
A machine-checked theory of floating point
arithmetic

John Harrison

Intel Corporation, EY2-03
5200 NE Elam Young Parkway

Hillsboro, OR 97124, USA

Abstract. Intel is applying formal verification to various pieces of math-
ematical software used in Merced, the first implementation of the new
IA-64 architecture. This paper discusses the development of a generic
floating point library giving definitions of the fundamental terms and
containing formal proofs of important lemmas. We also briefly describe
how this has been used in the verification effort so far.

1 Introduction

IA-64 is a new 64-bit computer architecture jointly developed by Hewlett-Packard
and Intel, and the forthcoming Merced chip from Intel will be its first sili-
con implementation. To avoid some of the limitations of traditional architec-
tures, IA-64 incorporates a unique combination of features, including an instruc-
tion format encoding parallelism explicitly, instruction predication, and specu-
lative/advanced loads [4]. Nevertheless, it also offers full upwards-compatibility
with IA-32 (x86) code.1

IA-64 incorporates a number of floating point operations, the centerpiece
of which is the fma (floating point multiply-add or fused multiply-accumulate).
This computes xy + z from inputs x, y and z with a single rounding error.
Floating point addition and multiplication are just degenerate cases of fma,
1y + z and xy + 0.2 On top of the primitives provided by hardware, there is a
substantial suite of associated software, e.g. C library functions to approximate
transcendental functions.

Intel has embarked on a project to formally verify all Merced’s basic math-
ematical software. The formal verification is being performed in HOL Light, a
version of the HOL theorem prover [6]. HOL is an interactive theorem prover in
the ‘LCF’ style, meaning that it encapsulates a small trusted logical core and
implements all higher-level inference by (usually automatic) decomposition to
these primitives, using arbitrary user programming if necessary.

A common component in all the correctness proofs is a library containing
formal definitions of all the main concepts used, and machine-checked proofs of
1 The worst-case accuracy of the floating-point transcendental functions has actually

improved over the current IA-32 chips.
2 As we will explain later, this is a slight oversimplification.

a number of key lemmas. Correctness of the mathematical software starts from
the assumption that the underlying hardware floating point operations behave
according to the IEEE standard 754 [9] for binary floating point arithmetic.
Actually, IEEE-754 doesn’t explicitly address fma operations, and it leaves un-
derspecified certain significant questions, e.g. NaN propagation and underflow
detection. Thus, we not only need to specify the key IEEE concepts but also
some details specific to IA-64. Then we need to prove important lemmas. How
this was done is the main subject of this paper.

Floating point numbers can be stored either in floating point registers or in
memory, and in each case we cannot always assume the encoding is irredundant
(i.e. there may be several different encodings of the same real value, even apart
from IEEE signed zeros). Thus, we need to take particular care over the distinc-
tion between values and their floating point encodings.3 Systematically making
this separation nicely divides our formalization into two parts: those that are
concerned only with real numbers, and those where the floating point encodings
with the associated plethora of special cases (infinities, NaNs, signed zeros etc.)
come into play.

2 Floating point formats

Floating point numbers, at least in conventional binary formats, are those of the
form ±2ek with the exponent e subject to a certain bound, and the fraction (also
called significand or mantissa) k expressible in a binary positional representation
using a certain number p of bits. The bound on the exponent range together with
the allowed precision p determines a particular floating point format.

Floating point numbers cover a wide range of values from the very small to
the very large. They are evenly spaced except that at the points 2j the inter-
val between adjacent numbers doubles. The intervals 2j ≤ x ≤ 2j+1, possibly
excluding one or both endpoints, are often called binades, and the numbers 2j

binade boundaries. In a decimal analogy, the gap between 1.00 and 1.01 is ten
times the gap between 0.999 and 1.00, where all numbers are constrained to
three significant digits. The following diagram illustrates this.

-
2j

Our formalization of the encoding-free parts of the standard is highly generic,
covering an infinite collection of possible floating point formats, even including
absurd formats with zero precision (no fraction bits). It is a matter of taste
whether the pathological cases should be excluded at the outset. We sometimes
3 In the actual standard (p7) ‘a bit-string is not always distinguished from a number

it may represent’.

need to exclude them from particular theorems, but many of the theorems turn
out to be degenerately true even for extreme values.

