
Formal verification of floating point
trigonometric functions

John Harrison

Intel Corporation, EY2-03
5200 NE Elam Young Parkway

Hillsboro, OR 97124, USA

Abstract. We have formal verified a number of algorithms for evaluat-
ing transcendental functions in double-extended precision floating point
arithmetic in the Intel IA-64 architecture. These algorithms are used in
the ItaniumTM processor to provide compatibility with IA-32 (x86) hard-
ware transcendentals, and similar ones are used in mathematical software
libraries. In this paper we describe in some depth the formal verification
of the sin and cos functions, including the initial range reduction step.
This illustrates the different facets of verification in this field, covering
both pure mathematics and the detailed analysis of floating point round-
ing.

1 Introduction

Code for evaluating the common transcendental functions (sin, exp, log etc.)
in floating point arithmetic is important in many fields of scientific comput-
ing. For simplicity and portability, various standard algorithms coded in C are
commonly used, e.g. those distributed as part of FDLIBM (Freely Distributable
LIBM).1 However, to achieve better speed and accuracy, Intel is developing its
own mathematical algorithms for the new IA-64 architecture, hand-coded in
assembly language.

Many of these algorithms are complex and their error analysis is intricate.
Subtler algorithmic errors are difficult to discover by testing. In order to provide
improved quality assurance, Intel is subjecting the most important algorithms to
formal verification. In particular, the IA-64 architecture provides full compati-
bility with IA-32 (x86), and the latter includes a small set of special instructions
to evaluate core transcendental functions. These will be the focus here, though
essentially the same techniques can be used in other contexts.

Many of the algorithms for evaluating the transcendental functions follow a
similar pattern. However, IA-64 supports several floating-point precisions: single
precision (24 significand bits), double precision (53) and double-extended preci-
sion (64), and the target precision significantly affects the design choices. Since
internal computations can be performed in double-extended precision, rounding
1 See http://www.netlib.org/fdlibm.

errors are much less a concern when the overall computation is for single or dou-
ble precision. It is relatively easy to design simple, fast and accurate algorithms
of the sort Intel provides [11]. For double-extended precision functions — such as
the IA-32 hardware transcendentals — much more care and subtlety is required
in the design [15] and the formal verifications are significantly more difficult.

In the present paper, to avoid repetition and dilution, we focus on the for-
mal verification of an algorithm for a particular pair of functions: the double-
extended floating point sine and cosine. This is used for compatibility with the
IA-32 hardware transcendentals FSIN, FCOS and FSINCOS. Essentially the same
algorithm, with the option of a more powerful initial range-reduction step for
huge input arguments, is used in Intel’s double-extended precision mathematical
library that can be called from C and FORTRAN. These particular functions
were chosen because they illustrate well the many aspects of the formal verifi-
cations, involving as they do a sophisticated range reduction step followed by
a tricky computation carefully designed to minimize rounding error. They are
somewhat atypical in that they do not use a table lookup [16], but otherwise
seem to show off most of the interesting features.

2 Outline of the algorithm

The algorithm is intended to provided accurate double-extended approximations
for sin(x) and cos(x) where x is a double-extended floating point number in the
range −263 ≤ x ≤ 263. (Although there are separate entry points for sine and
cosine, most of the code is shared and both sine and cosine can be delivered in
parallel, as indeed is required by FSINCOS.) According to the IA-32 documen-
tation, the hardware functions just return the input argument and set a flag
when the input is out of this range. The versions in the mathematical library,
however, will reduce even larger arguments. An assembler code implementation
of the mathematical library version is available on the Web, and this actual code
can be examined as a complement to the more abstract algorithmic description
given here.

http://developer.intel.com/software/opensource/numerics/index.htm

The algorithm is separated into two phases: an initial range reduction, and
the core function evaluation. Mathematically speaking, for any real number x
we can always write:

x = N(π/2) + r

where N is an integer (the closest to x · 2
π) and |r| ≤ π/4. We can then evaluate

sin(x) and/or cos(x) as either sin(r), cos(r), −sin(r) or −cos(r) depending on
N modulo 4. For example:

sin((4M + 3)(π/2) + r) = −cos(r)

We refer to the process of finding the appropriate r and N (modulo 4 at least)
as trigonometric range reduction. The second phase, the core evaluation, need
now only be concerned with evaluating sin(r) or cos(r) for r in a limited range,
and then perhaps negating the result, depending on N modulo 4. Moreover,
since cos(x) = sin(x + π/2) we can perform the same range reduction and
core evaluation for sin(x) and cos(x), merely adding 1 to N at an intermediate
stage if cos(x) is required. Thus, as hinted earlier, the sine and cosine functions
share code almost completely, merely setting an initial value of N to be 0 or 1
respectively.

The core evaluation of sin(r) and cos(r) can now be performed using a power
series expansion similar to a truncation of the familiar Taylor series:

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

but with the pre-stored coefficients computed numerically to minimize the max-
imum error over r’s range, using the so-called Remez algorithm [13]. The actual
evaluations of the truncated power series in floating point arithmetic, however,
require some care if unacceptably high rounding errors are to be avoided.

