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Abstract

There is a trend away from monolithic automated theorem provers towards using
automation as a tool in support of interactive proof. We believe this is a fruitful
drawing together of threads in automated reasoning. But it raises a number of issues
that are often neglected in the classical first order theorem proving literature such as
the following. Is first order automation actually useful, and if so, why? How can it
be used for richer logics? What are the characteristic examples that require solution
in practice? How do the traditional algorithms perform on these ‘practical’ examples
— are they deficient or are they already too powerful? We discuss these and similar
questions in the light of our own recent experience in this area using HOL [3].

1 Why do we need first order automation?

A taxonomy of computer theorem proving, after perhaps separating ‘AI’ and ‘logic’ ap-
proaches, would divide most contemporary systems into automated and interactive provers.
Automatic provers (e.g. Otter, SETHEO, TPS) are typically applied to challenging but
transparently stated problems in mathematics, and they can at times achieve striking suc-
cess, as with McCune’s recent solution of the ‘Robbins conjecture’ using EQP. Interactive
provers (e.g. HOL, Isabelle, NQTHM/ACL2 and PVS) are normally used to build up,
under human guidance, a body of formalized mathematics or a large system verification.1

Now, although interactive provers may require manual guidance, it’s desirable to pro-
vide quite high levels of automation so that the user avoids the tedious filling in of trivial
details. Indeed, the most effective recent systems such as PVS do provide quite powerful
automation for special theories felt to be particularly important in practice, e.g. linear
arithmetic and propositional tautology checking. But what about the automation of pure,
typically first order, logic? There have been attempts since at least SAM [4] to harness au-
tomation of pure logic in interactive systems. Yet a common view today is that automation
of theories like linear arithmetic is far more significant in practice.

There is some justification for this view. The logical structure of a typical verification
or mathematics proof is sufficiently simple that users are content to create such a proof
manually, whereas proving facts of (say) linear arithmetic is much less interesting, and

1We classify systems like NQTHM as interactive provers here because although they need no user
selection of proof methods, they do require a careful manual grading of the theorems to be proved in their
typical applications.
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more time-consuming. For example, a manual proof that |x − y| ≤ ||x| − |y|| is likely to
consist of a series of case splits followed by tedious chaining together of inequalities.

However, we believe that first order automation is useful in practice, even in verification
applications [8]. Indeed, we have relied quite extensively on first order automation to
finish off otherwise tedious subgoals in recent work, e.g. in floating point verification
[5] and classic metatheorems for embedded logics (as yet unpublished). It’s especially
handy when after a large case split there are many boring subgoals — a few would be
acceptable to prove by hand, but a dozen or a hundred much less so. Admittedly, the
verification example would have been all right without first order automation, whereas it
would have been much more tedious without linear arithmetic. Nevertheless, even if first
order automation isn’t the most important tool, it is still useful.

This is not a novel idea: users of many systems such as EVES and Isabelle tend to
use first order automation quite extensively. But we believe there is a deeper reason why
the automation of pure logic is important, indicated by the Mizar system [10]. This is an
interactive theorem prover that has been used for the formalization of an unparallelled
amount of pure mathematics.2 It has several interesting features, but we want to focus on
its use of first order automation to provide a declarative style of proof.

We have said that the logical structures of typical theorems are reasonably simple
and not uninteresting. However sometimes the precise choreographing of logical steps is
quite tedious when one theorem ‘obviously’ follows from a given set of premisses. Mizar
allows the user merely to state the premisses, and finds the proof itself, using an optimized
special case of tableaux as well as simple techniques for equality reasoning. This opens
up the possibility of stating proofs in a much less prescriptive and more declarative style,
which arguably leads to a number of advantages in readability, maintainability and indeed
writeability — see [6] for a more detailed discussion of these points. The same advantages
can be had in many other interactive systems, given adequate logical automation. For
example, Syme [9] has recently used a prover with a declarative input language to prove
type soundness for a part of Java.

2 First order automation for richer logics

It may be objected that, while Mizar is more or less based on a first order theory (Tarski-
Grothendieck set theory), many of the leading interactive systems like HOL and PVS
are based on a higher-order logic. So it might seem that special higher-order proof-
automation methods are essential. Such methods exist, and are used for example in TPS
[1]. Nevertheless, first order automation is at present better understood and easy to make
efficient, and we believe it is satisfactory for a significant fragment of HOL proofs. We’ll
now try to explain why.

In HOL, although higher order features are constantly used, many of the proofs are
‘essentially first order’. We reduce higher order to first order logic in a well-known me-
chanical way: introduce a single binary function symbol a to represent ‘application’, and
translate HOL’s f x into a(f, x), etc.3 Then it is often the case (empirically) that when
a theorem is provable in higher order logic, the corresponding first order assertion is also
provable. Proofs that cannot be done in the first order reduction are those that require
the instantiation of higher order variables, i.e. the invention of lambda-abstractions. For

2See the Web page http://web.cs.ualberta.ca:80/~piotr/Mizar/.
3Actually we optimize this in various ways when we do it in HOL.
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example, when trying to prove ∀n. n + 0 = n by induction, the induction theorem needs
to be specialized to the relation λn. n + 0 = n, or equivalently, to the set {n | n + 0 = n}.
Note however that if the appropriate term is already bound to some function, then just
throwing in the definition is enough; the lambda-term is then expressible in a first order
way. However, such a reduction of HOL to FOL allows a number of interesting questions.

• How much effort should we expend in eliminating higher order features? For exam-
ple, although we reduce beta-redexes in the input, we don’t make a more elaborate
translation of P [λx. t[x]] to ∀f. (∀x. f(x) = t[x]) ⇒ P [f ]. Should we?