Section 3.1 of the standard parametrizes floating point formats by precision p
and maximum and minimum exponents Emax and Emin. We follow this closely,
except we represent the fraction by an integer rather than a value 1 ≤ f < 2,
and the exponent range by two nonnegative numbers N and E. The allowable
floating point numbers are then of the form ±2e−Nk with k < 2p and 0 ≤ e < E.
This was not done because of the use of biasing in actual floating point encodings
(as we have stressed before, we avoid such issues at this stage), but rather to
use nonnegative integers everywhere and carry around fewer side-conditions.
The cost of this is that one needs to remember the bias when considering the
exponents of floating point numbers. We name the fields of a triple as follows:

|- exprange (E,p,N) = E

|- precision (E,p,N) = p

|- ulpscale (E,p,N) = N

and the definition of the set of real numbers corresponding to a triple is:4

|- format (E,p,N) =

{ x | ∃s e k. s < 2 ∧ e < E ∧ k < 2 EXP p ∧
(x = --(&1) pow s * &2 pow e * &k / &2 pow N)}

This says exactly that the format is the set of real numbers representable in
the form (−1)s2e−Nk with e < E and k < 2p (the additional restriction s < 2
is just a convenience). For many purposes, including floating point rounding, we
also consider an analogous format with an exponent range unbounded above.
This is defined by simply dropping the exponent restriction e < E. Note that
the exponent is still bounded below, i.e. N is unchanged.

|- iformat (E,p,N) =

{ x | ∃s e k. s < 2 ∧ k < 2 EXP p ∧
(x = --(&1) pow s * &2 pow e * &k / &2 pow N)}

We then prove various easy lemmas, e.g.

|- &0 IN iformat fmt

|- --x IN iformat fmt = x IN iformat fmt

|- x IN iformat fmt =⇒ (&2 pow n * x) IN iformat fmt

4 The ampersand denotes the injection from N to R, which HOL’s type system distin-
guishes. The function EXP denotes exponentiation on naturals, and pow the analogous
function on reals.

The above definitions consider the mere existence of triples (s,e,k) that
yield the desired value. In general there can be many such triples that give the
same value. However there is the possibility of a canonical representation:

|- iformat (E,p,N) =

{ x | ∃s e k. (2 EXP (p - 1) <= k ∨ (e = 0)) ∧
s < 2 ∧ k < 2 EXP p ∧
(x = --(&1) pow s * &2 pow e * &k / &2 pow N)}

This justifies our defining a ‘decoding’ of a representable real number into a
standard choice of sign, exponent and fraction. This is defined using the Hilbert
ε operator and from the definition we derive:

|- x IN iformat(E,p,N)

=⇒ (2 EXP (p - 1) <= decode_fraction (E,p,N) x ∨
(decode_exponent (E,p,N) x = 0)) ∧
decode_sign (E,p,N) x < 2 ∧
decode_fraction (E,p,N) x < 2 EXP p ∧
(x = --(&1) pow (decode_sign (E,p,N) x) *

&2 pow (decode_exponent (E,p,N) x) *

&(decode_fraction (E,p,N) x) / &2 pow N)

Note that it is these canonical notions, not the fields of any encodings, that
we later discuss when we consider, say, whether the fraction of a number is even
in rounding to nearest.

We prove that there can only be one restricted triple (s,e,k) for a given
value, except for differently signed zeros, and these coincide with the canonical
decodings defined above. For example:

|- s < 2 ∧ k < 2 EXP p ∧
(2 EXP (p - 1) <= k ∨ (e = 0)) ∧
(x = --(&1) pow s * &2 pow e * &k / &2 pow N)

=⇒ (decode_fraction(E,p,N) x = k)

Nonzero numbers represented by a canonical triple such that k < 2p−1 (and
hence with e = 0) are often said to be denormal or unnormal. Other repre-
sentable values are said to be normal. We do not define these terms formally in
HOL at this stage, reserving them for properties of actual floating point register
encodings, where a subtle terminological distinction is made between ‘denormal’
and ‘unnormal’ numbers. But we do now define criteria for an arbitrary real to
be in the ‘normalized’ or ‘tiny’ range and these are used quite extensively later:

|- normalizes fmt x =

(x = &0) ∨
&2 pow (precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(x)

|- tiny fmt x = ¬(normalizes fmt x)

3 Units in the last place

The term ‘unit in the last place’ is only mentioned in passing by the standard
on p. 12 when discussing binary to decimal conversion. Nevertheless, it is of
great importance for later proofs because the error bounds for transcendental
functions need to be expressed in terms of ulps. Doing so is quite standard, yet
there is widespread confusion about what an ulp is, and a variety of incompatible
definitions appear in the literature.

Suppose x ∈ R is approximated by a ∈ R, the latter being representable by a
floating point number. For example, x might be the true result of a mathematical
function, and a the approximation returned by a floating point operation. What
do we mean by saying that the error |x− a| is within n ulp? In the context of a
finite binary (or decimal) string, a unit in the last place is naturally understood
as the magnitude of its least significant digit, or in other words, the distance
between the floating point number a and the next floating point number of
greater magnitude. Indeed, if we examine two standard references on the subject,
we see the definition framed in both ways:

In general, if the floating-point number d.d · · · d × βe is used to repre-
sent z, it is in error by |d.d · · · d − (z/βe)|βp−1 units in the last place.5

(Goldberg [5].)