3 HOL floating point theory

The verification described here is conducted in the HOL Light theorem prover
[7], and the formal proofs are founded on formalized HOL theories of mathemat-
ical analysis [9] and floating point arithmetic [10]. Because of space limitations,
we cannot describe these theories in great detail here, but we will sketch a few
highlights, particularly of the floating point material where there is less estab-
lished notation. We hope this will suffice for the reader to follow the explicit
HOL theorems given below.

HOL Light is a highly foundational theorem proving system using the method-
ology first established by Edinburgh LCF [5]. ‘LCF style’ provers explicitly gen-
erate proofs in terms of extremely low-level primitive inferences, in order to
provide a high level of assurance that the proofs are valid. In HOL Light, as
in most other LCF-style provers, the proofs (which can be very large) are not
usually stored permanently, but the strict reduction to primitive inferences is
maintained by the abstract type system of the interaction and implementation
language, which for HOL Light is CAML Light [3, 17]. The primitive inference
rules of HOL Light, which implements a simply typed classical higher order logic,
are very simple. However CAML Light also serves as a programming medium
allowing higher-level derived rules (e.g. to automate linear arithmetic, first or-
der logic or reasoning in other special domains) to be programmed as automatic
reductions to primitive inferences. This lets the user conduct the proof at a
more palatable level, while still maintaining the logical safety that comes from

low-level proof generation. A few application-specific instances of programming
derived rules in HOL Light will be described in the present paper.

HOL’s foundational style is also reflected in its approach to developing new
mathematical theories. All HOL mathematics is developed by constructing new
structures from the primitive logical and set theoretic basis, rather than by as-
serting additional axioms. For example, the natural numbers are constructed by
inductively carving out an appropriate subset of the infinite set asserted to exist
by the basic Axiom of Infinity. In turn, such inductive definitions are defined
as appropriate set-theoretic intersections, rather than being permitted as prim-
itive extensions. The positive real numbers are defined as equivalence classes of
nearly-additive functions N → N (equivalent to a version of Cantor’s construc-
tion using Cauchy sequences, but without explicit use of rationals), and reals as
equivalence classes of pairs of positive real numbers. After the development of
some classical analytical theories of limits, differentiation, integration, infinite
series etc., the most basic transcendental functions (exp, sin and cos) are de-
fined by their power series and proved to have their standard properties. Some
‘inverse’ transcendental functions like ln and atn are defined abstractly and their
properties proven via the inverse function theorem. For more details, the reader
can consult [9].

HOL notation is generally close to traditional logical and mathematical nota-
tion. However, the type system distinguishes natural numbers and real numbers,
and maps between them by &; hence &2 is the real number 2. The multiplica-
tive inverse x−1 is written inv(x) and the power xn as x pow n. Note that
the expression Sum(m,n) f denotes Σm+n−1

i=m f(i), and not as one might guess
Σn
i=mf(i).

Much of the theory of floating point numbers is generic. Floating point for-
mats are identified by triples of natural numbers fmt and the corresponding
set of representable real numbers, ignoring the upper limit on the exponent
range, is iformat fmt. The second field of the triple, extracted by the function
precision, is the precision, i.e. the number of significand bits. The third field,
extracted by the ulpscale function, is N where 2−N is the smallest nonzero
floating point number of the format.

Floating-point rounding is performed by round fmt rc x which denotes the
result of rounding the real number x into iformat fmt (the representable num-
bers, with unlimited exponent range, of a floating point format fmt) under round-
ing mode rc. The predicate normalizes determines whether a real number is
within the range of normal floating point numbers in a particular format, i.e.
those representable with a leading 1 in the significand, while losing determines
whether a real number will lose precision, i.e. underflow, when rounded to a
given format.

Most of the difficulty of analyzing floating point algorithms arises from the
error committed in rounding floating point results to fit in their destination float-
ing point format. The theorems we use to analyze these errors can be subdivided
into (i) routine worst-case error bound theorems, and (ii) special cases where no
rounding error is committed.

3.1 The (1 + ε) property

In typical error analyses of high-level floating point code, the first kind of theorem
is used almost exclusively. The mainstay of traditional error analysis, often called
the ‘(1+ε)’ property, is simply that the result of a floating point operation is the
exact result, perturbed by a relative error of bounded magnitude. Recalling that
in our IEEE arithmetic, the result of an operation is the rounded exact value,
this amounts to saying that x rounded is always of the form x(1 + ε) with |ε|
bounded by a known value, typically 2−p where p is the precision of the floating
point format. We can derive a result of this form fairly easily, though we need
sideconditions to exclude the possibility of underflow (not overflow, which we
consider separately from rounding). The main theorem is as follows:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)

=⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧
(round fmt rc x = x * (&1 + e))

This essentially states exactly the ‘1+ε’ property, and the bound on ε depends
on the rounding mode, according to the following auxiliary definition of mu:

|- (mu Nearest = &1 / &2) ∧ (mu Down = &1) ∧
(mu Up = &1) ∧ (mu Zero = &1)

The theorem has two sideconditions, the second being that the floating point
format is not trivial (it has a nonzero number of fraction bits), and the first being
an assertion that the value x does not lose precision, in other words, that the
result of rounding x would not change if the lower exponent range were extended.
We will not show the formal definition [10] here, since it is rather complicated.
However, a simple and usually adequate sufficient condition is that the exact
result lies in the normal range or is zero:

|- normalizes fmt x =⇒ ¬(losing fmt rc x)

where

|- normalizes fmt x =

(x = &0) ∨
&2 pow (precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(x)

There is also a similar theorem for absolute rather than relative error analysis,
which is sometimes useful for obtaining sharper error bounds, but will not be
shown here. It does not require any normalization hypotheses, which can make
it simpler to apply.

