
Formal verification of IA-64 division algorithms

John Harrison

Intel Corporation, EY2-03
5200 NE Elam Young Parkway

Hillsboro, OR 97124, USA

Abstract. The IA-64 architecture defers floating point and integer division to
software. To ensure correctness and maximum efficiency, Intel provides a number
of recommended algorithms which can be called as subroutines or inlined by
compilers and assembly language programmers. All these algorithms have been
subjected to formal verification using the HOL Light theorem prover. As well
as improving our level of confidence in the algorithms, the formal verification
process has led to a better understanding of the underlying theory, allowing some
significant efficiency improvements.

1 Introduction

IA-64 is a new 64-bit computer architecture jointly developed by Hewlett-Packard and
Intel, and the Intel ItaniumTM processor is its first silicon implementation. We will sum-
marize below the details of the IA-64 instruction set architecture (ISA) necessary for
the present paper. A more complete description may be found in the IA-64 Application
Developer’s Architecture Guide, available from Intel in printed form and online.1

To avoid some of the limitations of traditional architectures, IA-64 incorporates a
unique combination of features, including an instruction format encoding parallelism
explicitly, instruction predication, and speculative/advanced loads [4]. Nevertheless, it
also offers full upwards-compatibility with IA-32 (x86) code.

1.1 The IA-64 floating point architecture

The IA-64 floating point architecture has been carefully designed to allow high per-
formance. Features include multiple floating-point status fields and special instructions
for transferring data between integer and floating point registers. The centerpiece of
the architecture is thefma (floating point multiply-add or fused multiply-accumulate)
instruction. This computesxy+z from inputsx, y andzwith a single rounding error. Ex-
cept for subtleties over signed zeros, floating point addition and multiplication are just
degenerate cases offma, 1y+zandxy+0, so do not need separate instructions. Variants
of thefma switch signs of operands:fms computesxy−z while fnma computesz−xy.

The IA-64 architecture supports several different floating point formats compatible
with the IEEE 754 Standard for Binary Floating-Point Arithmetic [10]. For the four
most important formats, we give the conventional name, the precision, and the minimum

1 Seehttp://developer.intel.com/design/ia64/downloads/adag.htm.

and maximum exponents. Thus, numbers in a format with precisionp and minimum and
maximum exponentEmin andEmax are those representable as:

±d0.d1d2d3 · · ·dp−1×2e

with thedi ∈ {0,1} andEmin≤ e≤ Emax.

Format name p Emin Emax

Single 24 -126 127
Double 53 -1022 1023
Double-extended64 -1638216383
Register 64 -6553465535

The single and double formats are mandated and completely specified in the Stan-
dard. The double-extended format (we will often just call it ‘extended’) is recommended
and only partially specified by the Standard. The register format has the same precision
as extended, but allows greater exponent range, helping to avoid overflows and under-
flows in intermediate calculations. As well as these “scalar” formats, IA-64 features a
SIMD format where two single-precision numbers are packed in a floating point regis-
ter and the pair operated on in parallel. Numerically, this amounts to just two parallel
copies of the single-precision format, but pragmatically it places different demands on
the programmer since one can no longer use higher intermediate precision or range
while maintaining the additional level of parallelism.

Most operations, including thefma, take arguments and return results in some of
the 128 floating point registers provided for by IA-64, in which floating point numbers
from all formats map onto a standard bit encoding. By a combination of settings in
the multiple status fields and completers on instructions, the results of operations can
be rounded in any of the four IEEE rounding modes (to nearest, towards positive or
negative infinity, and towards zero) and into any of the supported floating point formats,
whatever format the operands come from.

1.2 Division in software

In most current computer architectures, in particular the Intel IA-32 (x86) architecture
currently represented by the Pentium III processor, instructions are specified for the
floating point and integer division operations. In IA-64, the only instruction specifically
intended to support division is thefloating point reciprocal approximationinstruction,
frcpa. This merely provides an approximate reciprocal which software can use to gen-
erate a correctly rounded quotient. There are several reasons for relegating division to
software.

– By implementing division in software it immediately inherits the high degree of
pipelining in the basicfma operations. Even though these operations take sev-
eral clock cycles, new ones can be started each cycle while others are in progress.
Hence, many division operations can proceed in parallel, leading to much higher
throughput than is the case with typical hardware implementations.

– Greater flexibility is afforded because alternative algorithms can be substituted
where it is advantageous. It is often the case that in a particular context a faster algo-
rithm suffices, e.g. because the ambient IEEE rounding mode is known at compile-
time, or even because only a moderately accurate result is required (e.g. in some
graphics applications).

– In typical applications, division is not an extremely frequent operation, and so it
may be that die area on the chip would be better devoted to something else. How-
ever it is not so infrequent that a grossly inefficient software solution is acceptable,
so the rest of the architecture needs to be designed to allow reasonably fast software
implementations.

