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Abstract—The IEEE Standard 754-1985 for Binary Floating-Point Arithmetic [19] was revised [20], and an important addition is the

definition of decimal floating-point arithmetic [8], [24]. This is intended mainly to provide a robust reliable framework for financial

applications that are often subject to legal requirements concerning rounding and precision of the results, because the binary

floating-point arithmetic may introduce small but unacceptable errors. Using binary floating-point calculations to emulate decimal

calculations in order to correct this issue has led to the existence of numerous proprietary software packages, each with its own

characteristics and capabilities. The IEEE 754R decimal arithmetic should unify the ways decimal floating-point calculations are carried

out on various platforms. New algorithms and properties are presented in this paper, which are used in a software implementation of

the IEEE 754R decimal floating-point arithmetic, with emphasis on using binary operations efficiently. The focus is on rounding

techniques for decimal values stored in binary format, but algorithms are outlined for the more important or interesting operations of

addition, multiplication, and division, including the case of nonhomogeneous operands, as well as conversions between binary and

decimal floating-point formats. Performance results are included for a wider range of operations, showing promise that our approach is

viable for applications that require decimal floating-point calculations. This paper extends an earlier publication [6].

Index Terms—Computer arithmetic, multiple-precision arithmetic, floating-point arithmetic, decimal floating-point, computer

arithmetic, correct rounding, binary-decimal conversion.

Ç

1 INTRODUCTION

THERE is increased interest in decimal floating-point
arithmetic in both industry and academia as the IEEE

754R1 [20] revision becomes the new standard for floating-
point arithmetic. The 754R Standard describes two different
possibilities for encoding decimal floating-point values: the
binary encoding, based on using a Binary Integer [24] to
represent the significand (BID, or Binary Integer Decimal),
and the decimal encoding, which uses the Densely Packed
Decimal (DPD) [7] method to represent groups of up to
three decimal digits from the significand as 10-bit declets. In
this paper, we present results from our work toward a

754R decimal floating-point software implementation
based on the BID encoding. We include a discussion of
our motivation, selected algorithms, performance results,
and future work. The most important or typical operations
will be discussed: primarily decimal rounding but also
addition, multiplication, division, and conversions between
binary and decimal floating-point formats.

1.1 Motivation and Previous Work

An inherent problem of binary floating-point arithmetic

used in financial calculations is that most decimal floating-

point numbers cannot be represented exactly in binary

floating-point formats, and errors that are not acceptable

may occur in the course of the computation. Decimal

floating-point arithmetic addresses this problem, but a

degradation in performance will occur compared to binary

floating-point operations implemented in hardware. Despite

its performance disadvantage, decimal floating-point arith-

metic is required by certain applications that need results

identical to those calculated by hand [3]. This is true for

currency conversion [13], banking, billing, and other

financial applications. Sometimes, these requirements are

mandated by law [13]; other times, they are necessary to

avoid large accounting discrepancies [18].
Because of the importance of this problem a number of

decimal solutions exist, both hardware and software.

Software solutions include C# [22], COBOL [21], and XML

[25], which provide decimal operations and datatypes. Also,

Java and C/C++ both have packages, called BigDecimal

[23] and decNumber [9], respectively. Hardware solutions
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0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on March 27, 2009 at 16:30 from IEEE Xplore.  Restrictions apply.



were more prominent earlier in the computer age with the
ENIAC [27] and UNIVAC [16]. However, more recent
examples include the CADAC [5], IBM’s z900 [4] and z9 [10]
architectures, and numerous other proposed hardware
implementations [11], [12], [1]. More hardware examples
can be found in [8], and a more in-depth discussion is found
in Wang’s work [26].

The implementation of nonhomogeneous decimal
floating-point operations, whose operands and results have
mixed formats, is also discussed below. The method used is
based on replacing certain nonhomogeneous operations by
a similar homogeneous operation and then doing a floating-
point conversion to the destination format. Double round-
ing errors that may occur in such cases are corrected using
simple logical equations. Double rounding errors have been
discussed in other sources. A case of double rounding error
in conversions from binary to decimal (for printing binary
values) is presented in [15] (in the proof of Theorem 15; a
solution of how to avoid this is given based on status flags
and only for this particular case). A paper by Figueroa [14]
discusses cases when double rounding errors will not occur
but does not offer a solution for cases when they do occur.
A paper by Boldo and Melquiond [2] offers a solution for
correcting double rounding errors when rounding to
nearest but only if a non-IEEE special rounding mode is
implemented first, named in the paper as rounding to odd
(which is not related to rounding to nearest-even). How-
ever, the solution presented here for correcting double
rounding errors seems to be new.