The term ulp(x) (for unit in the last place) denotes the distance between
the two floating point numbers that are closest to x. (Müller [13].)

Both these definitions have some counterintuitive properties. For example,
the following approximation is in error by 0.5ulp according to Goldberg, but
intuitively, and according to Müller, 1ulp:

-
?

exact

2j

?

computed

But Müller’s definition has the somewhat curious property that its disconti-
nuities occur away from the binade boundaries 2j , because the closest floating
point numbers to a real number x may not be the straddling ones. For example,
the following (a valid rounding up) has an error of about 1.4ulp according to
Müller, but intuitively and according to the Goldberg definition, it is less than
1.

-
?

exact

2j

?

computed

5 where p is the precision and β the base of the floating point format. For us β = 2.

Arguably no simple function either of the exact or computed result can avoid
counterintuitive properties completely. However, it is very convenient to have
such a simple definition. We adopt a definition more like Müller’s in that it (a)
is a function of the exact value, and (b) it includes a point 2j in the interval
immediately below it. However we effectively insist that an ulp in x is the distance
between the two closest straddling floating point numbers a and b, i.e. those with
a ≤ x ≤ b and a 6= b assuming an unbounded exponent range.

This seems to convey the natural intuition of units in the last place, and
preserves the important mathematical properties that rounding to nearest cor-
responds to an error of 0.5ulp and directed roundings imply a maximum error
of 1ulp. The actual HOL definition is explicitly in terms of binades, and defined
using the Hilbert choice operator ε:6

|- binade(E,p,N) x =

εe. abs(x) <= &2 pow (e + p) / &2 pow N ∧
∀e’. abs(x) <= &2 pow (e’ + p) / &2 pow N =⇒ e <= e’

|- ulp(E,p,N) x = &2 pow (binade(E,p,N) x) / &2 pow N

After a fairly tedious series of proofs, we eventually derive the theorem that
an ulp does indeed yield the distance between two straddling floating point
numbers:

|- ¬(p = 0)

=⇒ ∃a b. a IN iformat(E,p,N) ∧ b IN iformat(E,p,N) ∧
a <= x ∧ x <= b ∧ (b = a + ulp(E,p,N) x) ∧
¬(∃c. c IN iformat(E,p,N) ∧ a < c ∧ c < b)

4 Rounding

Floating point rounding takes an arbitrary real number and chooses a floating
point approximation. Rounding is regarded in the Standard as an operation
mapping a real to a member of the extended real line R ∪ {+∞,−∞}, not the
space of floating point numbers itself. Thus, encoding and representational issues
(e.g. zero signs) are not relevant to rounding. The Standard defines four rounding
modes, which we formalize as the members of an enumerated type:

roundmode = Nearest | Down | Up | Zero

Our formalization defines rounding into a given format as an operation that
maps into the corresponding format with an exponent range unbounded above.
That is, we do not take any special measures like coercing overflows back into
the format or to additional ‘infinite’ elements; this is defined separately when we
consider operations. While this separation is not quite faithful to the letter of the
6 Read ‘εe. . . . ’ as ‘the e such that . . . ’.

Standard, we consider our approach preferable. It has obvious technical conve-
nience, avoiding the formally laborious adjunction of infinite elements to the real
line and messy side-conditions in some theorems about rounding. Moreover, it
avoids duplication of closely related issues in different parts of the Standard. For
example, the rather involved criterion for rounding to ±∞ in round-to-nearest
mode in sec. 4.1 of the Standard (‘an infinitely precise result with magnitude at
least Emax(2 − 2−p) shall round to ∞ with no change of sign’) is not needed.
In our setup we later consider numbers that round to values outside the range-
restricted format as overflowing, so the exact same condition is implied. This
approach in any case is used later in the Standard 7.3 when discussing the rais-
ing of the overflow exception (‘. . . were the exponent range unbounded’).

Rounding is defined in HOL as a direct transcription of the Standard’s defi-
nition. There is one clause for each of the four rounding modes:

|- (round fmt Nearest x =

closest_such (iformat fmt) (EVEN o decode_fraction fmt) x) ∧
(round fmt Down x = closest a | a IN iformat fmt ∧ a <= x x) ∧
(round fmt Up x = closest a | a IN iformat fmt ∧ a >= x x) ∧
(round fmt Zero x =

closest a | a IN iformat fmt ∧ abs a <= abs x x)