1.3 Formal floating point theory

The formal verifications are conducted using the freely available2 HOL Light prover
[7]. HOL Light is a version of HOL [5], itself a descendent of Edinburgh LCF [6]
which first defined the ‘LCF approach’ that these systems take to formal proof. LCF
provers explicitly generate proofs in terms of extremely low-level primitive inferences,
in order to provide a high level of assurance that the proofs are valid. In HOL Light, as
in most other LCF-style provers, the proofs (which can be very large) are not usually
stored permanently, but the strict reduction to primitive inferences in maintained by
the abstract type system of the interaction and implementation language, which for
HOL Light is CAML Light [16, 3]. This language serves as a programming medium
allowing higher-level derived rules (e.g. to automate linear arithmetic, first order logic
or reasoning in other special domains) to be programmed as reductions to primitive
inferences, so that proofs can be partially automated. In general, however, the user must
describe the proof at a moderate level of detail.

The verifications described here draw extensively on a formalized theory of real
analysis [8] and floating point arithmetic [9]. These sources should be consulted for
more details, but we now summarize some of the main formal concepts used in the
present paper.

HOL notation is generally close to traditional logical and mathematical notation.
However, the type system distinguishes natural numbers and real numbers, and maps
between them by&; hence&2 is the real number 2. The multiplicative inversex−1 is
writteninv(x), the absolute value|x| asabs(x) and the powerxn asx pow n.

Much of the theory of floating point numbers is generic. Formats are identified by
triples of natural numbersfmt and the corresponding set of representable real numbers,
ignoring the upper limit on the exponent range, isiformat fmt. The second field of
the triple, extracted by the functionprecision, is the precision, i.e. the number of
significand bits. The third field, extracted by theulpscale function, isN where 2−N is
the smallest nonzero floating point number of the format.

Floating-point rounding is performed byround fmt rc x which denotes the result
of rounding the real numberx into a floating point formatfmt under rounding moderc,
neglecting the upper limit on exponent range. The predicatenormalizes determines

2 Seehttp://www.cl.cam.ac.uk/users/jrh/hol-light/index.html.

whether a real number is within the range of normal floating point numbers in a partic-
ular format, i.e. those representable with a leading 1 in the significand, whilelosing
determines whether a real number will lose precision, i.e. underflow, when rounded to
a given format.

An important concept in floating point arithmetic is a unit in the last place orulp.
Though widely used by floating point experts, there are a number of divergent defini-
tions and care is needed in the formalization [9]. To understand the present paper, the
following is adequate: ifx is any real number andfmt identifies a floating point format,
thenulp fmt x (‘an ulp inx with respect to floating point formatf mt’) is the distance
between the two closest floating point numbers straddlingx.

The canonical sign, exponent and significand fields for a representable real number
are extracted by functionsdecode sign, decode exponent and decode fraction.
Actual floating-point register bitstrings are distinguished from the real numbers they
represent, and the mapping from bitstrings to reals is performed by a functionVal.
Whether a floating point number is normal is determined by a predicatenormal.

2 Perfect rounding

The IEEE Standard for Binary Floating-Point arithmetic [10] specifies that the result of
division (as with other basic algebraic operations such as addition, multiplication and
square root) should be as if the ideal mathematical result were calculated exactly then
rounded in the appropriate rounding mode. Later we examine in detail how to make sure
of this for division, but first some general discussion of perfect rounding and the related
HOL proofs seems appropriate. Supposex is the exact result of the operation, e.g.a/b
in the case of division, and the calculated answer isz. Whatever the implementation,
z will result from rounding an ideal mathematical answer, sayy, to some operation.
Anticipating later examples, suppose the final step of a division algorithm computes the
final quotient from three argumentsq, r andy by means of thefma operation:

fma. pc.s f q= r3, y3, q3

Because thefma itself conforms to (the obvious extrapolation of) the IEEE Stan-
dard, the resultq arises from rounding the exact mathematical valueq∗ = r3y3 + q3 in
the intended rounding mode. We need to ensure that whatever the rounding mode,q∗

and the exact quotienta/b round to the same floating point number.

2.1 Sufficient conditions for perfect rounding

In the following diagram the longer markings denote floating point numbers and the
shorter ones the midpoints between floating point numbers. Assuming we are in round-
to-nearest mode,ab will round to the number below it, butq∗ to the number above it.

-
66

a
b q∗

A little reflection shows that in order to ensure perfect rounding in the round-to-
nearest mode, a sufficient condition is thatq∗ anda/b are never separated by a midpoint,
for which in turn it suffices that for any midpointm we have|a/b−q∗| < |a/b−m|.
Quite generally, we can prove in HOL the following theorem:

` ¬(precision fmt = 0) ∧
(∀m. m ∈ midpoints fmt =⇒ abs(x - y) < abs(x - m))

=⇒ (round fmt Nearest x = round fmt Nearest y)

Obviously this precondition cannot be satisfied ifa/b is exactly a midpoint. How-
ever it is easy to prove that this cannot occurprovided the quotient is in the normal
range:

` a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
¬(b = &0) ∧ normalizes fmt (a / b)

=⇒ ¬(a / b ∈ midpoints fmt)

For other rounding modes, an analogous property is required for floating point num-
bers rather than midpoints. To ensure correctness for all rounding modes, the following
suffices.