Estimations have been made that hardware approaches
to decimal floating-point arithmetic will have average
speedups of 100-1,000 times over software [18]. However,
the results from our implementation show that this is
unlikely, as the maximum clock cycle counts for decimal
operations implemented in software are in the range of tens
or hundreds on a variety of platforms. Hardware imple-
mentations would undoubtedly yield a significant speedup
but not as dramatic, and that will make a difference only if
applications spend a large percentage of their time in
decimal floating-point computations.

2 DECIMAL ROUNDING

A decimal floating-point number n is encoded using three
fields: sign s, exponent e, and significand � with at most p
decimal digits, where p is the precision (p is 7, 16, or 34 in
IEEE 754R, but p ¼ 7 for the 32-bit format is for storage
only). The significand can be scaled up to an integer C,
referred to as the coefficient (and the exponent is decreased
accordingly): n ¼ ð�1Þs � 10e � � ¼ ð�1Þs � 10e

0 � C.
The need to round an exact result to the precision p of the

destination format occurs frequently for the most common
decimal floating-point operations: addition, subtraction,
multiplication, fused multiply-add, and several conversion
operations. For division and square root, this happens only
in certain corner cases. If the decimal floating-point operands
are encoded using the IEEE 754R binary format, the
rounding operation can be reduced to the rounding of an
integer binary value C to p decimal digits. Performing this
operation efficiently on decimal numbers stored in binary
format is very important, as it enables good software

implementations of decimal floating-point arithmetic on
machines with binary hardware. For example, assume that
the exact result of a decimal floating-point operation has a
coefficient C ¼ 1234567890123456789 with q ¼ 19 decimal
digits that is too large to fit in the destination format
and needs to be rounded to the destination precision of
p ¼ 16 digits.

As mentioned, C is available in binary format. To round
C to 16 decimal digits, one has to remove the lower x ¼ 3
decimal digits ðx ¼ q � p ¼ 19� 16Þ and possibly to add
one unit to the next decimal place, depending on the
rounding mode and on the value of the quantity that has
been removed. If C is rounded to nearest, the result will be
C ¼ 1234567890123457 � 103. If C is rounded toward zero,
the result will be C ¼ 1234567890123456 � 103.

The straightforward method to carry out this operation is
to divide C by 1,000, to calculate and subtract the
remainder, and possibly to add 1,000 to the result at the
end, depending on the rounding mode and on the value of
the remainder.

A better method is to multiply C by 10�3 and to truncate
the result so as to obtain the value 1234567890123456.
However, negative powers of 10 cannot be represented
exactly in binary, so an approximation will have to be used.
Let k3 � 10�3 be an approximation of 10�3, and thus,
C � k3 � 1234567890123456. If k3 overestimates the value of
10�3, then C � k3 > 1234567890123456. Actually, if k3 is
calculated with sufficient accuracy, it will be shown that
bC � k3c ¼ 1234567890123456 with certainty.

(Note that the floorðxÞ, ceilingðxÞ, and fractionðxÞ
functions are denoted here by bxc, dxe, and fxg,
respectively.)

Let us separate the rounding operation of a value C to
fewer decimal digits into two steps: first calculate the result
rounded to zero and then apply a correction if needed, by
adding one unit to its least significant digit. Rounding
overflow (when after applying the correction, the result
requires pþ 1 decimal digits) is not considered here.

The first step in which the result rounded toward zero is
calculated can be carried out by any of the following four
methods.

Method 1. Calculate k3 � 10�3 as a y-bit approximation of 10�3

rounded up (where y will be determined later). Then,
bC � k3c ¼ 1234567890123456, which is exactly the same
value as bC=103c.