3.2 Cancellation theorems

In lower-level algorithms like the ones considered here and others that the present
author is concerned with verifying, a number of additional properties of floating
point arithmetic are sometimes exploited by the algorithm designer and proofs of
them are required for verifications. In particular, there are important situations
where floating point arithmetic is exact, i.e. results round to themselves. This
happens if and only if the result is representable as a floating point number:

|- a ∈ iformat fmt =⇒ (round fmt rc a = a)

|- ¬(precision fmt = 0) =⇒ ((round fmt rc x = x) = x ∈ iformat fmt)

There are a number of situations where arithmetic operations are exact.
Perhaps the best-known instance is subtraction of nearby quantities; cf. Theorem
4.3.1 of [14]:

|- a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) ∈ iformat fmt

Another classic result [12, 4] shows that we can obtain the sum of two float-
ing point numbers exactly in two parts, one a rounding error in the other, by
performing the floating point addition then subtracting both summands from
the result, the larger one first:

|- x ∈ iformat fmt ∧
y ∈ iformat fmt ∧
abs(x) <= abs(y)

=⇒ (round fmt Nearest (x + y) - y) ∈ iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) ∈ iformat fmt

As we will see later, theorems of this sort, including some rather ad hoc
derivative lemmas, are used extensively in the analysis of trigonometric range
reduction, where almost every floating point operation is based on some special
trick to avoid rounding error or later compensate for it! Some of these results
are not readily found in the literature, but are well-known to experts in floating
point arithmetic. Sometimes the lemmas we have ended up proving are not
optimal and could profitably be sharpened, but having performed quite a few
verifications we are confident that we have a fairly comprehensive basic toolkit.

4 Verification of range reduction

The principal difficulty of implementing trigonometric range reduction is that
the input argument x may be large and yet the reduced argument r very small,
because x is unusually close to a multiple of π/2. In such cases, the computation
of r needs to be performed very carefully. Assuming we have calculated N , we
need to evaluate:

r = x−N π

2
However, π

2 is irrational and so cannot be represented exactly by any finite
sum of floating point numbers. So however the above is computed, it must in
fact calculate

r′ = x−NP

for some approximation P = π
2 + ε. The relative error |r

′−r|
|r| is then N |ε|

|r| which is
of the order |xεr |. Therefore, to keep this relative error within acceptable bounds
(say 2−70) the accuracy required in the approximation P depends on how small
the (true) reduced argument can be relative to the input argument. In order
to formally verify the accuracy of the algorithm, we need to answer the purely
mathematical question: how close can a double-extended precision floating point
number be to an integer multiple of π

2 ? Having done that, we can proceed with
the verification of the actual computation of the reduced argument in floating
point arithmetic.

4.1 Approximating π

For the proofs that follow we need to have an accurate rational approximation
to π, and of course a formal proof that it is sufficiently accurate. The accuracy
we need (2−225) follows from the later proofs, but we first wrote a routine to
approximate π to arbitrary precision, since less accurate approximations are
useful for disposing of trivial sideconditions that crop up in proofs, e.g. 1 < π/2.

Our starting point for approximating π is the Taylor series for the arctan-
gent, which we had already derived for use in the verification of floating point
arctangent functions. The proof of this proceeds as follows, using some of the
real analysis described in [9]. We demonstrate, using the comparison test and
the pre-proved convergence of the geometric series Σ∞m=0x

m for |x| < 1, that
the infinite series Σ∞m=0

(−1)m

2m+1 x
2m+1 converges for |x| < 1 to some limit function

f(x). Therefore the series can provably be differentiated term-by-term, and the
derivative series is Σ∞m=0(−1)m(x2)m which is again a geometric series and sums
to 1

1+x2 . Consequently f ′(x) and tan′(x) = 1
1+x2 coincide for |x| < 1, and so

atn(x) − f(x) is constant there. But for x = 0 we have atn(x) − f(x) = 0, and
hence it follows that the series converges to atn(x) for all |x| < 1. The error in
truncating the series can trivially be bounded provided |x| ≤ 1/2k for k > 0,
giving us the final theorem which in HOL looks like this:

|- abs(x) <= inv(&2 pow k) ∧ ¬(k = 0)

=⇒ abs(atn x -

Sum(0,n) (λm. (if EVEN m then &0

else --(&1) pow ((m - 1) DIV 2) / &m) *

x pow m))

<= inv(&2 pow (n * k - 1))

It is now easy to obtain approximations to π by applying atn to appropriate
rational numbers. We wrote a HOL derived rule MACHIN RULE that computes
(with proofs) linear forms in arctangents of rational numbers using the addition
formula:

|- abs(x * y) < &1 =⇒ (atn(x) + atn(y) = atn((x + y) / (&1 - x * y)))