` ¬(precision fmt = 0) ∧
(∀a. a ∈ iformat(exprange fmt,precision fmt + 1,ulpscale fmt + 1)

=⇒ abs(x - y) < abs(x - a))

=⇒ (round fmt rc x = round fmt rc y)

Note that we state the theorem in terms of a floating point format with one extra bit
of precision, which is exactly the floating point numbers plus midpoints:

` ¬(p = 0)

=⇒ (midpoints(E,p,N) ∪ iformat(E,p,N) = iformat(E,p+1,N+1))

Since it is possible for the quotient to be exactly a floating point number, or the mid-
point between denormal numbers (e.g. 1.11· · ·11×2Emin/2), we need to deal with these
special cases separately. As we shall see, these work automatically for the algorithms
as they are structured here.

2.2 Flag settings

We must ensure not only correct results in all rounding modes, but that the flags are set
correctly. However, this essentially follows in general from the correctness of the result

in all rounding modes (strictly, in the case of underflow, we need to verify this for a
format with slightly larger exponent range). For the correct setting of the inexact flag,
we need only prove the following HOL theorem:

` ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

=⇒ ∀rc. (round fmt rc x = x) = (round fmt rc y = y)

The proof is simple: ifx rounds to itself, then it must be representable. But by
hypothesis,y rounds to the same thing, that isx, in all rounding modes. In particular
the roundings up and down implyx <= y andx >= y, soy = x. The other way round
is similar.

2.3 Exclusion zones

The theorems above show that providedq∗ anda/b are closer to each other thana/b
is to a floating point number or midpoint, correct rounding is assured. One approach to
proving this for a given algorithm is to ask: how close cana/b be to a floating point
number or midpoint? A little work allows us to provide an answer to that question [2],
which we can formalize as the following HOL theorem:

` a ∈ iformat(E,p,N) ∧
b ∈ iformat(E,p,N) ∧
c ∈ iformat(E,p+1,N+1) ∧
&2 pow (p - 1) / &2 pow N <= abs(a) ∧
¬(b = &0)

=⇒ (a / b = c) ∨
abs(a / b - c) >= abs(a / b) / &2 pow (2 * p + 2)

It can be read as saying that every floating point number or midpointc is surrounded
by an ‘exclusion zone’ of size approximately|c|

22p+2 within which no floating point quo-
tient can lie. This implies that ifa/b is not exactly a floating point number, then having:

|q∗−a/b|< |a/b|
22p+2

would suffice for perfect rounding. By using higher intermediate precision together with
the benefit of thefma, this kind of relative error can be achieved without trouble, and
some of the Intel division algorithms can be verified using the above property. However,
in the case of extended precision or SIMD operation, we have no higher intermediate
precision available. Then even thefma does not quite allow us to guarantee gettingq∗

that close toa/b in a straightforward way, and we must prove more precise theorems,
which we discuss below.

A refinement of the ‘exclusion zone’ approach is not only to identify the width of
the exclusion zone but to isolate the inputsa andb where the quotients lie closest to
floating point numbers or midpoints. Then one can get away with a worse error bound
provided those special cases also work correctly, which one can verify by explicitly

running through the algorithm. For the square root, this approach works well [2], and
one can feasibly isolate a moderate number of ‘difficult cases’, allowing a uniform and
effective way of verifying square root algorithms (which we have used in analogous
verifications for square root). For division, there are too many solutions fora andb for
this to be a feasible approach for verification. However, once eithera or b is fixed — for
example in the special case of finding reciprocals — the number of solutions is typically
quite moderate.

3 Implementing division on IA-64

The general form of the IA-64 assembly languagefrcpa instruction is:

frcpa.s f q, p = a, b

whereq, a andb are floating point registers,p is a predicate register, ands f is a floating-
point status field. Essentially,a andb are the dividend and divisor respectively, andq
is the destination register for the result. The status fields f controls the behavior in
exceptional cases, e.g. division by zero, and the predicate registerp is set tofalse if
the inputs were exceptional, e.g. ifa or b was zero. In the exceptional cases,q is set
to the IEEE-correct quotient, either directly by the hardware or via a SWA (software
assistance) trap, and no further action is necessary. Otherwisep is set totrue andq is
set to an approximation of 1/b with a guaranteed relative error:

|q−1/b| ≤ 2−8.86|1/b|

(In fact, the ISA specifies the details of the approximation more precisely, so that the
particular value, which by the way has at most 11 significant bits, is predictable on all
IA-64 processors.) Software is then expected to use this to arrive at the IEEE-correct
quotient, i.e. the result that would be obtained if the quotient were calculated exactly
then rounded using the ambient IEEE rounding mode. Moreover, the six IEEE flags
must be set correctly, e.g. the inexact flag is set if and only if the quotient is not exactly
a floating point number.