It can be noticed, however, that 10�3 ¼ 5�3 � 2�3 and that
multiplication by 2�3 is simply a shift to the right by 3 bits.
Three more methods to calculate the result rounded toward
zero are then possible:

Method 1a. Calculate h3 � 5�3 as a y-bit approximation of 5�3

rounded up (where y will be determined later). Then,
bðC � h3Þ � 2�3c ¼ 1234567890123456, which is the same as
bC=103c. However, this method is no different from Method 1,
so the approximation of 5�3 has to be identical in the number of
significant bits to the approximation of 10�3 from Method 1
(but it will be scaled up by a factor of 23).

The third method is obtained if instead of multiplying by
2�3 at the end, C is shifted to the right and truncated before
multiplication by h3.
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Method 2. Calculate h3 � 5�3 as a y-bit approximation of 5�3

rounded up (where y will be determined later). Then,
bbC � 2�3c � h3c ¼ 1234567890123456, which is identical to
bC=103c. It will be shown that h3 can be calculated to fewer
bits than k3 from Method 1.

The final and fourth method is obtained by multiplying
C by h3 and then truncating, followed by a multiplication
by 2�3 and a second truncation.

Method 2a. Calculate h3 � 5�3 as a y-bit approximation of 5�3

rounded up (where y can be determined later). Then,
bbC � h3c � 2�3c ¼ 1234567890123456. However, it can be
shown that in this last case, h3 has to be calculated to the same
number of bits as k3 in Method 1, which does not represent an
improvement over Method 1.

Only Method 1 and Method 2 shall be examined next.
We will solve next the problem of rounding correctly a

number with q digits to p ¼ q � x digits, using approxima-
tions to negative powers of 10 or 5. We will also solve the
problem of determining the shortest such approximations,
i.e., with the least number of bits.

2.1 Method 1 for Rounding a Decimal Coefficient

For rounding a decimal coefficient represented in binary
using Method 1, the following property specifies the
minimum accuracy y for the approximation kx � 10�x,
which ensures that a value C with q decimal digits
represented in binary can be truncated without error to
p ¼ q � x digits by multiplying C by kx and truncating.
Property 1 states that if y � dflog210 � xg þ log210 � qe and kx
is a y-bit approximation of 10�x rounded up, then we can
calculate bC � kxc in the binary domain, and we will obtain
the same result as for bC=10xc calculated in decimal.

Property 1. Let q 2 IN, q > 0, C 2 IN, 10q�1 � C � 10q � 1,
x 2 f1; 2; 3; . . . ; q � 1g, and � ¼ log210. If y 2 IN satisfies
y � df� � xg þ � � qe and kx is a y-bit approximation of 10�x

rounded up (the subscript RP , y indicates rounding up to y
b i t s ) , i . e . , kx ¼ ð10�xÞRP;y ¼ 10�x � ð1þ "Þ, w h e r e
0 < " < 2�yþ1, then bC � kxc ¼ bC=10xc.

Proof outline. The proof can be carried out starting with the
representation of C in decimal, C ¼ d0 � 10q�1 þ d1 �
10q�2 þ � � � þ dq�2 � 101 þ dq�1, w h e r e d0; d1; . . . dq�1 2
f0; 1; . . . ; 9g, and d0 6¼ 0. The value of C can be expressed
as C¼ 10x �HþL, where H¼bC=10xc¼d0 � 10q�x�1þ d1 �
10q�x�2þd2 � 10q�x�3þ . . .þdq�x�2 � 101þdq�x�12½10q�x�1;
10q�x�1�, and L ¼ C percent 10x ¼ dq�x � 10x�1 þ dq�x�1 �
10x�2þ . . .þdq�2 � 101þdq�1 2 ½0; 10x � 1�. Then, the mini-
mum value of y can be determined such that bC � kxc ¼
H,H�ðHþ10�x � LÞ � ð1þ "Þ<Hþ1,10�x � " < 10�2x=
ðH þ 1� 10�xÞ.

But 10�x � " is the absolute error in kx ¼ 10�x � ð1þ "Þ,
and it is less than 1 unit in the last place (ulp) of kx. It can
be shown that for all x of interest in the context of the
IEEE 754R floating-point formats, x 2 f1; 2; 3; . . . ; 34g, kx
is in the same binade as 10�x, because one cannot find a
power of two to separate 10�x and kx ¼ 10�x � ð1þ "Þ
(which would place the two values in different binades)
with kx represented with a reasonable number of bits y.
This can be checked exhaustively for x 2 f1; 2; 3; . . . ; 34g.

