
HOL Light: A tutorial introduction

John Harrison

Åbo Akademi University, Department of Computer Science
Lemminkäisenkatu 14a, 20520 Turku, Finland

Abstract. HOL Light is a new version of the HOL theorem prover.
While retaining the reliability and programmability of earlier versions, it
is more elegant, lightweight, powerful and automatic; it will be the basis
for the Cambridge component of the HOL-2000 initiative to develop the
next generation of HOL theorem provers. HOL Light is written in CAML
Light, and so will run well even on small machines, e.g. PCs and Mac-
intoshes with a few megabytes of RAM. This is in stark contrast to the
resource-hungry systems which are the norm in this field, other versions
of HOL included. Among the new features of this version are a powerful
simplifier, effective first order automation, simple higher-order matching
and very general support for inductive and recursive definitions.
Many theorem provers, model checkers and other hardware verification
tools are tied to a particular set of facilities and a particular style of inter-
action. However HOL Light offers a wide range of proof tools and proof
styles to suit the needs of various applications. For work in high-level
mathematical theories, one can use a more ‘declarative’ textbook-like
style of proof (inspired by Trybulec’s Mizar system). For larger but more
routine and mechanical applications, HOL Light includes more ‘proce-
dural’ automated tools for simplifying complicated expressions, proving
large tautologies etc. We believe this unusual range makes HOL Light
a particularly promising vehicle for floating point verification, which in-
volves a mix of abstract mathematics and concrete low-level reasoning.
We will aim to give a brief tutorial introduction to the system, illustrating
some of its features by way of such floating point verification examples.
In this paper we explain the system and its possible applications in a
little more detail.

1 The evolution of HOL Light

In verification tasks, low-level proof checkers are often too tedious to use, while
fully automatic provers are seldom effective. The ideal seems to be a judicious
combination of interaction and automation. Edinburgh LCF [4] was an influen-
tial methodology for achieving this sort of balance. Low-level primitive inference
rules are provided which produce theorems, and by the use of an abstract type,
it is ensured that theorems can only be created by these rules. However the
user is free to write arbitrary proof procedures in the metalanguage ML which
decompose to these inferences; such procedures can in principle implement prac-
tically any automated proof method (e.g. resolution, Presburger arithmetic), and



they will be correct per construction, in the sense that they cannot produce a
false ‘theorem’. Experience suggests that this can usually be done reasonably
efficiently. Hence LCF systems offer a unique combination of reliability and pro-
grammability.

Paulson [8] and Huet improved Edinburgh LCF, and based on their imple-
mentation, Gordon produced a new system based on classical higher order logic
rather than Scott’s Logic of Computable Functions. This system, HOL, was
specifically designed for hardware verification, the use of higher order logic for
this purpose having been advocated by Hanna [5] and by Gordon himself [2].
HOL became increasingly popular in the late 80s and early 90s, attracting many
users worldwide in academia, industry and military and government agencies.
However the HOL88 version was a conceptually complicated and inefficient sys-
tem, with many of the primitive term operations coded in LISP rather than ML.
A new version, hol90, corrected these deficiencies, but did not greatly improve
the higher level organization or the theorem-proving technology; HOL proofs are
often long and difficult compared with those in other contemporary systems like
Isabelle [9] and PVS [7]. Moreover hol90 is at present tied to the New Jersey
SML compiler, which is notoriously memory-hungry; this means that it is still
slow or even unusable on typical machines.

HOL Light represents an attempt to improve the HOL system more radically,
while retaining its traditional strengths. The system is small and light, using the
excellent CAML Light interpreter [12] developed at INRIA Roquencourt. The
logical development has been cleaned up, and new and powerful proof techniques
added. It even supports a new proof style, based on Mizar, which allows many
proofs to be written more elegantly. Nevertheless, we want to stress that although
HOL Light is a recent development, it can be seen as the culmination of a
successful line of research spanning about 20 years.

2 Highlights of HOL Light

HOL Light has the following features:

1. It is open. The entire system is coded in ML and all the source code is
freely available. Because ML is a fairly readable and high-level language, the
implementation often looks quite close to an abstract algorithm description.
Hence users can see what is happening inside and gain real confidence and
understanding; the system is not just a mysterious black box.

2. It is sound and coherent. The LCF methodology ensures that all extensions
with custom proof procedures are correct by construction. Apart from the
benefits of soundness, this also helps to make the structure of the system
logically clean and comprehensible, rather than its being a complicated en-
twining of different proof procedures.

3. It is extensible. If users want to implement special purpose tools and decision
procedures, they can implement them, and the LCF methodology ensures
that they cannot produce false results. The system source code contains



numerous examples of special proof procedures, ranging from the simple to
the complex.

4. It is an easy matter to write special interface code and connect HOL Light to
other systems. For example, we have used the Maple computer algebra sys-
tem to perform factorization and integration steps, and an implementation
of St̊almarck’s algorithm [10] to prove tautologies; HOL Light can check
the validity of these results internally, maintaining the usual guarantee of
correctness even in a mixed system.

5. It is small and lightweight. The system does not require a state-of-the-art
workstation to run. CAML Light is very economical and can work quite well
on small machines such as PCs and Macintoshes with just a few megabytes
of free memory. Nevertheless, we aim to show that the system is not merely
a toy, but is capable of being used for real verification tasks.

6. Different proof styles are supported. Though the ‘machine code’ of the sys-
tem is a simple set of forward inferences, one can interact with the system
in various different high-level ways to prove theorems. For example, one can
prove theorems in a backward fashion using tactics, or write a more orthodox
mathematical proof in the style of Mizar [11]. A facility for window inference,
useful for program refinement and other transformational design methodolo-
gies, is under development. All these styles can be intermixed freely in the
same script, and even in the same proof.