For example, the result of rounding x down is defined to be the closest to x of
the set of real numbers a representable in the format concerned (a IN iformat
fmt) and no larger than x (a <= x). The subsidiary notion of ‘the closest member
of a set of real numbers’ is defined using the Hilbert ε operator. As can be seen
from the definition, rounding to nearest uses a slightly elaborated notion of
closeness where the result with an even fraction is preferred.7

|- is_closest s x a =

a IN s ∧ ∀b. b IN s =⇒ abs(b - x) >= abs(a - x)

|- closest s x = εa. is_closest s x a

|- closest_such s p x =

εa. is_closest s x a ∧ (∀b. is_closest s x b ∧ p b =⇒ p a)

In order to derive useful consequences from the definition, we then need to
show that the postulated closest elements always exist. Actually, this depends
on the format being nontrivial. For example, if the format has nonzero precision,
then rounding up behaves as expected:

7 Note again the important distinction between real values and encodings. The canon-
ical fraction is used; the question of whether the actual floating point value has an
even fraction is irrelevant.

|- ¬(precision fmt = 0)

=⇒ round fmt Up x IN iformat fmt ∧
x <= round fmt Up x ∧
abs(x - round fmt Up x) < ulp fmt x ∧
∀c. c IN iformat fmt ∧ x <= c

=⇒ abs(x - round fmt Up x) <= abs(x - c)

The strongest results for rounding to nearest depend on the precision being
at least 2. This is because in a format with p = 1 nonzero normalized numbers all
have fraction 1, so ‘rounding to even’ no longer discriminates between adjacent
floating point numbers in the same way.

4.1 Lemmas about rounding

While these results are the key to all properties of rounding, there are lots of
other important consequences of the definitions that we sometimes use in proofs.
For example, rounding is monotonic in all modes:

|- ¬(precision fmt = 0) ∧ x <= y =⇒ round fmt rc x <= round fmt rc y

and has various properties like the following:

|- ¬(precision fmt = 0) ∧ a IN iformat fmt ∧ a <= x

=⇒ a <= round fmt rc x

|- ¬(precision fmt = 0) ∧ a IN iformat fmt ∧ abs(x) <= abs(a)

=⇒ abs(round fmt rc x) <= abs(a)

Something already representable rounds to itself, and conversely:

|- a IN iformat fmt =⇒ (round fmt rc a = a)

|- ¬(precision fmt = 0)

=⇒ ((round fmt rc x = x) = x IN iformat fmt)

An important case where a result of a calculation is representable is subtrac-
tion of nearby quantities.

|- a IN iformat fmt ∧ b IN iformat fmt ∧ a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) IN iformat fmt

This well-known result [5] can be generalized to subtraction of nearby quan-
tities in formats with more precision (as effectively occur in the intermediate
step of an fma operation):

|- ¬(p = 0) ∧
a IN iformat (E1,p+k,N) ∧
b IN iformat (E1,p+k,N) ∧
abs(b - a) <= abs(b) / &2 pow (k + 1)

=⇒ (b - a) IN iformat (E2,p,N)

A little thought shows that the first version is easily derivable by linear
arithmetic reasoning (automatic in HOL) from this more general version with
k = 1. Both the general and special case can be strengthened if both inputs are
known to be in the same binade, e.g.

|- ¬(p = 0) ∧
a IN iformat (E1,p+k,N) ∧ b IN iformat (E1,p+k,N) ∧
abs(b - a) <= abs(b) / &2 pow k ∧
(∀e. &2 pow e / &2 pow N <= abs(b) = &2 pow e / &2 pow N <= abs(a))

=⇒ (b - a) IN iformat (E2,p,N)

We have also proved some direct cancellation theorems for an fma operation.
The following embodies the useful fact that one can get an exact representation
of a product in two parts by one multiplication and a subsequent fma to get a
correction term.8

|- a IN iformat fmt ∧ b IN iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a * b)

=⇒ (a * b - round fmt Nearest (a * b)) IN iformat fmt

A few other miscellaneous theorems about rounding include simple relations
between rounding modes, e.g.

|- ¬(precision fmt = 0) =⇒ (round fmt Down (--x) = --(round fmt Up x))

Plenty of other lemmas are proved formally too.

4.2 Rounding error

One of the central questions in floating point error analysis is the bounding of
rounding error. We define rounding error as:

|- error fmt rc x = round fmt rc x - x

The rounding error is easily bounded in terms of ulps:

|- ¬(precision fmt = 0)

=⇒ (abs(error fmt Nearest x) <= ulp fmt x / &2) ∧
(abs(error fmt Down x) < ulp fmt x) ∧
(abs(error fmt Up x) < ulp fmt x) ∧
(abs(error fmt Zero x) < ulp fmt x)

8 See http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps for exam-
ple; thanks to Paul Miner for pointing us at these documents.

and ulps in their turn can be bounded in terms of relative error, provided de-
normalization is avoided:

|- normalizes fmt x ∧ ¬(precision fmt = 0) ∧ ¬(x = &0)