For this, assume that such a power of two exists: 10�x<
2�s�10�x � ð1þ "Þ, 10x

ð1þ"Þ�2s <10x, 2��x

ð1þ"Þ�2s<2��x.
Even for those values of x where � � x is slightly

larger than an integer (x ¼ 22, x ¼ 25, and x ¼ 28),
" would have to be too large in order to satisfy 2��x

ð1þ"Þ � 2s.
The conclusion is that kx is in the same binade as 10�x,
which will let us determine ulpðkxÞ ¼ 2�b��xc�y. In order
to satisfy inequality (1), it is sufficient to have the
following (increasing the left-hand side and decreasing
the right-hand side of the inequality): ulpðkxÞ �

10�2x

ð10q�x�10�xÞ . This leads eventually to y � df� � xg þ � � qe,
as required. tu

In our example from Method 1 above, y ¼ df� � 3g þ � �
19e ¼ 65 (so 10�3 needs to be rounded up to 65 bits).

The values kx for all x of interest are precalculated and
are stored as pairs ðKx; exÞ, with Kx and ex positive
integers, and kx ¼ Kx � 2�ex . This allows for efficient
implementations, exclusively in the integer domain, of
several decimal floating-point operations, particularly ad-
dition, subtraction, multiplication, fused multiply-add, and
certain conversions.

The second step in rounding correctly a value C to fewer
decimal digits consists of applying a correction to the value
rounded to zero, if necessary. The inexact status flag has to
be set correctly as well. For this, we have to know whether
the original value that we rounded was exact (did it have x
trailing zeros in decimal?) or if it was a midpoint when
rounding to nearest (were its x least significant decimal
digits a 5 followed by x� 1 zeros?).

Once we have the result truncated to zero, the straight-
forward method to check for exactness and for midpoints
could be to calculate the remainder C percent 10x and to
compare it with 0 and with 50 . . . 0 (x decimal digits), which
is very costly. However, this is not necessary because the
information about exact values and midpoints is contained
in the fractional part f of the product C � kx.

The following property states that if C � 10�x covers
an interval [H, H þ 1) of length 1, where H is an integer,
then C � kx belongs to [H, H þ 1) as well, and the fraction f
discarded by the truncation operation belongs to (0, 1) (so f
cannot be zero). More importantly, we can identify the
exact cases C � 10�x ¼ H (then, rounding C to p ¼ q � x
digits is an exact operation) and the midpoint cases
C � 10�x ¼ H þ 1

2 .

Property 2. Let q 2 IN, q > 0, x 2 f1; 2; 3; . . . ; q � 1g, C 2 IN,
10q�1 � C � 10q � 1, C ¼ 10x �H þ L, where H 2 ½10q�x�1;
10q�x � 1�, L 2 ½0; 10x � 1�, and H, L 2 IN, f ¼ C � kx �
bC � kxc, � ¼ log210, y 2 IN, y � 1þ d� � qe, and kx ¼ 10�x �
ð1þ "Þ, 0 < " < 2�yþ1. Then, the following are true:

a. C ¼ H � 10x iff 0 < f < 10�x.
b. H � 10x < C < ðH þ 1

2Þ � 10x iff 10�x < f < 1
2 .

c. C ¼ ðH þ 1
2Þ � 10x iff 1

2 < f < 1
2þ 10�x.

d. ðH þ 1
2Þ � 10x<C<ðH þ 1Þ � 10x iff 1

2þ 10�x<f<1.