7. Special-purpose proof procedures are available. In many situations, the user
will find that the system already contains tools to handle tricky steps. For
example, there is code to automate the definition of inductive relations and
types as well as recursive functions with arbitrary well-founded measures.
Support for pure logic includes several complementary tautology-proving
modules and proof search procedures for first order logic, while there are
several domain-specific tools such as decision procedures for linear arithmetic
(over naturals, integers and reals).

3 HOL Light in hardware verification

The advantages of theorem-proving techniques over model-checking for hardware
(and software) verification are:

1. Specifications can be written in an elegant way using the normal resources
of mathematics.

2. Any supporting mathematical theories required can be called upon, after
themselves being formally proved, in the verification effort.

We will demonstrate how HOL Light can be used for a particular example:
we plan to show the proof of correctness of a CORDIC algorithm for evaluating
floating point natural logarithms. Though only a single example, we hope it
illustrates many interesting features of the HOL Light system, and the use of
theorem provers for verification in general. Floating point correctness is a topical
issue, with the Pentium fiasco still a recent memory; moreover, it seems that an



incorrect treatment of overflow in a floating-point to integer conversion routine
was responsible for the destruction of the European Space Agency’s Ariane 5
rocket on its maiden flight.

The first step is to establish what it means for the floating point algorithm
to be ‘correct’. The natural idea is to specify that the result, when interpreted
as a real number, corresponds closely to the true mathematical value. We do
indeed choose such a specification, but point out how there are several subtly
different ways of making ‘corresponds closely’ more precise. For the elementary
algebraic operations, including square roots, the IEEE Standard [6] mandates
that the result should be the closest representable value to the true mathematical
value (with choices between equally close values resolved using a convention of
‘round to even’). For transcendental functions, this is very difficult to achieve in
practice, because of a phenomenon known as the ‘table maker’s dilemma’. We
explain two alternative forms of correctness specification that we consider more
suitable for the transcendental functions. It is against the second of these that
our verification is performed.

The next task is to model the floating point algorithm itself inside HOL
Light’s logic. It is possible to use a gate-level circuit description, but a more
transparent description written in a formalized ‘pseudocode’ is used here. This
gives a good opportunity to discuss techniques which have been used for se-
mantically embedding idealized programming languages [3] and real hardware
description languages [1] in HOL. These techniques use a special kind of de-
notational interpretation of the language as ordinary logical and mathematical
constructs, and allow a rather direct means of formal reasoning about programs.
Our system description is, therefore, both readable and rigorous.

The verification rests on a number of properties of logarithms. To give a sim-
ple example, we use the fact that ln(1 + x) ≤ x whenever x ≥ 0. The ultimate
foundation for these results is a rigorously developed theory of real analysis,
based on a definitional construction of the real numbers from the natural num-
bers. We cannot give many details here, but we do hope to give some illustrations
of how HOL Light can be used in this more abstract field. In particular, its Mizar-
style proofs allow one to write proofs in a rather elegant style (compared with
the arcane tactic scripts of most systems, other HOL proof styles included). At
the same time, the automated facilities of HOL Light can be called on when
required, e.g. to avoid directing routine algebraic steps in detail.

The overall proof is quite intricate, and though it can be rerun in a few min-
utes, we will concentrate on the general feel of the theorem proving facilities
provided by HOL Light. We show how the simplifier can be used extensively to
avoid complex and tedious chains of reasoning. Indeed, in a related verification
effort of a square root algorithm, the central mathematical invariant property
could be proved completely automatically. However we stress that low-level fa-
cilities are always there to provide a finer degree of control.

Finally, we show that certain precomputed constants, required for a real
implementation, can be calculated in HOL Light using the normal inference



rules of the logic. Though slow, this is acceptable in such special circumstances,
and gives a cast-iron guarantee on the error bounds.

4 Conclusions

We hope to illustrate that HOL Light can be applied to realistic verification
tasks. Moreover, the method of embedding other formalisms, together with the
inherent programmability, make HOL Light an excellent core for application-
specific reasoning systems.

References

1. R. Boulton et al. Experience with embedding hardware description languages in
HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Proceedings of
the IFIP TC10/WG 10.2 International Conference on Theorem Provers in Circuit
Design: Theory, Practice and Experience, volume A-10 of IFIP Transactions A:
Computer Science and Technology, pages 129–156, Nijmegen, The Netherlands,
1993. North-Holland.

2. M. J. C. Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. Technical Report 77, University of Cambridge Computer Lab-
oratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK, 1985.

3. M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 387–439. Springer-Verlag, 1989.

4. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

5. F. K. Hanna and N. Daeche. Specification and verification using higher-order logic:
A case study. In G. Milne and P. A. Subrahmanyam, editors, Formal Aspects of
VLSI Design: Proceedings of the 1985 Edinburgh Workshop on VLSI, pages 179–
213, 1986.

6. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-
1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

7. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction, volume
607 of Lecture Notes in Computer Science, pages 748–752, Saratoga, NY, 1992.
Springer-Verlag.

8. L. C. Paulson. Logic and computation: interactive proof with Cambridge LCF.
Number 2 in Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1987.

9. L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of Lecture Notes in
Computer Science. Springer-Verlag, 1994. With contributions by Tobias Nipkow.

10. G. St̊almarck. System for determining propositional logic theorems by applying
values and rules to triplets that are generated from Boolean formula. United States
Patent number 5,276,897; see also Swedish Patent 467 076, 1994.

11. A. Trybulec. The Mizar-QC/6000 logic information language. ALLC Bulletin
(Association for Literary and Linguistic Computing), 6:136–140, 1978.



12. P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993. See also the CAML
Web page: http://pauillac.inria.fr/caml/.