3.1 Intel-provided algorithms

It is not immediately obvious that without tricky and time-consuming bit-twiddling, it
is possible to produce an IEEE-correct result and set all the IEEE flags correctly via
ordinary software. Remarkably, however, fairly short straight-line sequences offma op-
erations (or negated variants), suffice to do so. This approach to division was pioneered
by Markstein [11] on the IBM RS/60003 family. It seems that the ability to perform
both a multiply and an add or subtract without an intermediate rounding is essential to
this, but besides its utility here, thefma has many other benefits in improving floating
point performance and accuracy.

Intel provides a number of recommended division and square root algorithms, in
the form of short sequences of straight-line code written in IA-64 assembly language.
3 All other trademarks are the property of their respective owners.

The intention is that these can be inlined by compilers, used as the core of mathematical
libraries, or called on as macros by assembly language programmers. The algorithms
are available for download from:

http://developer.intel.com/software/opensource/numerics.htm

All the Intel-provided algorithms have been carefully designed to provide IEEE-
correct results and trigger IEEE flags and exceptions appropriately. Subject to this cor-
rectness constraint, they have been written to maximize performance on the ItaniumTM

processor. However, they are also likely to be the most appropriate algorithms for future
IA-64 processors, even those with significantly different hardware characteristics.

Separate algorithms are provided for the main IA-64 floating point formats (single,
double, extended and SIMD), since faster algorithms are usually possible when the
required precision is lower. As well as the multiplicity of formats, most algorithms have
two separate variants, one of which is designed to minimize latency (i.e. the number of
clock cycles between starting the operation and having the result available), and the
other to maximize throughput (the number of operations executed per cycle, averaged
over a large number of independent instances). Which variant is best to use depends on
the kind of program within which it is being invoked.

3.2 Refining approximations

First we will describe in general terms how we can usefma operations to refine an
initial reciprocal approximation towards a better reciprocal or quotient approximation.
For clarity of exposition, we will ignore rounding errors at this stage, and later show
how they are taken account of in the formal proof. In the next subsection we cover the
subtler issue of guaranteeing correct rounding.

Consider determining the reciprocal of some floating point valueb. Starting with a
reciprocal approximationy with a relative errorε:

y =
1
b

(1+ ε)

we can perform just onefnma operation:

e= 1−by

and get:

e = 1−by

= 1−b
1
b

(1+ ε)

= 1− (1+ ε)
= −ε

Now observe that:

1
b

=
y

(1+ ε)

= y(1− ε + ε2− ε3 + · · ·)
= y(1+e+e2 +e3 + · · ·)

This suggests that we might improve our reciprocal approximation by multiplying
y by some truncation of the series 1+e+e2 +e3 + · · ·. The simplest case using a linear
polynomial inecan be done with just one morefma operation:

y′ = y+ey

Now we have

y′ = y(1+e)

=
1
b

(1+ ε)(1+e)

=
1
b

(1+ ε)(1− ε)

=
1
b

(1− ε2)

The magnitude of the relative error has thus been squared, or looked at another way,
the number of significant bits has been approximately doubled. This, in fact, is exactly
a step of the traditional Newton-Raphson iteration for reciprocals. In order to get a still
better approximation, one can either use a longer polynomial ine, or repeat the Newton-
Raphson linear correction several times. Mathematically speaking, repeating Newton-
Raphson iterationn times is equivalent to using a polynomial 1+ e+ · · ·+ e2n−1, e.g.
sincee′ = ε2 = e2, two iterations yield:

y′′ = y(1+e)(1+e2) = y(1+e+e2 +e3)

However, whether repeated Newton iteration or a more direct power series evalu-
ation is better depends on a careful analysis of efficiency and the impact of rounding
error. The Intel algorithms use both, as appropriate.

Now consider refining an approximation to the quotient with relative errorε; we can
get such an approximation in the first case by simply multiplying a reciprocal approx-
imation y≈ 1

b by a. One approach is simply to refiney as much as possible and then
multiply. However, this kind of approach can never guarantee getting the last bit right;
instead we also need to consider how to refineq directly. Suppose

q =
a
b

(1+ ε)

We can similarly arrive at a remainder term by anfnma:

r = a−bq

when we have:

r = a−bq

= a−b
a
b

(1+ ε)

= a−a(1+ ε)
= −aε

In order to use this remainder term to improveq, we also need a reciprocal approx-
imationy = 1

b(1+ η). Now thefma operation:

q′ = q+ ry

results in, ignoring the final rounding:

q′ = q+ ry

=
a
b

(1+ ε)−aε
1
b

(1+ η)

=
a
b

(1+ ε− ε(1+ η))

=
a
b

(1− εη)

3.3 Obtaining the final result

While we have neglected rounding errors hitherto, it is fairly straightforward to place a
sensible bound on their effect. To be precise, the error from rounding is at most half an
ulp in round-to-nearest mode and a full ulp in the other modes.