=⇒ ulp fmt x <= abs(x) / &2 pow (precision fmt - 1)

Conversely, we have a lower bound on ulps in terms of relative error:

|- abs(x) / &2 pow (precision fmt) <= ulp fmt x

A simple generic result for all rounding modes can be stated in terms of a
parameter mu:

|- (mu Nearest = &1 / &2) ∧
(mu Down = &1) ∧
(mu Up = &1) ∧
(mu Zero = &1)

namely:

|- normalizes fmt x ∧ ¬(precision fmt = 0)

=⇒ abs(error fmt rc x)

<= mu rc * abs(x) / &2 pow (precision fmt - 1)

5 Exceptions and flag settings

The IEEE operations not only return values, but also indicate special conditions
by setting sticky flags or raising exceptions. These indications are all triggered
according to fairly straightforward criteria. For example, the overflow flag is set
precisely when the result rounded (as we do anyway) with unbounded upper
exponent range is not a member of the actual format with bounded exponent
range. Similarly, the inexact flag is set either if overflow occurs or if rounding
was nontrivial, i.e. the rounded number was not already representable. It is easy
to state these two criteria in terms of existing concepts, e.g.

let overflow_flag = ¬(round fmt rc x IN format fmt) in

let inexact_flag = overflow ∨ ¬(round fmt rc x = x) in

...

5.1 Underflow

Somewhat more complicated is the definition of underflow.9 The Standard (sec.
7.4) underspecifies underflow considerably, so it is possible that different im-
plementations of the Standard could set flags or raise exceptions differently.
Underflow is said to occur when there is both tininess and loss of accuracy, and
each of these may be detected in two different ways. We have already defined
tininess of a number, but the number tested for tininess may either be:
9 An additional complication is that the criteria for flag-setting and exception-raising

are different. We consider only flag setting here.

– The exact result before any rounding.
– The result rounded as if the exponent range were unbounded below.

While we already round into a format with the exponent range unbounded
above, we have no easy way of using our existing infrastructure to define rounding
with the exponent range unbounded below. Instead, we consider rounding with
‘sufficiently large lower exponent range’:

|- tiny_after_rounding fmt rc x =

∃N. N > ulpscale fmt ∧
tiny fmt (round(exprange fmt,precision fmt,N) rc x)

Since this is not a direct transcription of the Standard, we have proved a
number of ‘sanity check’ lemmas to make it clear that this definition is equivalent
to the Standard’s definition. The crucial one is that if a result is tiny when
rounded with a particular lower exponent range, then it will still be tiny for all
larger lower exponent ranges:

|- 2 <= precision fmt

=⇒ (tiny_after_rounding fmt rc x =

∃N. N > ulpscale fmt ∧
∀M. M >= N

=⇒ tiny fmt

(round(exprange fmt,precision fmt,M) rc x))

Loss of accuracy may also be detected in more than one way, either as simple
inexactness (see above) or as a difference between the actually rounded result
and the result rounded as if the exponent range were unbounded below. Again
we state a ‘profinite’ version of this definition and again feel honor-bound to
justify it by some additional lemmas.

|- losing fmt rc x =

∃N. N > ulpscale fmt ∧
¬(round (exprange fmt,precision fmt,N) rc x = round fmt rc x)

5.2 Relations between underflow conceptions

Using the definitions of the previous section, it is easy to define underflow in
any of the ways the Standard allows, including the choice adopted in IA-64. It is
of interest to note, however, that there are very strong correlations between the
different criteria for tininess and loss of accuracy. In fact, one of them implies
all the others (for reasonable formats), as we have formally proved in HOL:

|- 2 <= precision fmt ∧ losing fmt rc x

=⇒ tiny_after_rounding fmt rc x

|- ¬(precision fmt = 0) ∧ tiny_after_rounding fmt rc x

=⇒ tiny fmt x

|- ¬(precision fmt = 0) ∧ losing fmt rc x

=⇒ ¬(round fmt rc x = x)

Thus, while an implementation may make a variety of choices, many of the
combinations collapse into the same one when their meaning is considered. Since
the above theorems show that losing is the ‘weakest’ criterion for underflow,
it is occasionally worth strengthening some previous theorems to take it as a
hypothesis, e.g:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)

=⇒ abs(error fmt rc x)

<= mu rc * abs(x) / &2 pow (precision fmt - 1)

The following very useful theorem can be employed to show that the rounding
of an fma operation does not underflow provided the argument being added is
sufficiently far from the low end:

|- ¬(precision fmt = 0) ∧
a IN iformat fmt ∧ b IN iformat fmt ∧ c IN iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(c)

=⇒ ¬(losing fmt rc (a * b + c))