(The proof is not included but is straightforward to
obtain.) This property is useful for determining the exact
and the midpoint cases. For example if 0 < f < 10�x,
then we can be sure that the result of the rounding from
q decimal digits to p ¼ q � x digits is exact.
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Another important result of Property 2 was that it helped
refine the results of Property 1. Although the accuracy y of kx
determined in Property 1 is very good, it is not the best
possible. For a given pair q and x ¼ q � p, starting with the
value y ¼ df� � xg þ � � qe, one can try to reduce it 1 bit at a
time, while checking that the corresponding kx will still yield
the correct results for rounding in all cases, and it will also
allow for exactness and midpoint detection, as shown above.
To verify that a new (and smaller) value of y still works, just
four inequalities have to be verified for boundary conditions
related to exact cases and midpoints:H � 10x � kx < H þ 10�x,
ðH þ 1=2� 10�xÞ � 10x � kx < H þ 1=2, ðH þ 1=2Þ � 10x � kx <
H þ 1=2þ 10�x, and ðH þ 1� 10�xÞ � 10x � kx < H þ 1. Be-
cause the functions of H from these inequalities can be
reduced to monotonic and increasing ones, it is sufficient
to verify the inequalities just for the maximum value
H ¼ 10q�x � 1 ¼ 99 . . . 9 (q � x decimal digits). For example,
this method applied to the constant k3 used to illustrate
Method 1 (for truncation of a 19-digit number to 16 digits)
allowed for a reduction of the number of bits from y ¼ 65 to
y ¼ 62 (importantly, because k3 fits now in a 64-bit integer).

2.2 Method 2 for Rounding a Decimal Coefficient

This method has the advantage that the number of bits in
the approximation of 5�x is less by x than that for 10�x in
Method 1, as stated in the following property.

Property 3. Let q 2 IN, q > 0, C 2 IN, 10q�1 � C � 10q � 1,
x 2 f1; 2; 3; . . . ; q � 1g, a n d � ¼ log210. I f y 2 IN,
y � df� � xg þ � � qe � x, and hx is a y-bit approximation of
5�x r o u n d e d u p , i . e . , hx ¼ ð5�xÞRP;y ¼ 5�x � ð1þ "Þ,
0 < " < 2�yþ1, then bbC � 2�xc � hxc ¼ bC=10xc.

However, determining exact cases and midpoints is
slightly more complicated than with Method 1.

Two fractions are removed by truncation: the first in bC �
2�xc and the second in bbC � 2�xc � hxc. To determine
whether the rounding was exact, test first whether the
lower x bits of C are zero (if they are not, C could not have
been divisible by 10x). If C was divisible by 2x, we just need
to test bC � 2�xc for divisibility by 5x. This is done by
examining the fraction removed by truncation in
bbC � 2�xc � hxc, using a property similar to Property 2 from
Method 1. Actually, exact and midpoint cases can be
determined together if the first shift is by x� 1 bits only
(and not by x bits). If C had the x lower bits equal to zero,
the rounding might be exact. If it had only x� 1 bits equal
to zero, the rounding might be for a midpoint. In both cases,
the answer is positive if the fraction f removed by the last
truncation in bbC � 2�xþ1c � hxc satisfies conditions similar to
those from Property 2. The least significant bit in bbC �
2�xþ1c � hxc and the values of the fractions removed in the
two truncations will tell whether the rounding was exact,
for a midpoint, or for a value to the left or to the right of a
midpoint.

3 ADDITION AND MULTIPLICATION

Addition and multiplication were implemented using
straightforward algorithms, with the rounding step carried
out as explained in the previous section. The following

pseudocode fragment describes the algorithm for adding two

decimal floating-point numbers encoded using the binary

format, n1 ¼ C1 � 10e1 and n2 ¼ C2 � 10e2, whose significands

can be represented with p decimal digits (C1, C2 2 ZZ,

0 < C1 < 10p, and 0 < C2 < 10p). For simplicity, it is as-

sumed thatn1 � 0 and e1 � e2 and that the rounding mode is

set to rounding to nearest: n ¼ ðn1þ n2ÞRN;p ¼ C � 10e. In

order to make rounding easier when removing x decimal

digits from the lower part of the exact sum, 1=2 � 10x is added

to it, and rounding to nearest is reduced to truncation except

possibly when the exact sum is a midpoint. The notation

digitsðXÞ is used for the minimum number of decimal digits

needed to represent the integer value X.