The user can apply MACHIN RULE to any linear form in arctangents, and it
is automatically decomposed into sums and negations, and the above theorem
used repeatedly to simplify it, with the side-condition |xy| < 1 discharged au-
tomatically at each stage. In this way, useful approximation theorems that are
variants on the classic Machin formula can be derived automatically without the
user providing separate proofs:

#let MACHIN_1 = MACHIN_RULE ‘&4 * atn(&1 / &5) - atn(&1 / &239)‘;;

MACHIN_1 : thm = |- pi / &4 = &4 * atn (&1 / &5) - atn (&1 / &239)

#let STRASSNITZKY_MACHIN = MACHIN_RULE

‘atn(&1 / &2) + atn (&1 / &5) + atn(&1 / &8)‘;;

STRASSNITZKY_MACHIN : thm =

|- pi / &4 = atn (&1 / &2) + atn (&1 / &5) + atn (&1 / &8)

#let MACHINLIKE_1 = MACHIN_RULE

‘&6 * atn(&1 / &8) + &2 * atn(&1 / &57) + atn(&1 / &239)‘;;

MACHINLIKE_1 : thm =

|- pi / &4 = &6 * atn (&1 / &8) + &2 * atn (&1 / &57) + atn (&1 / &239)

We use the last of these to derive approximations to π, again via a derived
rule that for any given accuracy returns an approximation of π good to that
accuracy. For example:

#let pth = PI_APPROX_RULE 5;;

pth : thm = |- abs (pi - &26696452523 / &8498136384) <= inv (&2 pow 5)

The above approach is easy to prove and program up, and adequate for the
accuracies we needed for this proof, but for more precise approximations to π,
we would probably need to exploit more efficient approximation methods for π
such as the remarkable series [1] which we have already formally verified in HOL:

π = Σ∞m=0

1
16m

(
4

8m+ 1
− 2

8m+ 4
− 1

8m+ 5
− 1

8m+ 6
)

4.2 Bounding the reduced argument

Armed with the ability to find arbitrarily good rational approximations to π, we
can now tackle the problem: how close can our input number be to an nonzero
integer multiple of π/2? Every double-extended precision floating point number
x with |x| < 264 can be written

x = k/2e

for some integers 263 ≤ k < 264 and e > 0; assuming the number x is normalized,
k is simply its significand considered as an integer. We are then interested in
bounding:

|k/2e −Nπ/2|

=
|N |
2e

(k/N − 2eπ/2)

We only need to consider cases where k/2e ≈ Nπ/2 since otherwise x is
not close to a multiple of π/2. So we can consider only N such that |N | ≤
265−e/3.14159. Moreover, we need only consider e < 64 since otherwise |x| < 1
and so x is too small to be close to a nonzero multiple of π/2. So, for each
e = 0, 1, . . . , 63 we just need to find the closest rational number p/q to 2eπ/2 with
|q| ≤ 265−e/3.14159. We can then get a reasonable lower bound for |k/2e−Nπ/2|
by:

263−2e

3.1416
|p/q − 2eπ/2|

This is not quite optimal: we could use our knowledge of p and q to avoid the
overestimate contained in the factor on the left, and rely on the fact that the
term on the right would be significantly larger again for other p′/q′. However it
is good to within a factor of 2, enough for our purposes.

We now have merely to solve (63 instances of) a classic problem of diophan-
tine approximation: how close can a particular real number x be approximated
by rational numbers p/q subject to some bound on the size of q? There is a
well-established method for solving this problem, which is easy to formalize in
HOL. Suppose we have two straddling rational numbers p1/q1 < x < p2/q2

such that p2q1 = p1q2 + 1. It is easy to show that any other rational ap-
proximation a/b with b < q1 + q2 is no better than the closer of p1/q1 and
p2/q2. In such a case, unless p1/q1 and a/b are the same rational we must have
|p1/q1 − a/b| = |p1b − q1a|/(q1b) ≥ 1/(q1b), since the numerator p1b − q1a is a
nonzero integer. Similarly, |p2/q2−a/b| ≥ 1/(q2b) unless p2/q2 = a/b. Therefore,
since |b| < q1 + q2:

|p1/q1 − a/b|+ |p2/q2 − a/b| ≥ 1/(q1b) + 1/(q2b)
> 1/(q1q2)
= |p1/q1 − p2/q2|

Consequently a/b cannot lie inside the straddling interval, and so cannot be
closer to x. This is easily proved in HOL:

|- (p2 * q1 = p1 * q2 + 1) ∧ ¬(q1 = 0) ∧ ¬(q2 = 0) ∧
(&p1 / &q1 < x ∧ x < &p2 / &q2)

=⇒ ∀a b. ¬(b = 0) ∧ b < q1 + q2

=⇒ abs(&a / &b - x) >= abs(&p1 / &q1 - x) ∨
abs(&a / &b - x) >= abs(&p2 / &q2 - x)

It remains to find these special straddling pairs of rational numbers, for it
is not immediately obvious that they must exist. Note that the finding process
does not need to produce any kind of proof; the numbers can be found via an
arbitrary method and the property checked formally by plugging the numbers
into the above theorem. The most popular method for finding such ‘convergents’
uses continued fractions [2]. We use instead a procedure that is in general less
efficient but is simpler to program in our context, creating convergents iteratively
by calculating the mediant of two fractions.