` ˜(precision fmt = 0)

=⇒ (abs(error fmt Nearest x) <= ulp fmt x / &2) ∧
(abs(error fmt Down x) < ulp fmt x) ∧
(abs(error fmt Up x) < ulp fmt x) ∧
(abs(error fmt Zero x) < ulp fmt x)

where

` error fmt rc x = round fmt rc x - x

It turn, we can easily get fairly tight lower and upper bounds on an ulp inx in terms
of the magnitude ofx, the upper bound assuming normalization:

` abs(x) / &2 pow (precision fmt) <= ulp fmt x

and

` normalizes fmt x ∧ ˜(precision fmt = 0) ∧ ˜(x = &0)

=⇒ ulp fmt x <= abs(x) / &2 pow (precision fmt - 1)

Putting these together, we can easily prove simple relative error bounds on all the
basic operations, which can be propagated through multiple calculations by simple al-
gebra. It is easy to see that while the relative errors in the approximations are signifi-
cantly above 2−p (wherep is the precision of the floating point format), the effects of
rounding error on the overall error are minor. However, once we get close to having a
perfectly rounded result, rounding error becomes highly significant. How the algorithm
is designed and verified now depends radically on whether we have higher precision
available. If we do, then we can usually rely on a simple ‘exclusion zone’ proof. Oth-
erwise, we need more precise theorems, the central one being the following due to
Markstein [11]:

Theorem 1. If q is a floating point number within1 ulp of the true quotient a/b of two
floating point numbers, and y is the correctly rounded-to-nearest approximation of the
exact reciprocal1b, then the following two floating point operations:

r = a−bq

q′ = q+ ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quotient q′.

This is not too difficult to prove in HOL. First we observe that because the initialq
is a good approximation, the computation ofr cancels so much that no rounding error
is committed. (This is intuitively plausible and stated by Markstein without proof, but
the formal proof was surprisingly messy.)

` 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ q ∈ iformat fmt ∧
normalizes fmt q ∧ abs(a / b - q) <= ulp fmt (a / b) ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a)

=⇒ (a - b * q) ∈ iformat fmt

Now the overall proof given by Markstein is quite easily formalized. However, we
observed that the property actually used in the proof is in general somewhat weaker
than requiringy to be a perfectly rounded reciprocal. The theorem actually proved in
HOL is:

Theorem 2. If q is a floating point number within1 ulp of the true quotient a/b of two
floating point numbers, and y approximates the exact reciprocal1

b to a relative error
< 1

2p , where p is the precision of the floating point format concerned, then the following
two floating point operations:

r = a−bq

q′ = q+ ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quotient q′.

The formal HOL statement is as follows:

` 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
q ∈ iformat fmt ∧ r ∈ iformat fmt ∧
¬(b = &0) ∧
¬(a / b ∈ iformat fmt) ∧
normalizes fmt (a / b) ∧
abs(a / b - q) <= ulp fmt (a / b) ∧
abs(inv(b) - y) < abs(inv b) / &2 pow (precision fmt) ∧
(r = a - b * q) ∧
(q’ = q + r * y)

=⇒ (round fmt Nearest q’ = round fmt Nearest (a / b))

Although in the worst case, the preconditions of the original and modified theorem
hardly differ (recall that|x|/2p≤ ulp(x)≤ |x|/2p−1), it turns out that in many situations
the relative error condition is much easier to satisfy. In Markstein’s original methodol-
ogy, one needs first to obtain a perfectly rounded reciprocal, which he proves can be
done as follows:

Theorem 3. If y is a floating point number within1 ulp of the true reciprocal1b, then
one iteration of:

e = 1−by

y′ = y+ey

using round-to-nearest in both cases, yields the correctly rounded reciprocal, except
possibly when the mantissa of b consists entirely of1s.

If we rely on this theorem, we need a very good approximation to1
b before these

two further serial operations and one more to get the final quotient using the newy′.
However, with the weaker requirement ony′, we can get away with a correspondingly
weakery. In fact, we prove:

Theorem 4. If y is a floating point number that results from rounding a value y0, and
the relative error in y0 w.r.t. 1

b is≤ d
22p for some natural number d (assumed≤ 2p−2),

then y will have relative error< 1
2p w.r.t. 1

b, except possibly if the mantissa of b is one
of the d largest. (That is, when scaled up to an integer2p−1≤mb < 2p, we have in fact
2p−d≤mb < 2p.)