5.3 Flag settings for perfect rounding

Certain software algorithms, e.g. those for division suggested in [11], are de-
signed so that they set no flags and trigger no exceptions in intermediate stages,
and culminate in a single fma operation that is supposed to deliver the cor-
rectly rounded result and set most of the flags, including overflow, underflow
and inexact. It is a useful observation in proofs that it suffices to verify only
that the result is correct, in the precise sense that the ideal value and the value
computed before the final rounding will round identically in all rounding modes.
The correctness of these three flags then follows immediately, as does the correct
sign of zero results. Properly speaking, in the case of underflow, one needs to
prove perfect rounding even assuming unbounded exponent range, but this is
usually a straightforward extension. The only case that requires some thought
is inexactness, which comes down to the following theorem:

|- ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

=⇒ ∀rc. (round fmt rc x = x) = (round fmt rc y = y)

Note that the theorem is symmetrical between x and y, so it suffices to prove
that, in any given rounding mode, if x rounds to itself, so does y. The proof is
simple: if x rounds to itself, then it must be representable. But by hypothesis,
y rounds to the same thing, that is x, in all rounding modes. In particular the
roundings up and down imply x <= y and x >= y, so y = x.

Overflow is detected after rounding, so it is immediate that if x and y round
identically, they will either both overflow or both not overflow. Similarly, it is
easy to see that underflow behavior is equivalent.10 For the signs of zeros, it
suffices to prove:

|- ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

=⇒ (x > &0 = y > &0) ∧ (x < &0 = y < &0)

This follows easily from that fact that zero is always representable in any
format. For example, if x is (strictly) positive, it must round to a strictly positive
number in round-up mode. Thus so must y, so y must also be strictly positive.
The other cases are analogous.

6 Encodings

IA-64 includes direct support for several different floating point formats including
an internal 82-bit format with a 17-bit exponent and 64-bit fraction (with an
explicit 1 bit). Our formalization uses a single HOL type float, and all the
available floating point numbers can be mapped into this type.

The Standard includes a variety of special numbers such as infinities and
NaNs. The subset of ‘sensible’ values is defined in the HOL formalization by a
predicate finite:float->bool. It is mainly with numbers in this subset that
we will be concerned. The real value of a floating point number is defined by a
HOL function Val:float->real. Again, we will not show the definition here.

7 Operations

The operations such as addition, subtraction and multiplication are defined in
the Standard by composing previously defined concepts in a straightforward way.
Roughly speaking, special inputs are treated in some reasonable way, while for
finite inputs, the result is generated as if the exact answer were calculated and
rounded, with appropriate flag settings. Certain value coercions also happen
on overflow, depending on the rounding mode. We will not show the precise
definition of the IA-64 operations, but only indicate some respects in which the
definitions require care.
10 Actually we have only proved this for the IA-64 definition of underflow, but other

variants would work too.

The IEEE standard does not explicitly address the fma operation. Generally
speaking, one can extrapolate straightforwardly from the IEEE-754 specifica-
tions of addition and multiplication operations. There are some debatable ques-
tions, however, mostly connected with the signs of zeros. First, the interpretation
of addition and multiplication as degenerate cases of fma requires some policy
on the sign of 1×−0 + 0. More significantly, the fma leads to a new possibility:
a× b+ c can round to zero even though the exact result is nonzero. Out of the
operations in the standard, this can occur for multiplication or division, but in
this case the rules for signs are simple and natural. A little reflection shows that
this cannot happen for pure addition, so the rule in the standard that ‘the sign
of a sum . . . differs from at most one of the addend’s signs’ is enough to fix the
sign of zeros when the exact result is nonzero. For the fma this is not the case,
and IA-64 guarantees that the sign correctly reflects the sign of the exact result
in such cases. This is important, for example, in ensuring that certain software
algorithms yield the correctly signed zeros in all cases without special measures.

8 Proof tools

The formal theorems proved above capture the main general lemmas about float-
ing point arithmetic that have been found important in the verification under-
takings to date. However, it is often important to have special theorem-proving
tools based around (variants of) the lemmas, to avoid the tedium of manually
applying them and proving routine side-conditions. Broadly speaking, the op-
erations that are most important to automate involve ‘symbolic execution’ of
various kinds.

8.1 Explicit execution

It often happens that one needs to ‘evaluate’ floating point operations or associ-
ated formal concepts for particular explicit values. For example, one often wants
to:

– Calculate ulp(r) for a particular rational number r.
– Calculate round fmt rc r for a particular floating point format fmt, round-

ing mode rc and rational number r.
– Evaluate Val(a) for a particular floating point number a.
– Prove that a particular floating point value is non-exceptional, i.e. return a

theorem |- finite(a) for a particular floating point number a.

