofs:

|- x dot y > &0 ⇒ ∃u. &0 < u ∧ ∀v. &0 < v ∧ v <= u ⇒ norm(v % y - x) < norm x

After reduction, we get the following formula. (This is the raw form; the inequality
in the conclusion is amenable to some algebraic simplification.)

‘&0 <= c’ ∧ &0 <= c ∧ &0 < h * c’
⇒ (∃u. &0 < u ∧

(∀v. &0 < v ∧ v <= u
⇒ v * (v * (h * h * c’ + c) - h * c’) - (v * h * c’ - c’) < c’))‘

Unsurprisingly, we still have an existential quantifier in the reduced formula. This
means we cannot solve it usingREAL_SOS, but we can pull out the “big gun”, a general
quantifier elimination procedure for the reals implemented in HOL by Sean McLaughlin
[11] based on Ḧormander’s method [8, 4, 2]. This proves (the universal closure of) the
above formula in about 15 seconds.

5 Topology and analysis

The acid test of our approach to formalizing Euclidean space is whether it allows us
to keep the formalization of more serious mathematical developments looking clean
and elegant without introducing any significant difficulties. To this end, we will survey
briefly some work we have undertaken in formalizing elementary topology and analysis.
We will show quite a few statements of theorems, and we believe they generally look
fairly natural. The only potential difficulty we have identified is that since type variables
are not quite such first-class objects as numbers, it is not trivial to formalize theorems
that depend on induction over dimension. However, this pattern of reasoning has only
come up in two theorems considered here. In one case, proving that a bounded closed
set is (sequentially) compact, a workaround was necessary, but we will describe one that
seemed quite simple and effective and could probably handle many similar situations.
In the other, Brouwer’s fixed point theorem, the induction takes place at the level of
the underlying combinatorial lemma, and therefore the details of the formalization of
Euclidean space make no difference.

We define the usual notions of topology in Euclidean space. We start with the
slightly more general notion of one set being open in another, since this ‘localized’
notion is sometimes important:

|- s open_in u ⇔
s SUBSET u ∧
∀x. x IN s ⇒ ∃e. &0 < e ∧

∀x’. x’ IN u ∧ dist(x’,x) < e ⇒ x’ IN s

and derive from it the ‘global’ version:

|- ∀s. open s ⇔ s open_in UNIV

Similarly we defineclosed_in andclosed , open and closed balls:

|- ball(x,e) = { y | dist(x,y) < e }

|- cball(x,e) = { y | dist(x,y) <= e }

interior, closure, boundedness, limits, continuity, uniform continuity and convergence
of sequences (of vectors). We then proceed to the usual properties such as complete-
ness (every Cauchy sequence is convergent) connectedness, and compactness (every
sequence has a convergent subsequence)

|- compact s ⇔
∀f:num->realˆN.

(∀n. f(n) IN s)
⇒ ∃l r. l IN s ∧ (∀m n:num. m < n ⇒ r(m) < r(n)) ∧

((f o r) --> l) sequentially

and derive a fairly comprehensive set of the usual classics of analysis. For example,
here is the Banach fixed point theorem:

|- ∀f s c. complete s ∧ ¬(s = {}) ∧
&0 <= c ∧ c < &1 ∧
(IMAGE f s) SUBSET s ∧
(∀x y. x IN s ∧ y IN s ⇒ dist(f(x),f(y)) <= c * dist(x,y))
⇒ ∃!x:realˆN. x IN s ∧ (f x = x)

and here is the Heine-Borel theorem:

|- compact s ⇔
∀f. (∀t. t IN f ⇒ open t) ∧ s SUBSET (UNIONS f)

⇒ ∃f’. f’ SUBSET f ∧ FINITE f’ ∧ s SUBSET (UNIONS f’)

The proofs are all fairly well-known and routine. One more interesting case arises
in the proof of the following:

|- compact s ⇔ bounded s ∧ closed s

The crucial argument is that a bounded closedN -dimensional ‘interval’ (or ‘box’)
is compact. This proceeds by induction on dimension. While the proof is quite straight-
forward, the induction argument needs a little reformulation for our framework because
we cannot really perform induction over atype. So we stay within one typeRN and
consider the result for sequences in the various setsSk = {s|∀k ≥ n. sk = 0}, per-
forming induction onk until we real the dimension ofN . While not really difficult, it’s
slightly messy. Inductive arguments over dimension are perhaps the main weakness of
our type-based formulation.