Proof. For simplicity we assume b> 0, since the general case can be deduced by sym-
metry from this. We can therefore write b= 2emb for some integer mb with 2p−1≤mb<
2p. In fact, it is convenient to assume that2p−1 < mb, since when b is an exact power
of 2 the main result follows easily from d≤ 2p−2. Now we have:

1
b

= 2−e 1
mb

= 2−(e+2p−1)(
22p−1

mb
)

and ulp(1
b) = 2−(e+2p−1). In order to ensure that|y− 1

b| < |
1
b|/2

p it suffices, since
|y−y0| ≤ ulp(1

b)/2, to have:

|y0−
1
b
| < (

1
b

)/2p−ulp(
1
b

)/2

= (
1
b

)/2p−2−(e+2p−1)/2

= (
1
b

)/2p− (
1
b

)mb/2
2p

By hypothesis, we have|y0− 1
b| ≤ (1

b) d
22p . So it is sufficient if:

(
1
b

)d/22p < (
1
b

)/2p− (
1
b

)mb/2
2p

Canceling(1
b)/22p from both sides, we find that this is equivalent to:

d< 2p−mb

Consequently, the required relative error is guaranteed except possibly when d≥ 2p−
mb, or equivalently mb≥ 2p−d, as claimed.

The HOL statement is as follows. Note that it usese= d/22p as compared with the
statement we gave above, but this is inconsequential.

` 2 <= precision fmt ∧
b ∈ iformat fmt ∧
y ∈ iformat fmt ∧
¬(b = &0) ∧
normalizes fmt b ∧
normalizes fmt (inv(b)) ∧
(y = round fmt Nearest y0) ∧
abs(y0 - inv(b)) <= e * abs(inv(b)) ∧
e <= inv(&2 pow (precision fmt + 2)) ∧
&(decode_fraction fmt b) <

&2 pow (precision fmt) - &2 pow (2 * precision fmt) * e

=⇒ abs(inv(b) - y) < abs(inv(b)) / &2 pow (precision fmt)

4 HOL algorithm verifications

We will now give two examples of actual IA-64 division algorithms and describe their
HOL verification. Both algorithms are for single precision arithmetic, but one is a scalar
algorithm that uses higher precision internally, and the other is a SIMD algorithm that
uses only single precision operations. The two verifications thus present interesting
contrasts.

4.1 Scalar single precision algorithm

The following algorithm is for single precision computation, but makes clever use of
the availability of higher intermediate precision. The steps of the algorithm are grouped
into six stages which may be executed in parallel if the particular IA-64 machine allows
this, as the ItaniumTM processor does. The last column indicates the floating point format
into which the result of that operation is rounded. Note that in all the algorithms we
consider, all steps but the last are done in round-to-nearest mode, and the last in the
ambient rounding mode.

1. y0 = 1
b(1+ ε) frcpa

2. e0 = 1−by0 Register
q0 = ay0 Register

3. q1 = q0 +e0q0 Register
e1 = e0e0 Register

4. q2 = q1 +e1q1 Register
e2 = e1e1 Register

5. q3 = q2 +e2q2 Registerdouble

6. q = q3 Single

The algorithm forms an initial reciprocal approximationy0 and a quotient approxi-
mationq0, then refines them both by two stages of Newton-Raphson iteration. The sub-
tlety is in the last two lines, whereq3 is rounded to ‘register double’ (double precision
but with a wider exponent range) and subsequently rounded again to single precision,
in order to obtain a perfectly rounded result. We now turn to the formal verification.

As detailed in [9], we have written derived rules that can automatically propagate
forward known upper and lower ranges on the size of arguments to the result offma-type
operations, automatically verifying that the result neither overflows nor loses precision
and hence that we can express the result as a relative perturbation of the exact result.
HOL’s programmability is vital here; these proofs would be extraordinarily tedious to
orchestrate by hand.

We do this for all steps of the algorithm, though we then have to reexamine some
of them more precisely to make the proof work. Results of later lines have accumu-
lated many errors from previous ones, and again we use an automatic HOL rule to

bound these. The bounds derived automatically in this way are naive. For example, if
we know |ε| < 2−24, the automatic rule can deduce thaty0(1+ ε)(1− ε) = y0(1+ ε′)
with |ε′| ≤ 2−24 + 2−24 + 2−242−24. Of course, with a little intelligence, a human can
derive |ε′| ≤ 2−48. This kind of intelligence has to be injected sometimes, but gener-
ally, the automated process is enough to do the donkey work of keeping track of the
dozens (hundreds in some other verifications) of ultimately negligible error terms. The
first important relative error is inq3 before rounding, i.e.q∗3 = q2 + e2q2. We find that
q∗3 = a

b(1+e) with |e| ≤ 197509/280.
Now we distinguish two cases according to whethera/b is actually representable

in the ‘register single’ format. (The use of register single rather than single simplifies
the later argument, which is otherwise complicated by the possibility thata/b could be
exactly the midpoint between two denormal numbers.)

If a/b is in the register single format, then it isa fortiori in the register double
format. Sinceq∗3 = a

b(1+e) with |e| ≤ 2−62, it is clear thatq3 = a/b exactly, and soq is
certainly the IEEE correct answer since it literally results from roundinga/b to single
precision.