If we have two fractions p1/q1 and p2/q2 with p2q1 = p1q2 + 1 (and hence
p1/q1 < p2/q2) then it is easy to prove that the mediant p/q where p = p1+p2 and
q = q1 + q2 has the same property with respect to its parents: pq1 = p1q+ 1 and
p2q = pq2 + 1. Note that this implies p1/q1p < q < p2/q2 and that p/q is already
in its lowest terms (any common factor of p and q would, since p2q = pq2 + 1,
divide 1). In fact, iterating this generative procedure starting with just 0/1 and
1/1 generates all rational numbers between 0 and 1 in their lowest terms; this
can be presented as the Farey sequence or Stern-Brocot tree [6].

We can now easily generate convergents to any real number x by binary
chop: if we have p1/q1 < x < p2/q2 with p2q1 = p1q2 + 1, we simply form the
mediant fraction p/q and iterate either with p1/q1 and p/q or with p/q and p2/q2

depending which side of the mediant x lies. It’s easy to resolve this inequality via
a sufficiently good rational approximation to x. We proceed until q1 + q2 reaches
the bound we are interested in, and then plug the values into the main theorem,
obtaining a lower bound on the quality of rational approximations to x. Finally,
we use the very good rational approximation to π to get a good rational lower
bound for the terms p1/q1 − x and p2/q2 − x in the conclusion. Iterating in this
way for the various choices of e, we find our overall bound for how close the
input number can come to a multiple of π/2: about 113/276:

|- integer(N) ∧ ¬(N = &0) ∧
a ∈ iformat (rformat Register) ∧ abs(a) < &2 pow 64

=⇒ abs (a - N * pi / &2) >= &113 / &2 pow 76

4.3 Analyzing the reduced argument computation

The above theorem shows that, unless N = 0 in which case reduction is trivial,
the reduced argument has magnitude at least around 2−69. Assuming the input
has size ≤ 263, this means that an error of ε in the approximation of π/2 can
constitute approximately a 2132ε relative error in r. Consequently, to keep the
relative error down to about 2−70 we need |ε| < 2−202. Since a floating-point
number has only 64 bits of precision, it would seem that we would need to
approximate π/2 by four floating-point numbers P1, . . . , P4 and face considerable
complications in keeping down the rounding error in computing x−N(P1 +P2 +
P3 + P4). However, using an ingenious technique called pre-reduction [15], the
difficulties can be reduced. Certain floating point numbers are exceptionally
close to exact multiples of 2π; in fact slight variants of the methods used in

the previous section can easily find such numbers. In the present algorithms, a
particular floating point number P0 is used with

|P0 − 4178442π| < 2−63.5

(not, incidentally, so very far from our lower bound). By initially subtracting
off a multiple of P0, incurring a small error compared with subtracting off the
corresponding even multiple of π, we then only need to deal with numbers of size
< 224 in the main code. (The accurate subtraction of multiples of P0 is similar in
spirit to the main computation we discuss below, and we will not discuss it here
for reasons of space.) Therefore, even in the worst case, we can store a sufficiently
accurate π/2 as the sum of three floating-point numbers P1 +P2 +P3, where the
magnitude of Pn+1 is less that half the least significant bit of Pn.

As noted earlier, the actual computations in the trigonometric range reduc-
tion rely heavily on special tricks to avoid or compensate for rounding error. The
computation starts by calculating y = P ′x, where P ′ ≈ 2

π , and then rounding it
to the nearest integer N . Because P ′ is not exactly 2

π , and the computation of y
commits a rounding error, N may not be the integer closest to x 2

π . However, it
is always sufficiently close that the next computation, s = x −NP1 (computed
using a fused multiply-accumulate instruction, rather than by a separate multi-
plication and subtraction) is exact, i.e. no rounding error is committed. We will
not show the rather messy general theorem that we use to justify this.

However, because P1 is not exactly π/2, s is not yet an adequate reduced
argument. Besides, we must deliver the reduced argument in two pieces r + c
with |c| � |r|, since in general merely coercing the reduced argument into a
single floating point number would introduce unacceptable errors.

Different paths are now taken, depending on whether |s| < 2−33. The path
where this is not the case is simpler, so we will discuss that; the other uses
the same methods but is significantly more complicated. Since |s| ≥ 2−33, it is
sufficiently accurate to use P1 +P2, and hence all we need to do is subtract NP2

from s. However, we need to make sure that |c| � |r| for the reduced argument
r+c (the later computation would otherwise be inaccurate, since it neglects high
powers of c in the power series), so we can’t simply take r = s and c = −NP2.
Instead we calculate:

w = NP2

r = s− w
c1 = s− r
c = c1− w

Apart from the signs (which are inconsequential, since rounding to nearest
commutes with negation), the exactness of the all but the first line can be jus-
tified by the previous theorem on computing an exact sum, based on the easily
proven fact that |w| ≤ 2−33 ≤ |s|. We have r + c = s − w exactly, and so the
only errors in the reduced argument are the rounding error in w and N times

the error in approximating π/2 by P1 + P2, both of which are small enough for
our purposes.