We also define the usual topological notion of homeomorphism and show that it
preserves topological properties such as compactness:

|- ∀s t. s homeomorphic t ⇒ (compact s ⇔ compact t)

In fact, we have the more general results that compactness and connectedness are
preserved under continuous images:

|- f continuous_on s ∧ compact s ⇒ compact(IMAGE f s)

|- f continuous_on s ∧ connected s ⇒ connected(IMAGE f s)

We define the convexity of a set: the line segment between any two points of the set
lies entirely in the set.

|- convex s ⇔
∀x y u v. x IN s ∧ y IN s ∧ &0 <= u ∧ &0 <= v ∧ (u + v = &1)

⇒ (u % x + v % y) IN s

We also define a generic notion of ‘hull’, written as an infix so we can then consider
‘convex hull s ’, ‘ affine hull s ’, ‘ conic hull s ’ without duplication of
basic lemmas. We even use ‘closed hull s ’ as the definition of ‘closure ’.

|- P hull s = INTERS {t | P t ∧ s SUBSET t}

We prove many of the classic ‘separation’ theorems for convex sets, e.g. strict sep-
aration for a closed and a compact set:

|- ∀s t. convex s ∧ compact s ∧ ¬(s = {}) ∧
convex t ∧ closed t ∧ DISJOINT s t
⇒ ∃a:realˆN b. (∀x. x IN s ⇒ a dot x < b) ∧

(∀x. x IN t ⇒ a dot x > b)

One key result is that all convex compact sets with nonempty interior are homeo-
morphic:

|- convex s ∧ compact s ∧ ¬(interior s = {}) ∧
convex t ∧ compact t ∧ ¬(interior t = {})
⇒ s homeomorphic t

Our next major theorem — certainly the hardest to formalize of those presented
here — is Brouwer’s Fixed Point Theorem. Using the above homeomorphism property,
it is sufficient to prove it for a convenient special case, and we use the unit cube:

|- f continuous_on (interval [vec 0,vec 1]) ∧
IMAGE f (interval [vec 0,vec 1]) SUBSET (interval [vec 0,vec 1])
⇒ ∃x. x IN interval[vec 0,vec 1] ∧ (f x = x)

One approach to this theorem is to develop some more extensive machinery from
algebraic topology. Since that was not our primary interest, we were originally planning
to formalize the fairly elementary proof based on Sperner’s combinatorial lemma. How-
ever, this requires the formalization of the intuitively clear fact that we can subdivide
a standardN -dimensional simplex into arbitrarily small simplices (e.g. by barycentric
subdivision). Instead, we settled on a different approach due to Kuhn [10], where we
need only the much simpler result that we can chop a cube into arbitrarily small cubes.
Still, the proof of the combinatorial lemma underlying Kuhn’s proof required a lot of
work to formalize, possibly because of a poor choice of formalization. Still, once we
get Brouwer’s theorem it’s easy to deduce the usual consequences such as the absence
of a retraction from a closed ball onto its boundary:

|- ∀a:realˆN e. &0 < e ⇒ ¬(frontier(cball(a,e)) retract_of cball(a,e))

We now define the usual notion of derivative for vector functions. Following Frechet,
the derivative is defined to be the linear function that approximates the function close to
a point. We are accustomed to thinking of the derivative of a functionR → R as simply
a real number, but in this framework we think of it as the linear function resulting from
multiplication by that number:

|- (f has_derivative f’) (at x) ⇔
linear f’ ∧
((λy. inv(norm(y - x)) % (f(y) - (f(x) + f’(y - x)))) --> vec 0)
(at x)

The matrix corresponding to the derivative is the Jacobian (with respect to the usual
basis):

|- jacobian f net = matrix(frechet_derivative f net)

All the usual results such as derivatives of sums are easy to prove:

|- (f has_derivative f’) net ∧ (g has_derivative g’) net
⇒ ((λx. f(x) + g(x)) has_derivative (λh. f’(h) + g’(h))) net

and the ‘chain rule’ is also reasonably straightforward:

|- (f has_derivative f’) (at x) ∧
(g has_derivative g’) (at (f x))
⇒ ((g o f) has_derivative (g’ o f’)) (at x)