If a/b is not in the register single format, then we still have a respectable relative
error for q3 after rounding because rounding was into a format with more than twice
single precision. In fact, we haveq3 = a

b(1+ e) with |e| ≤ 2−52, and examining the
exclusion zone theorem, we need only|e| < 2−(2×24+2). Consequently, correctness is
proved.

4.2 SIMD single precision algorithm

The following algorithm is for SIMD single precision computation. It can also be
grouped in 6 parallel stages, though on a machine capable of issuing fewer than 3 float-
ing point operations per cycle, some instructions may need to be offset by a cycle.

1. y0 = 1
b(1+ ε) frcpa

2. d = 1−by0 Single
q0 = ay0 Single

3. y1 = y0 +dy0 Single
r0 = a−bq0 Single

4. e= 1−by1 Single
y2 = y0 +dy1 Single
q1 = q0 + r0y1 Single

5. y3 = y1 +ey2 Single
r1 = a−bq1 Single

6. q = q1 + r1y3 Single

Once again we can use the automated tools to produce simple relative error bounds
for the intermediate stages. In this case, however, more human intervention in the proofs
is necessary, since for extreme inputs the intermediate steps, which have no additional
exponent range,can overflow or underflow. However, the parallel version offrcpa
indicates this possibility by clearing a predicate register, triggering the use of a different
algorithm. We simply need to verify that the condition tested ensures that no overflow
or underflow occurs here, which is easily done.

First, suppose thata/b is exactly, or is very close to, a single precision floating
point numberc. In this case, the semi-automatic error analysis indicates thatq∗1 = q0 +
r0y1 = a

b(1+ ε) with |ε| ≤ 2−25.9, close enough to ensure thatq1 = c. As before, this
ensures that the exact cases work correctly, and allows us to dispose also of the directed
rounding mode cases, since these are the only problematic ones for a simple exclusion
zone proof. For the more difficult case of round-to-nearest and where the quotient is
not close to a floating point number, the critical relative error result is fory3 before
rounding, which is indicated in the HOL goal by the following derived assumptions:

[‘Val e * Val y_2 + Val y_1 = inv(Val b) * (&1 + e16)‘]

[‘abs e16 <= &657 / &2 pow 50‘]

In other words,y∗3 = 1
b(1+ e16) with |e16| ≤ 657/250. Since 657/250≤ 165/22×24,

we can now apply Theorem 4 to show thaty3 will satisfy the relative error criterion
needed for Theorem 2, except possibly when the mantissa ofb is one of the 165 largest.
For these cases, HOL is programmed to evaluate the result of they3 computation on
them explicitly (dealing with the arbitrary exponent scaling is the only slight difficulty),
and it automatically confirms that the criterion is always attained in these cases too.
(Note that if this fails, we may still be able to show the overall quotient result will
be correct, but it needs somewhat more work and has never arisen in practice so far.)
Consequently, we can now apply Theorem 2 and deduce that the final result is correctly
rounded and all flags set (subject to the criterion identified for the intermediate results
not to overflow or underflow, which matches the cases indicated by the parallelfrcpa).

A more complicated analysis (which has not been formalized in HOL) suggests that
while y3 always satisfies the relative error criterion, it fails to be perfectly rounded for
precisely 12 of the possible 224 inputb significands. Consequently, this algorithm could
not be justified based only on Markstein’s theorems in their original form.

Another situation where the new theorems allow us to justify faster algorithms is
extended precision division. Using Markstein’s original theorems, it seems the best that
can be achieved is the following:

1. y0 = 1
b(1+ ε) [frcpa]

2. e0 = 1−by0 q0 = ay0

3. y1 = y0 +e0y0 e1 = e2
0

4. y2 = y1 +e1y1 r0 = a−bq0

5. e2 = 1−by2

6. y3 = y2 +e2y2

7. e3 = 1−by3 q1 = q0 + r0y3

8. y4 = y3 +e3y3 r1 = a−bq1

9. q2 = q1 + r1y4

However, using the new theorems, we can justify the following, which is faster by
onefma latency.

1. y0 = 1
b(1+ ε) [frcpa]

2. d = 1−by0 q0 = ay0

3. d2 = dd d3 = dd+d
4. d5 = d2d2 +d y1 = y0 +y0d3

5. y2 = y0 +y1d5 r0 = a−bq0

6. e= 1−by2 q1 = q0 + r0y2

7. y3 = y2 +ey2 r = a−bq1

8. q = q1 + ry3

5 Conclusions and related work

We have outlined an approach to the formal verification of classes of division algorithms
which is a formalization and improvement of standard theoretical approaches [11, 2].
The approach has been successfully applied to a large number of division algorithms
that Intel is distributing to help IA-64 programmers, helping to give greater confidence
in the correctness of these subtle algorithms. Moreover, the verification effort has led
to some stronger theorems on which to base algorithms of this type, and so directly to
some efficiency improvements.