5 Verification of the core computation

The core computation is simply a polynomial in the reduced argument. If the
reduced argument is sufficiently small, very short and quickly evaluated poly-
nomials suffice. (Note that this tends to even out the overall runtime of the
algorithm, since it is exactly in the cases of small reduced arguments that the
range reduction phase is more expensive.) In the extreme case where |r| < 2−33,
we can evaluate cos(r + c) by just 1 − 2−67, regardless of the value of r. (In
round-to-nearest mode this always rounds to 1, so the computation looks point-
less, but we need to give sensible results when rounding down or towards zero).
In the most general case, when we know only that |r| is bounded by about π/4,
the polynomials needed are significantly longer. For example the most general
sin polynomial used is of the form:

p(y) = y + P1y
3 + P2y

5 + · · ·+ P8y
17

where y = r + c is the reduced argument, and the Pi are all floating point
numbers. Note that the Pi are not the same as the coefficients of the familiar
Taylor series (which in any case are not exactly representable as floating point
numbers), but arrived at using the Remez algorithm to minimize the worst-case
error over the possible reduced argument range. Evaluating all the terms with
y = r + c is unnecessarily complicated, since higher powers of c are negligible;
instead the algorithm simply exploits the addition formula

sin(r + c) = sin(r)cos(c) + cos(r)sin(c) ≈ sin(r) + c(1− r2/2)

and evaluates:

r + P1r
3 + P2r

5 + · · ·+ P8r
17 + c(1− r2/2)

The overall error, apart from that in range reduction which in this case where
the reduced argument is not small is almost negligible, is now composed of three
components:

– The approximation error |p(r + c)− sin(r + c)|.
– The additional error in neglecting higher powers of c: |p(r+c)−(p(r)+c(1−
r2/2))|.

– The rounding error in actually computing p(r) + c(1− r2/2)).

It is straightforward to provably bound the second error using some basic real
algebra and analysis. The approximation and rounding errors are more challeng-
ing.

5.1 Bounding the approximation error

We have implemented an automatic HOL derived rule to provably bound the
error in approximating a mathematical function by a polynomial over a given
interval. The user need only provide a derived rule to produce arbitrarily good
Taylor series approximations over that interval. For example, for the cos function,
we can easily derive the basic Taylor theorem:

|- abs(x) <= inv(&2 pow k)

=⇒ abs(cos x -

Sum(0,n) (λm. (if EVEN m

then -- &1 pow (m DIV 2) / &(FACT m)

else &0) * x pow m))

<= inv(&(FACT n) * &2 pow (n * k))

It’s then straightforward to package this up as a derived rule, which we call
MCLAURIN COS POLY RULE. Given natural numbers k and p, this will compute
the required n, instantiate the theorem and produce, with a proof, a polynomial
p(x) such that:

∀x. |x| ≤ 2−k =⇒ |cos(x)− p(x)| ≤ 2−p

For example:

#MCLAURIN_COS_POLY_RULE 3 7;;

it : thm =

|- ∀x. abs x <= inv (&2 pow 3)

=⇒ abs (cos x - poly [&1] x) <= inv (&2 pow 7)

#MCLAURIN_COS_POLY_RULE 2 35;;

it : thm =

|- ∀x. abs x <= inv (&2 pow 2)

=⇒ abs(cos x - poly [&1; &0; --&1 / &2; &0; &1 / &24; &0;

--&1 / &720; &0; &1 / &40320] x)

<= inv(&2 pow 35)

For efficiency of exploration, shadow functions are also provided, which pro-
duce the polynomials as lists of numbers without performing proof, but in prin-
ciple these are dispensable. In order to provably bound the accuracy of a polyno-
mial approximation to any mathematical function, the only work required of the
user is to provide these functions. For most of the common transcendental func-
tions this is, as here, straightforward. Exceptions are the tangent and cotangent,
for which arriving at the power series is a considerable amount of work.

In order to arrive at a bound on the gap between the mathematical function
f(x) and the polynomial approximation p(x), the HOL bounding rule uses the
Taylor series function to approximate f(x) by a truncated Taylor series t(x). If
the bound is required to accuracy ε, the Taylor series is constructed so |f(x)−
t(x)| ≤ ε/2 over the interval. Then, the remaining problem is to bound |t(x) −

p(x)| to the same accuracy ε/2. Since t(x)−p(x) is just a polynomial with rational
coefficients, this part can be automated in a regular way. In fact, the polynomial-
bounding routine can be used separately, and is used at another point in this
proof. The approach used is a little different from that described in [8], though
the way it is used in the proof is the same.