q1 ¼ digitsðC1Þ, q2 ¼ digitsðC2Þ // table lookup

if jq1þ e1� q2� e2j � p
n ¼ C1 � 10e1 or n ¼ C1 � 10e1 � 10e1þq1�p (inexact)

else // if jq1þ e1� q2� e2j � p� 1

C0 ¼ C1 � 10e1�e2 þ C2 // binary integer

q ¼ digitsðC0Þ // table lookup
if q � p

return n ¼ C0 � 10e2 (exact)

else // if q 2 ½pþ 1; 2 � p�
continue

x ¼ q � p, decimal digits to be removed from lower

part of C0, x 2 ½1; p�
C00 ¼ C0 þ 1=2 � 10x

kx ¼ 10�x � ð1þ �Þ, 0 < � < 2�d2���pe

C	 ¼ C00 � kx ¼ C00 �Kx � 2�Ex
f	 = the fractional part of C	 // lower Ex bits of

product C00 �Kx

if 0 < f	 < 10�p

if bC	c is even

C ¼ bC	c
else

C ¼ bC	c � 1

else

C ¼ bC	c
n ¼ C � 10e2þx

if C ¼ 10p

n ¼ 10p�1 � 10e2þxþ1 // rounding overflow

if 0 < f	 � 1=2 < 10�p

the result is exact

else

the result is inexact

endif

For multiplication, the algorithm to calculate n ¼
ðn1 � n2ÞRN;p ¼ C � 10e for rounding to nearest is very
similar. There are only two differences with respect to
addition: the multiplication algorithm begins with

C0 ¼ C1 � C2 // binary integer

q ¼ digitsðC0Þ // table lookup

and at the end, before checking for rounding overflow and

inexactness, the final result is n ¼ C � 10e1þe2þx instead of

n ¼ C � 10e2þx.
The most interesting aspects are related to the rounding

step. For addition and multiplication, the length of the exact

result is at most 2 � p decimal digits (if this length is larger
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for addition, then the smaller operand is just a rounding
error compared to the larger one, and rounding is trivial).
This also means that the number x of decimal digits to be
removed from a result of length q 2 ½pþ 1; 2 � p� is between 1
and p. It is not difficult to prove that the comparisons for
midpoint and exact case detection can use the constant 10�p

instead of 10�x, thus saving a table read.
Note that 10�p (or 10�x) cannot be represented exactly in

binary format, so approximations of these values have to be
used. It is sufficient to compare f	 or f	 � 1

2 (both have a
finite number of bits when represented in binary) with a
truncation t	 of 10�p whose unit in the last place is no larger
than that of f	 or f	 � 1

2 . The values t	 are calculated such
that they always align perfectly with the lower bits of the
fraction f	, which makes the tests for midpoints and
exactness relatively simple in practice.

The IEEE status flags are set correctly in all rounding
modes. The results in rounding modes other than to nearest
are obtained by applying a correction (if needed) to the result
rounded to nearest, using information on whether the precise
result was an exact result in the IEEE sense, a midpoint less
than an even floating-point number, a midpoint greater than
an even number, an inexact result less than a midpoint, or an
inexact result greater than a midpoint.

4 DIVISION AND SQUARE ROOT

The sign and exponent fields are easily computed for these
two operations. The approach used for calculating the
correctly rounded significand of the result was to scale the
significands of the operands to the integer domain and to
use a combination of integer and floating-point operations.

The division algorithm is summarized below, where p is
the maximum digit size of the decimal coefficient, as
specified by the following format: p ¼ 16 for a 64-bit
decimal and p ¼ 34 for a 128-bit decimal format. EMIN is
the minimum decimal exponent allowed by the format.
Overflow situations are not explicitly treated in the
algorithm description below; they can be handled in the
return sequence, when the result is encoded in BID format.

if C1 < C2

nd ¼ digitsðC2Þ � digitsðC1Þ // table lookup

C10 ¼ C1 � 10nd

scale ¼ p� 1

ifðC10 < C2)

scale ¼ scaleþ 1

endif

C1	 ¼ C10 � 10scale

Q0 ¼ 0

e ¼ e1� e2� scale� nd // expected exponent

else

Q0 ¼ bC1=C2c, R ¼ C1�Q � C2 // long integer

divide and remainder

if ðR ¼¼ 0Þ
return Q � 10e1�e2 // result is exact

endif

scale ¼ p� digitsðQÞ
C1	 ¼ R � 10scale

Q0 ¼ Q0 � 10scale

e ¼ e1� e2� scale // expected exponent
endif

Q1 ¼ bC1	=C2c, R ¼ C1	 �Q1 � C2 // long integer

divide and remainder

Q ¼ Q0þQ1

if ðR ¼¼ 0Þ
eliminate trailing zeros from Q:

find largest integer d s.t. Q=10d is exact

Q ¼ Q=10d

e ¼ eþ d // adjust expected exponent

if ðe � EMINÞ
return Q � 10e

endif

if ðe � EMINÞ
round Q � 10e according to current rounding mode

// rounding to nearest based on comparing C2

and 2 � R
else

compute correct result based on Property 1

// underflow

endif

The square root algorithm (not presented here) is some-
what similar, in the sense that it requires computing an integer
square root of 2 � p digits (while division required an integer
division of 2 � pby pdigits). Rounding of the square root result
is based on a test involving long integer multiplication.