We have implemented HOL conversions (see [15] for more on conversions) to
do all these, and a few other operations too. Now, explicit details of this sort
can be disposed of automatically. For example, the conversion ROUND CONV takes
rounding parameters and a rational number to be rounded and not only returns
the ‘answer’, but also a formally proved theorem that the answer is correct.
(Under the surface, theorems about the uniqueness of rounding are applied.)

#ROUND_CONV ‘round (10,11,12) Nearest (&22 / &7)‘;;

it : thm = |- round (10,11,12) Nearest (&22 / &7) = &1609 / &512

HOL already includes proof tools to perform explicit calculation with rational
numbers and even with computable real numbers [8]. In conjunction with the
new proof tools, we now have powerful automatic assistance for goals involving
all forms of explicit calculation.

8.2 Automated error analysis

Explicit computations are not always enough. Sometimes one does not know the
actual floating point values involved, merely some properties such as maximum
or minimum magnitudes and the maximum absolute or relative error from some
‘ideal’ value. We have implemented HOL tools to propagate knowledge of such
properties through additional fma operations. Using these, it is simple to get a
formally proven absolute or relative error bound for a sequence of fma operations,
e.g. the evaluation of a polynomial approximation to a transcendental function,
completely automatically, given only some assumptions on the input number(s).

Whether one wants absolute or relative error depends on the kind of proofs
being undertaken. When trying to get a sharp ulp error bound for a transcen-
dental function approximation, we find it useful to split the ideal output into
binades (determining the ulp value), and evaluate the maximum absolute error
on each corresponding input set. We can then see which binade yields the largest
ulp error, without the loosening of the error bound that would be caused by us-
ing relative error. However, typically the errors are large only for a few binades,
so we still use relative error to dispose of all the others, for efficiency reasons.
(For extended precision, there could be around 215 different binades.)

The proof tool for absolute errors requires theorems about each nonconstant
input x to an fma operation of the following form: 11

|- finite x

|- abs(Val x) <= b

|- abs(Val x - y) <= e

Here b and e must be expressions made up of rational constants, while y, the
value approximated, can be any expression. From this information, the proof tool
automatically derives analogous assertions for the output of the fma operation.
At present, fairly crude maximization techniques are used to evaluate the range
and error in the output. This has proved fine for verifications undertaken to
date, since the intermediate inputs tend to be monotonic over the fairly narrow
intervals considered. However, we are presently considering a more sophisticated
mechanism to get tighter error bounds.
11 Assumptions of this sort are only needed for variables, as they are derived automat-

ically for explicit values as described in the previous section.

For relative error, the approach is analogous, with the absolute error e re-
placed by a relative error. Moreover, an additional assumption is needed about
the minimum (nonzero) size of the input, because to get a sharp relative er-
ror result we need to prove that underflow doesn’t occur. We use the following
definition:

|- zorbigger a x = &0 <= a ∧ ((x = &0) ∨ a <= abs(x))

It is straightforward to propagate such assumptions through expressions for
varying threshold a, using theorems such as the following:

|- zorbigger a1 x1 ∧ zorbigger a2 x2 =⇒ zorbigger (a1 * a2) (x1 * x2)

|- x1 IN iformat fmt ∧ x2 IN iformat fmt ∧ x3 IN iformat fmt ∧
zorbigger a3 x3 ∧ ¬(x3 = &0)

=⇒ zorbigger (a3 / &2 pow (2 * precision fmt)) (x1 * x2 + x3)

and then when required we can derive normalization from the lemma:

|- normalizes fmt =

zorbigger (&2 pow (precision fmt - 1) / &2 pow ulpscale fmt)

8.3 Intermediate levels of explicitness

There are some other possibilities that fall between the previous categories. For
example, we have formally checked some correctness proofs for floating point
square root algorithms using a methodology discussed in [2]. This methodology
gives us a proof of correctness for all but a certain set of values, isolated using
number-theoretic considerations. It is then necessary, to get an overall correct-
ness proof, to check the remaining values explicitly.

While in principle this can be done with explicit calculation, such an approach
is inefficient and unnatural, because the set of values is parametrized by a much
smaller set of ei and ki by simply varying the exponent while preserving its
even/odd parity:

2ei+2nki

It is much more natural to check the values only for a particular n, say
n = 0, and then extrapolate from that. This can be justified by scaling theorems
for rounding, provided overflow cannot occur for the maximum exponent. The
scaling theorem for rounding also requires that loss of precision is avoided; one
sufficient condition is shown in the next theorem.

|- 2 <= precision fmt ∧
(&2 pow (precision fmt - 1) / &2 pow ulpscale fmt <= abs x ∨
(round fmt rc x = x))

=⇒ (round fmt rc (&2 pow n * x) = &2 pow n * round fmt rc x)

At present, we have not automated this kind of scaling analysis completely,
but it has been taken far enough that the proofs were all reasonably straight-
forward. If we did many more proofs of the same kind, further effort would be
needed.