The verification is conducted on a detailed abstract model of the application pro-
grammer’s view of the IA-64 ISA, and naturally relies on the IA-64 processor on which
the code is run accurately implementing the ISA. Moreover, formal verification cannot
completely guard against simple transcription errors in utilized versions of the code,
a danger particularly significant since they may be inlined by various compilers and
software development tools. For the purpose of isolating such errors as well as provid-
ing additional levels of assurance, Intel has also developed extensive validation suites.
Formal verification can never completely eliminate the need for such precautions, but it
can allow us to focus testing on more productive areas. (Indeed, a particularly attractive
feature of the ‘exclusion zone’ approach [2] is that the difficult cases are not only used
in a formal proof but are also good test cases to exercise the algorithm and its practical
realization.)

As well as the floating point division work reported here, we have verified various
analogous square root algorithms using a formalization of the refined exclusion zone
approach [2]. In addition, we have formally verified several integer divide algorithms,
which use a specialized floating-point division algorithm as a core. For an overview
of the implementation of integer division on IA-64 and proofs of correctness, see [1].
Much more detail about the IA-64 implementation of division, square root and other
mathematical functions are given in [12].

The closest related work to that described here is the formal verification of division
algorithms reported in [13] and [15]. Although these are respectively for microcode and
hardware RTL, and the present work is for software, this difference is not as significant
as it may seem, since all these implementations seem to be modeled at a similar level.
The major difference is that our work covers algorithms written using the standard

resources available to the application programmer, based on a high-level specification
that the underlying operations are IEEE-correct. Other work on formal verification of
division hardware using a combined theorem prover and model checker [14] is also
closely related, but in this work the verification is taken down to a lower level (the
implementation in terms of logic gates), and closely integrated with the overall design
flow, helping to reduce the chance of transcription errors.

References

1. Marius Cornea, Cristina Iordache, Peter Markstein, and John Harrison. Integer divide and
remainder operations in the Intel IA-64 architecture. In Jean-Claude Bajard, Christiane
Frougny, Peter Kornerup, and Jean-Michel Muller, editors,RNC4, the fourth international
conference on Real Numbers and Computers, pages 161–184, 2000.

2. Marius Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point square
root, divide and remainder algorithms.Intel Technology Journal, 1998-Q2:1–11, 1998. See
http://developer.intel.com/technology/itj/q21998/articles/art 3.htm.

3. Guy Cousineau and Michel Mauny.The Functional Approach to Programming. Cambridge
University Press, 1998.

4. Carole Dulong. The IA-64 architecture at work.IEEE Computer, 64(7):24–32, July 1998.
5. Michael J. C. Gordon and Thomas F. Melham.Introduction to HOL: a theorem proving

environment for higher order logic. Cambridge University Press, 1993.
6. Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.Edinburgh LCF:

A Mechanised Logic of Computation, volume 78 ofLecture Notes in Computer Science.
Springer-Verlag, 1979.

7. John Harrison. HOL Light: A tutorial introduction. In Mandayam Srivas and Albert Camil-
leri, editors,FMCAD’96, volume 1166 ofLecture Notes in Computer Science, pages 265–
269. Springer-Verlag, 1996.

8. John Harrison.Theorem Proving with the Real Numbers. Springer-Verlag, 1998. Revised
version of author’s PhD thesis.

9. John Harrison. A machine-checked theory of floating point arithmetic. In Yves Bertot,
Gilles Dowek, Andŕe Hirschowitz, Christine Paulin, and Laurent Théry, editors,TPHOLs’99,
volume 1690 ofLecture Notes in Computer Science, pages 113–130, 1999. Springer-Verlag.

10. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-1985, The
Institute of Electrical and Electronic Engineers, Inc.

11. Peter Markstein. Computation of elementary functions on the IBM RISC System/6000 pro-
cessor.IBM Journal of Research and Development, 34:111–119, 1990.

12. Peter Markstein.IA-64 and Elementary Functions: Speed and Precision. Prentice-Hall,
2000.

13. J Strother Moore, Tom Lynch, and Matt Kaufmann. A mechanically checked proof of the
correctness of the kernel of theAMD5K86 floating-point division program.IEEE Transac-
tions on Computers, 47:913–926, 1998.

14. John O’Leary, Xudong Zhao, Rob Gerth, and Carl-Johan H. Seger. Formally verifying IEEE
compliance of floating-point hardware.Intel Technology Journal, 1999-Q1:1–14, 1999.
http://developer.intel.com/technology/itj/q11999/articles/art 5.htm.

15. David Rusinoff. A mechanically checked proof of IEEE compliance of a register-transfer-
level specification of the AMD-K7 floating-point multiplication, division, and square root
instructions.LMS Journal of Computation and Mathematics, 1:148–200, 1998. Available on
the Web viahttp://www.onr.com/user/russ/david/k7-div-sqrt.html.

16. Pierre Weis and Xavier Leroy.Le langage Caml. InterEditions, 1993. See also the CAML
Web page:http://pauillac.inria.fr/caml/.