We also prove an important generalization of the usual mean value theorem for
R → R functions.

|- convex s ∧ open s ∧
(∀x. x IN s ⇒ (f has_derivative f’(x)) (at x)) ∧
(∀x. x IN s ⇒ onorm(f’(x)) <= B)
⇒ ∀x y. x IN s ∧ y IN s ⇒ norm(f(x) - f(y)) <= B * norm(x - y)

whereonorm is the ‘operator norm’ of a linear function:

|- onorm (f:realˆM->realˆN) = sup { norm(f x) | norm(x) = &1 }

The most interesting result in this area is the inverse function theorem. It is cus-
tomary to state this for a continuously differentiable function, but if one simply wants
differentiability of the inverse function, the usual hypotheses are much stronger than
necessary — of the analysis books we have examined only Rudin [15] makes this ex-
plicit. We use the following sharper open mapping theorem as a lemma — we took the
proof from Sussmann [17], who refers to it as ‘well known’, though we’ve never seen
it anywhere else. Note that this result is for a general functionf : RM → RN without
the assumption thatM = N .

|- open s ∧ f continuous_on s ∧
x IN s ∧ (f has_derivative f’) (at x) ∧ linear g’ ∧ (f’ o g’ = I)
⇒ ∀t. t SUBSET s ∧ x IN interior(t)

⇒ f(x) IN interior(IMAGE f t)

However, the usual inverse function theorem does require the restricted typef :
RN → RN :

|- open s ∧ x IN s ∧ f continuous_on s ∧
(∀x. x IN s ⇒ (g(f(x)) = x)) ∧
(f has_derivative f’) (at x) ∧ (f’ o g’ = I)
⇒ (g has_derivative g’) (at (f(x)))

In order to deduce the existence of the local inverse function from the invertibility
of the derivative, we do seem to need continuity of the derivative, but only at a point:

|- a IN s ∧ open s ∧ linear g’ ∧ (g’ o f’(a) = I) ∧
(∀x. x IN s ⇒ (f has_derivative f’(x)) (at x)) ∧
(∀e. &0 < e

⇒ ∃d. &0 < d ∧
∀x. dist(a,x) < d ⇒ onorm(λv. f’(x) v - f’(a) v) < e)

⇒ ∃t. a IN t ∧ open t ∧
∀x x’. x IN t ∧ x’ IN t ∧ (f x’ = f x) ⇒ (x’ = x)

We have proved some results on generalized power series (of linear operators) and
have made a start on a theory of integration, but this work is still quite fragmentary and
we will not describe it in more detail here.

6 Future work

Our two main priorities are (1) to develop a theory of integration that can then be used
for the Flyspeck project, and (2) to link up the existing real analysis theory so that the
present one cleanly subsumes and generalizes it. We also want to make a link to Hales’s
theories of Euclidean space. At the moment neither subsumes the other. For example,
Hales proves the highly non-trivial Jordan Curve Theorem as well as some other results
in topology that we do not (e.g. equivalence of connectedness and path-connectedness).
Although the underlying formalizations of Euclidean space are different, they are iso-
morphic and it should be easy enough to transfer results automatically.

Another interesting line of work (but with no particular applications in view) is to
formalize complex differentiability or some appropriate generalization. Complex dif-
ferentiability can be considered as differentiability of aR2 → R2 function with a
skew-symmetric Jacobian (i.e. where the partial derivatives satisfy the Cauchy-Riemann
equations). We may also want to formalize traditional vector calculus and/or the theory
of differential forms. Ideally, one would like to deduce Cauchy’s theorem as a special
case of a generalized Stokes theorem, but one needs to pay attention to the details of
the integration theory to make this work.

Our existing treatment of topology is fixed in Euclidean space. While for the most
part this is attractive because of the lack of parametrization, there are situations where
we want to consider topologies on other sets such as the space of linear operators or
continuous functions. Note, for example, that one hypothesis in the last theorem above
is nothing but continuity in the space of linear functions, but we need to ‘expand out’
the definition because it does not come within our existing setup. Perhaps it would be
more attractive to generalizeopen_in andclosed_in to arbitrary toplogies, not
simply other subsets of Euclidean space. The modifications required to do this are not
very extensive.