9 Conclusions and related work

We have detailed a theory of floating point arithmetic that is generic over a wide
variety of floating point formats, and has then been specialized to the particular
formats used in IA-64. By contrast, an earlier formalization by ourselves [7]
required duplication of results for different precisions and did not achieve the
same neat separation between floating point values and their encodings. Our
present formulation contains a far larger collection of medium-level lemmas than
any other formalization we are aware of. In contrast to some previous IEEE-754
specifications such as one in Z [1], ours is completely formal and all results have
been logically proved by machine.

Most of the definitions (excluding, perhaps, some of those connected with
underflow) are a direct formal translation of the Standard, making their correct-
ness highly intuitive. For example, our definition of floating point rounding is the
same as the Standard’s, whereas all related machine-checked formalizations of
which we are aware [12, 14, 16] use less intuitive translations. In some cases, this
is forced by the limited mathematical expressiveness of other theorem provers.

The price one pays for intuitive high-level specifications is that one cannot
automatically ‘execute’ the formal specification in the proof process. By contrast,
ACL2 specifications like Rusinoff’s [16] are always executable by construction.
We have ameliorated this shortcoming by providing a suite of automatic proof
tools that can, effectively, execute specifications, and moreover can do more
sophisticated forms of symbolic evaluation including automatic error analysis of
chains of floating point computations. Since such ‘execution’ merely abbreviates
and automates standard logical inferences, we have the advantage of generating
a formal proof rather than relying on a separate execution mechanism. The only
drawback of this is that using standard logical inferences is relatively slow.

The formalization described here has been used quite extensively in veri-
fication of various algorithms for division and square root [3] and some tran-
scendental functions [17]. It is hoped that we can describe these verifications
in more detail at a later date. Such verifications sometimes combine nontrivial
continuous mathematics with low-level machine details and a certain amount of
explicit execution. Using a general theorem prover like HOL equipped with our
formalization and proof tools, all these disparate aspects can be unified in one
system, and the final result verified according to the strictest standards of logi-
cal rigor. For example, one of the transcendental function verifications involves
approximately 77 million primitive logical inferences. However, generating such
big proofs is quite feasible as most of the more tedious parts are automatic.

References

1. M. Barratt. Formal methods applied to a floating-point system. IEEE Transac-
tions on Software Engineering, 15:611–621, 1989.

2. M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point
square root, divide and remainder algorithms. Intel Technology Journal,
1998-Q2:1–11, 1998. Available on the Web as http://developer.intel.com/

technology/itj/q21998/articles/art 3.htm.
3. M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness proofs out-

line for Newton-Raphson based floating-point divide and square root algorithms.
In Koren and Kornerup [10], pages 96–105.

4. C. Dulong. The IA-64 architecture at work. IEEE Computer, 64(7):24–32, July
1998.

5. D. Goldberg. What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys, 23:5–48, 1991.

6. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

7. J. Harrison. Floating point verification in HOL Light: The exponential function.
Technical Report 428, University of Cambridge Computer Laboratory, New Muse-
ums Site, Pembroke Street, Cambridge, CB2 3QG, UK, 1997.

8. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998. Re-
vised version of author’s PhD thesis.

9. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-
1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

10. I. Koren and P. Kornerup, editors. Proceedings, 14th IEEE symposium on on com-
puter arithmetic, Adelaide, Australia, 1999. IEEE Computer Society.

11. P. W. Markstein. Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM Journal of Research and Development, 34:111–119, 1990.

12. P. S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical
memorandum 110167, NASA Langley Research Center, Hampton, VA 23681-0001,
USA, 1995.

13. J-M. Muller. Elementary functions: Algorithms and Implementation. Birkhäuser,
1997.

14. J. O’Leary, X. Zhao, R. Gerth, and C-J. H. Seger. Formally verifying IEEE com-
pliance of floating-point hardware. Intel Technology Journal, 1999-Q1:1–14, 1999.
Available on the Web as http://developer.intel.com/technology/itj/q11999/
articles/art 5.htm.

15. L. C. Paulson. A higher-order implementation of rewriting. Science of Computer
Programming, 3:119–149, 1983.

16. D. Rusinoff. A mechanically checked proof of IEEE compliance of a register-
transfer-level specification of the AMD-K7 floating-point multiplication, division,
and square root instructions. LMS Journal of Computation and Mathematics,
1:148–200, 1998. Available on the Web via http://www.onr.com/user/russ/

david/k7-div-sqrt.html.
17. S. Story and P. T. P. Tang. New algorithms for improved transcendental functions

on IA-64. In Koren and Kornerup [10], pages 4–11.

This article was typeset using the LATEX macro package with the LLNCS2E class.