• HOL features instantiable polymorphic types. At present our translation simply
throws away all type information, and regards differently-typed instances of the
same constant as different when translating to FOL. To further cut down on the
(already rare) cases where this makes the input assertion unprovable, we include
some heuristics in a preprocessor to instantiate certain hypotheses with relevant-
looking types.4 An alternative, recently used by Paulson in Isabelle, is to regard all
constants with the same name as identical, and backtrack in the rare cases where
this causes the eventual HOL proof to fail due to ill-typed terms. Finally, of course,
one can translate to many-sorted FOL and use the types during proof search.

• Typically, the eventual first order provers use negation normal form or even (for
resolution and model elimination) clausal form. Shoehorning the initial problem
into these forms can be done in many different ways. In particular, it is often the
case that by splitting bi-implications p ≡ q appropriately (either (p ∧ ¬q) ∨ (¬p ∧ q)
or (p ∨ q) ∧ (¬p ∨ ¬q) depending on sign) it is often possible to split the problem
into much simpler problems, rather than reduce everything to a single clausal form
directly.5 For example, ‘Andrews’ Challenge’:

((∃x. ∀y. Px ≡ Py) ≡ ((∃x. Qx) ≡ (∀y. Qy)))
≡ ((∃x. ∀y. Qx ≡ Qy) ≡ ((∃x. Px) ≡ (∀y. Py)))

can be split into 32 independent subgoals, each of which is fairly easy.

• In practice, first order automation seems much less useful without equality handling.
Complete approaches include throwing in all the equality ‘axioms’, including con-
gruence rules for all the relevant function and predicate symbols, and versions of
Brand’s transformation. There are also more sophisticated complete techniques as
well as ad hoc variants like doing rewriting at certain places in standard procedures.

3 Which problems arise in practice?

Any selection of problems we make from our own work will suffer from self-selection. For
example, the problems for which we have used first order automation are of course those
that our own MESON-based tools could solve acceptably quickly. We haven’t kept track of
the problems we wished were solvable in a reasonable time but weren’t. Nevertheless, we
claim that, since we have used first order automation in a fairly wide range of applications,
we have a sample of problems that would arise quite often in real work.

4We are not sure whether there is any complete preprocessing method — ours is not complete.
5It is also possible to use more sophisticated ‘definitional’ techniques to avoid blowup in such cases.
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Typical first order test suites, notably the large TPTP library, tend to be quite different
in character. The examples are typically results in quite simple axiomatic systems, e.g.
that a group where ∀x.x2 = 1 is Abelian. Compared with our problems they are sometimes
easier, often much more difficult, but in any case tend to involve much smaller terms and
very little irrelevant information. (There are exceptions, e.g. a substantial number of the
TPTP problems in the NUM domain are based on a set of about 250 axioms for set theory.)
Moreover, they have already been put into clausal form without exploiting possibilities for
splitting (in cases where the canonical problem statement isn’t already in clausal form).

Therefore, we feel that a suite of examples compiled from work such as our own would
be a valuable complement to the TPTP library. It would represent the kinds of problems
that arise when using first order automation in a workaday capacity, rather than for
isolated tours de force. The hope would be not so much that a system can solve them, but
that it can solve them quickly enough to form part of a convenient interactive environment.
If the problems seem too easy, it would be possible given certain proof systems (e.g.
Mizar) to make them more difficult by automatically combining multiple steps into a
single challenge problem.

4 Do the existing methods work?

We’ve generally found that a version of the MESON procedure (with a naive method for
equality handling based on adding all the equality axioms) is a very useful tool, and in
practice solves most of the problems that we would expect. It can even be too powerful,
in that some results are proved automatically which perhaps deserve some thought from
the user, and a human-style record of the proof.

However on our examples, we cannot always concur with some accepted wisdom. For
example, it is usually held that Brand’s transformation is a better way of coping with
equality than our own naive approach. (A refinement of this method is used by SETHEO.)
However our experiments indicate that while both have their strengths and weaknesses,
our method actually solves more problems in a reasonable time. We conjecture that this
is because in our examples some of the underlying terms, even where they are irrelevant to
the proof, are quite large, and so Brand’s transformation leads to an unnecessary explosion
of clauses.

Of course, the ideal would be to combine first order automation and ubiquitous forms
of theory reasoning such as linear arithmetic. This has long been a popular line of research
— [2] describes recent work motivated very much by practical problems thrown up during
interactive proof. But in any case, we have found that more-or-less standard first order
automation is surprisingly valuable in itself.

5 A broader view

1. When there are well-established methods for handling a class of problems, e.g. first
order theorem provers, model checkers, computer algebra systems and linear pro-
gramming tools, it’s always worth reflecting on the potential for using them as sub-
systems of interactive provers. This is hardly a new idea, but the point deserves
emphasis. The main novelty (or handicap, depending on one’s point of view) of
our own approach is that we maintain soundness by creating all proofs using stan-
dard natural deduction steps. Quite often this can be done by having standard
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off-the-shelf system record a solution or a proof trace which is then translated into
a natural deduction proof. For example [7] discusses combining HOL with Maple in
this fashion. It is not necessary to keep the entire system small and simple to ensure
soundness.

2. We consider that the ‘interactive’ and ‘first order automation’ communities commu-
nicate too little. Interactive provers can provide real applications in which to put
first order automation to work, and automation can be the key to some interesting
new approaches to interactive proof such as a declarative proof style. We must admit
that for those interested in automation, solving hard problems is more exciting and
helps to stimulate a competitive spirit. But if we try to create test suites of more
‘practical’ problems, we can still compare systems in a meaningful way. As well as
the differences in the kind of problems that are significant, this may change the very
qualities one looks for in a first order prover.
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