5 CONVERSIONS BETWEEN BINARY AND DECIMAL

FORMATS

Conversions between IEEE 754 binary formats and the new
decimal formats may sometimes be needed in user applica-
tions, and the revised standard specifies that these should
be correctly rounded. We will first consider the theoretical
analysis determining the accuracy required in intermediate
calculations and then describe more details of the algo-
rithms for some typical source and target formats.

5.1 Required Accuracy

We analyze here how close, in relative terms, a number x in
one format can be to a rounding boundary y (either a
floating-point number or the midpoint between two
floating-point numbers) in another. If we can establish a
lower bound � for all cases such that either x ¼ y or
jx=y� 1j > �, then we will be able to make a rounding
decision based on an approximation good to a relative error
of order �, as spelled out in more detail below.

Consider converting binary floating-point numbers to a
decimal format; essentially, similar reasoning works the
other way round. We are interested in how close, in relative
terms, the answer can be to a decimal floating-point number
(for directed rounding modes) or a midpoint between them
(for rounding to nearest), i.e., either of

2em

10dn
� 1

����
���� or

2em

10dðnþ 1=2Þ � 1

����
����;

where integers m and n are constrained by the precision of
the formats, and d and e are constrained by their exponent
ranges. We can encompass both together by considering
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problems of the form j 2e�1m
10dn
� 1j, where n is bounded by

twice the usual bound on the decimal coefficient.

5.1.1 Naive Analysis

Based on the most straightforward analytical reasoning,
we can deduce that either the two numbers are exactly
equal or else

2em

10dn
� 1

����
���� ¼
j2em� 10dnj
j10dnj � 1

j10dnj

because all quantities are integers. However, this bound is
somewhat discouraging, because the exponent d may be
very large, e.g., d ¼ 6;111 for Decimal128.

On the other hand, it seems plausible on statistical

grounds that the actual worst case is much less bad.

For example, imagine distributing N input numbers (say,

N ¼ 264 for the two 64-bit formats) randomly over a format

with M possible significands. The fractional part of the

resulting significand will probably be distributed more or

less randomly in the range 0 � x < 1, so the probability of

its being closer than � to a floating-point number will be

about �. Therefore, the probability that none of them will be

closer than � is about ð1� �ÞN ¼ ð1� �Þ
1
�

N�

� e�N�. A relative

difference of � typically corresponds to an absolute error in

the integer significand of about � ¼ �M, and so, the

probability of relative closeness � is about 1� e�MN�. Thus,

we expect the minimum to be of order � � 1=ðMNÞ.

5.1.2 Diophantine Approximation Analysis

The above argument is really just statistical hand-waving
and may fail for particular cases. However, we can establish
such bounds rigorously by rearranging our problem. We
are interested in

2em

10dn
� 1

����
���� ¼

2e=10d � n=m
n=m

����
����:

We can therefore consider all the permissible pairs of
exponent values e and d, finding the n=m with numerator
and denominator within appropriate bounds that gives the
best (unequal) approximation. In fact, if we expand the
exponent range a little, it is easy to see that we can assume
both m and n to be normalized. This gives strong
correlations between the exponents, meaning that we only
have to examine a few possible e for each d and vice versa.