The fundamental fact underlying the polynomial bounding rule is that the
maximum of a polynomial (as for any differentiable function) lies either at one
of the endpoints of the interval or at a point of zero derivative. This is proved in
the following HOL theorem, which states that if a function f differentiable for
a ≤ x ≤ b has the property that f(x) ≤ K at all points of zero derivative, as
well as at x = a and x = b, then f(x) ≤ K everywhere.

|- (∀x. a <= x ∧ x <= b =⇒ (f diffl (f’ x)) x) ∧
f(a) <= K ∧ f(b) <= K ∧
(∀x. a <= x ∧ x <= b ∧ (f’(x) = &0) =⇒ f(x) <= K)

=⇒ (∀x. a <= x ∧ x <= b =⇒ f(x) <= K)

This reduces our problem to finding the points of zero derivative, where the
derivative is another polynomial with rational coefficients. (Of course, in practice
we can only isolate the roots of the polynomial to arbitrary accuracy, rather than
represent them with rational numbers. However as we shall see later it is easy
to accommodate the imperfect knowledge.) This is done via a recursive scheme,
based on another fundamental fact: for any differentiable function f , f(x) can
be zero only at one point between zeros of the derivative f ′(x). More precisely,
if f ′(x) 6= 0 for a < x < b then if f(a)f(b) ≥ 0 there are no points of a < x < b
with f(x) = 0:

|- (∀x. a <= x ∧ x <= b =⇒ (f diffl f’(x))(x)) ∧
(∀x. a < x ∧ x < b =⇒ ¬(f’(x) = &0)) ∧
f(a) * f(b) >= &0

=⇒ ∀x. a < x ∧ x < b =⇒ ¬(f(x) = &0)

and on the other hand if f(c)f(d) ≤ 0 for any a ≤ c ≤ d ≤ b then any point
a < x < b with f(x) = 0 must in fact have c ≤ x ≤ d:

|- (∀x. a <= x ∧ x <= b =⇒ (f diffl f’(x))(x)) ∧
(∀x. a < x ∧ x < b =⇒ ¬(f’(x) = &0))

=⇒ ∀c d. a <= c ∧ c <= d ∧ d <= b ∧
f(c) * f(d) <= &0

=⇒ ∀x. a < x ∧ x < b ∧ (f(x) = &0)

=⇒ c <= x ∧ x <= d

Using this theorem, it is quite easy to isolate all points xi with f(xi) = 0
within arbitrarily small intervals with rational endpoints, and prove that this
does indeed isolate all such points. We simply do so recursively for the derivative
f ′ (since root isolation is trivial for constant or even linear polynomials, the

recursion is well-founded). Conservatively, we can include all isolating intervals
for f ′’s zeros in f ’s, to avoid the difficulty of analyzing inside these intervals;
later these can be pruned. Now if two adjacent points with f ′(xi) = 0 and
f ′(xi+1) have been isolated by ci ≤ xi ≤ di and ci+1 ≤ xi+1 ≤ di+1, we need
only consider — assuming di < ci+1 since otherwise there is no question of a root
between them — whether f(di)f(ci+1) ≤ 0. Since by the inductive hypothesis,
there are no roots of f ′ inside the interval di < x < ci+1, we can use the above
theorems to find that there are either no roots or exactly one. If there is one,
then (without proof) we can isolate it within a subinterval [c, d] by binary chop
and then use the second theorem above to show that this isolates all roots with
di < x < ci+1.

Although this procedure is conservative, that doesn’t matter for the use we
will make of it — proving that all the roots have been isolated, even if we
overcount, still makes the procedure of bounding the function over these isolating
intervals a sound approach. Nevertheless, we do prune down the initial set when
it is clear that the function could not cross zero within the interval. This follows
naturally from interlocking recursions down the chain of derivatives f , f ′, f ′′,
. . . , f (n) evaluating both bounds and isolating intervals for all zeros. The key
theorem here is:

|- (∀x. a <= x ∧ x <= b =⇒ (f diffl (f’ x)) x) ∧
(∀x. a <= x ∧ x <= b =⇒ (f’ diffl (f’’ x)) x) ∧
(∀x. a <= x ∧ x <= b =⇒ abs(f’’(x)) <= K) ∧
a <= c ∧ c <= x ∧ x <= d ∧ d <= b ∧ (f’(x) = &0)

=⇒ abs(f(x)) <= abs(f(d)) + (K / &2) * (d - c) pow 2

which allows us to go from a bound on f ′′ and root isolation of f ′ to a bound on
f (a sharp second-order one using the fact that the f ′ has a zero in the interval to
show that f is flat there). As shown above, we can easily pass from root isolation
of f ′ to root isolation of f . Hence we have a recursive procedure to bound f by
recursively bounding and isolating f ′ and all additional derivatives. This is all
done entirely automatically and HOL constructs a proof.

5.2 Bounding the rounding error

Most of the rounding errors in the polynomial computation can be bounded
simply using the ‘(1+ε)’ theorem or its absolute error analog. This is completely
routine, and in fact has been automated [10]. However, there is one point in the
sine and cosine calculations where a trick is used, and manual intervention in
the proof is required. (However, for many other functions which don’t use tricks,
this part of the proofs is essentially automatic.) Without special measures, the
rounding error in computing the second term of the series, PP1r

3 in the case of
sine (PP1 ≈ 1

3 , or QQ1r
2 in the case of cosine (QQ1 = 1

2), would reduce the
quality of the answer beyond acceptable levels. Therefore, these are computed
in a more sophisticated way.