Acknowledgements

The idea of formalizing multivariate calculus in this way arose at a seminar at New
York University, and in particular in conversation with Sean McLaughlin and Tom
Hales. I want to thank Clark Barrett for inviting me and to those mentioned and Ja-
cob Schwartz for stimulating discussions. My debt to Robert Solovay for the decision
procedure has already been made explicit, and he also explained some topological re-
sults to me. Thanks also to the referees for some helpful suggestions.

References

1. M. Blume. No-longer-foreign: Teaching an ML compiler to speak C “natively”. In N. Benton
and A. Kennedy, editors,BABEL’01: First workshop on multi-language infrastructure and
interoperability, 2001. Available online viahttp://docs.msdnaa.net/ark_new/
Webfiles/babel.htm .

2. J. Bochnak, M. Coste, and M.-F. Roy.Real Algebraic Geometry, volume 36 ofErgebnisse
der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1998.

3. W. M. Farmer and F. J. Thayer. Two computer-supported proofs in metric space topology.
Notices of the American Mathematical Society, 38:1133–1138, 1991.

4. L. Gårding. Some Points of Analysis and Their History, volume 11 ofUniversity Lecture
Series. American Mathematical Society / Higher Education Press, 1997.

5. H. Geuvers, F. Wiedijk, and J. Zwanenburg. A constructive proof of the fundamental theorem
of algebra without using the rationals. In P. Callaghan, Z. Luo, J. McKinna, and R. Pollack,
editors,Types for Proofs and Programs, Proceedings of the International Workshop, TYPES
2000, volume 2277 ofLecture Notes in Computer Science, pages 96–111. Springer-Verlag,
2001.

6. J. Harrison. Constructing the real numbers in HOL. In L. J. M. Claesen and M. J. C.
Gordon, editors,Proceedings of the IFIP TC10/WG10.2 International Workshop on Higher
Order Logic Theorem Proving and its Applications, volume A-20 ofIFIP Transactions A:
Computer Science and Technology, pages 145–164, IMEC, Leuven, Belgium, 1992. North-
Holland.

7. J. Harrison. Complex quantifier elimination in HOL. In R. J. Boulton and P. B. Jackson,
editors,TPHOLs 2001: Supplemental Proceedings, pages 159–174. Division of Informatics,
University of Edinburgh, 2001. Published as Informatics Report Series EDI-INF-RR-0046.
Available on the Web athttp://www.informatics.ed.ac.uk/publications/
report/0046.html .

8. L. Hörmander. The Analysis of Linear Partial Differential Operators II, volume 257 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1983.

9. L. S. v. B. Jutting. Checking Landau’s “Grundlagen” in the AUTOMATH System. PhD
thesis, Eindhoven University of Technology, 1977. Useful summary in [13], pp. 701–732.

10. H. W. Kuhn. Some combinatorial lemmas in topology.IBM Journal of research and devel-
opment, 4:518–524, 1960. Available on the Web fromhttp://www.research.ibm.
com/journal/rd/045/ibmrd0405K.pdf .

11. S. McLaughlin and J. Harrison. A proof-producing decision procedure for real arithmetic. To
appear in proceedings of the 20th International Conference on Automated Deduction, 2005.

12. R. Milewski. Fundamental theorem of algebra.Journal of Formalized Mathematics, 12,
2000. Seehttp://mizar.org/JFM/Vol12/polynom5.html .

13. R. P. Nederpelt, J. H. Geuvers, and R. C. d. Vrijer, editors.Selected Papers on Automath,
volume 133 ofStudies in Logic and the Foundations of Mathematics. North-Holland, 1994.

14. P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Available from
the Web atciteseer.nj.nec.com/parrilo01semidefinite.html , 2001.

15. W. Rudin.Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
16. R. Solovay. Elimination of quantifiers I, II, III. Email messages to John Harrison, 9, 19, 20

and 27 November 2004, 2004.
17. H. J. Sussmann. Multidifferential calculus: chain rule, open mapping and transversal in-

tersection theorems. In W. W. Hager and P. M. Pardalos, editors,Optimal control: theory,
algorithms, and applications, pages 436–487. Kluwer, 1998.