In order to reduce rounding error, r is split, using explicit bit-level operations,
into two parts rhi + rlo, where rhi has only 10 significant bits and rlo is the
corresponding “tail”. For cosine, the required 1

2r
2 can be computed by:

1
2
r2 =

1
2
r2
hi +

1
2

(r2 − r2
hi)

=
1
2
r2
hi +

1
2
rlo(r + rhi)

Because rhi only has 10 significant digits, its squaring commits no rounding
error, and of course neither does the multiplication by a power of 2. Thus, the
rounding error is confined to the much smaller quantity rlo(r+rhi), which is well
within acceptable limits. For sine a similar trick is used, but since the coefficient
is no longer a power of 2, it is also split. We will not show the details here.

6 Final correctness theorem

The final general correctness theorems we derive have the following form:

|- x ∈ floats Extended ∧ abs(Val x) <= &2 pow 64

=⇒ prac (Extended,rc,fz) (fcos rc fz x) (cos(Val x))

(#0.07341 * ulp(rformat Extended) (cos(Val x)))

The function prac means ‘pre-rounding accuracy’. The theorem states that
provided x is a floating point number in the double-extended format, with
|x| ≤ 264 (a range somewhat wider than needed), the result excluding the fi-
nal rounding is at most 0.07341 units in the last place from the true answer
of cos(x). This theorem is generic over all rounding modes rc and flush-to-zero
settings fz. An easy corollary of this is that in round-to-nearest mode without
flush-to-zero set the maximum error is 0.57341 ulps, since rounding to nearest
can contribute at most 0.5 ulps. In other rounding modes, a more careful anal-
ysis is required, paying careful attention to the formal definition of a ‘unit in
the last place’. The problem is that the true answer and the computed answer
before the final rounding may in general lie on opposite sides of a (negative,
since |cos(x)| ≤ 1) power of 2. At this point, the gap between adjacent floating
point numbers is different depending on whether one is considering the exact or
computed result. In the case of round-to-nearest, however, this does not matter
since the result will always round to the straddled power of 2, bringing it even
closer to the exact answer.

7 Conclusions

We have presented a representative example of the work involved in verifica-
tions of this kind. As can be seen, the mathematical apparatus necessary for the
verifications is quite extensive, and we require both abstract pure mathematics

and very concrete results about floating point rounding. Moreover, since some
parts of the proof, such as bounding approximation errors and routine rounding
errors, would be extremely tedious by hand, programmability of the underlying
theorem prover is vital. While these proofs are definitely non-trivial, modern
theorem provers such as HOL Light have reached a stage of development (par-
ticularly in the formalization of the underlying mathematical theories) where
they are quite feasible.

References

1. D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation of various poly-
logarithmic constants. Mathematics of Computation, 66:903–913, 1997.

2. A. Baker. A Consise Introduction to the Theory of Numbers. Cambridge University
Press, 1985.

3. G. Cousineau and M. Mauny. The Functional Approach to Programming. Cam-
bridge University Press, 1998.

4. T. J. Dekker. A floating-point technique for extending the available precision.
Numerical Mathematics, 18:224–242, 1971.

5. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

6. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science. Addison-Wesley, 2nd edition, 1994.

7. J. Harrison. HOL Light: A tutorial introduction. In M. Srivas and A. Camilleri,
editors, Proceedings of the First International Conference on Formal Methods in
Computer-Aided Design (FMCAD’96), volume 1166 of Lecture Notes in Computer
Science, pages 265–269. Springer-Verlag, 1996.

8. J. Harrison. Verifying the accuracy of polynomial approximations in HOL. In
E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics: 10th
International Conference, TPHOLs’97, volume 1275 of Lecture Notes in Computer
Science, pages 137–152, Murray Hill, NJ, 1997. Springer-Verlag.

9. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
Revised version of author’s PhD thesis.

10. J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in
Higher Order Logics: 12th International Conference, TPHOLs’99, volume 1690 of
Lecture Notes in Computer Science, pages 113–130, Nice, France, 1999. Springer-
Verlag.

11. J. Harrison, T. Kubaska, S. Story, and P. Tang. The computation
of transcendental functions on the IA-64 architecture. Intel Technology
Journal, 1999-Q4:1–7, 1999. This paper is available on the Web as
http://developer.intel.com/technology/itj/q41999/articles/art 5.htm.

12. O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

13. M. E. Remes. Sur le calcul effectif des polynomes d’approximation de Tchebichef.
Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 199:337–
340, 1934.

14. P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, 1974.

15. S. Story and P. T. P. Tang. New algorithms for improved transcendental functions
on IA-64. In I. Koren and P. Kornerup, editors, Proceedings, 14th IEEE symposium
on on computer arithmetic, pages 4–11, Adelaide, Australia, 1999. IEEE Computer
Society.

16. P. T. P. Tang. Table-lookup algorithms for elementary functions and their er-
ror analysis. In P. Kornerup and D. W. Matula, editors, Proceedings of the 10th

Symposium on Computer Arithemtic, pages 232–236, 1991.
17. P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993. See also the CAML

Web page: http://pauillac.inria.fr/caml/.