For each e and d, we can find lower bounds on this quantity
subject to the size constraints on m and n, using a variant of
the usual algorithms in Diophantine approximation based on
computing a sequence of convergents using mediants or
continued fractions. (For those interested, we spell out the
exact Diophantine approximation algorithm that we use in
the Appendix.) As expected from the naive statistical
argument, the bounds determined are much better, typically
a few bits extra beyond the sum of the precisions of the input
and output formats. For example, the most difficult case for
converting from Binary64 to Decimal64 is the following, with
a relative distance of 2�115:53:

5789867926332032 � 2479 � 9037255902774040
1

2
� 10144;

and the most difficult for conversion from Decimal64 to
Binary64 is a relative difference of 2�114:62 for

3743626360493413 � 10�165 � 6898586531774200
1

2
� 2�549:

5.2 Implementations

We will now show the general pattern of the actual
algorithms for conversions in both directions; in fact, both
directions have a lot of stylistic similarities. Generally, we
consider the two problems “parametrically,” using a
general p for the precision of the binary format and d for
the number of decimal digits in the decimal format.
However, some structural differences arise depending on
the parameters, two of which we mention now.

First, for conversions between certain pairs of formats
(e.g., from any binary format considered into the
Decimal128 format), no overflow or underflow can occur,
so certain tests or special methods noted below can be
omitted and are not present in the actual implementations.

Second, many of the algorithms involve scaled prestored
approximations to values such as 10e=2f . In the presentation
below, we assume that such values are stored for all possible
input exponents (the output exponent is determined
consequentially). For several of our implementations, this
is indeed the case; doing so ensures high speed and allows
us to build appropriate underflow of the output into the
tables without requiring special program logic. However,
for some conversions, in particular those into Decimal128,
the storage requirement seems excessive, so the necessary
values are instead derived internally from a bipartite table.

5.2.1 Decimal-Binary Conversion Algorithm

Consider converting from a decimal format with d decimal
digits to a binary format with precision p. The basic steps of
the algorithm are the following:

. Handle NaN, infinity and zero, and extremely large
and small inputs.

. Strip off the sign, so the input is now 10em, where
0 < m < 10d.

. “Normalize” the input coefficient to the range
10d=2 � m < 10d by multiplying by a suitable 2k.

. Pick provisional binary exponent f based on
m and e.

. Form scaled product 10e

2f
m to approximate the binary

significand.
. Round depending on the sign and rounding mode to

give binary significand n. If n ¼ 2p, set n ¼ 2p�1 and
add 1 to the provisional exponent.

. Subtract k from the provisional exponent, check for
overflow, underflow, and inexactness, and combine
with the sign.

We now consider some of the central steps in more
detail, starting with the selection of the provisional binary
exponent. If we set f ¼ dðeþ dÞ log2 10e � p, then we have
2fþp�1 < 10eþd � 2fþp. Therefore, for any floating-point
number 10em with exponent e and significand
10d=2 � m < 10d, we have

2f�12p�1 < 10em < 2f2p:
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That is, x lies strictly between the smallest normalized
binary floating-point number with exponent f � 1 and the
next beyond the largest with exponent f . We therefore
have only two possible choices for the “provisional
exponent” f . (We say provisional because rounding may
still bump it up to the next binade, but this is easy to check
at the end.) And that is without any knowledge of m,
except the assumption that it is normalized. Moreover, we
can pick the exact mmin that acts as the breakpoint between
these possibilities:

mmin ¼ d2fþp�1=10ee � 1;

so 10emmin < 2fþp�1 � 10eðmmin þ 1Þ. Thus, we can pick the
provisional exponent to be f � 1 for all m � mmin and f for
all m > mmin, and we are sure that 2f2p�1 � x < 2f2p. In the
future, we will just use f for this correctly chosen
provisional exponent.

Now, we aim to compute n with 2fn � 10em, i.e., the
left-hand side should be a correctly rounded approxima-
tion of the right-hand side. Staying with the provisional
exponent f , this entails finding a correctly rounded integer
n � 10e

2f
m. We do this by multiplying by an approximation

to 10e=2f scaled by 2q for some suitably chosen q and
rounded up, i.e.,

r ¼ d2q10e=2fe;

and truncating by shifting to the right by q bits. How do
we choose q? From the results above, given the input and
output formats, we know an � > 0 such that if n 6¼ 10e

2f
m

or nþ 1
2 6¼ 10e

2f
, then their relative difference is at least �.

We have

2q10e

2f
� r < 2q10e

2f
þ 1;

and therefore (since m < 10d)

10e

2f
m � mr

2q
<

10e

2f
mþ 10d

2q
:

We want to make a rounding decision for 10e

2f
m based on

mr
2q . First, since the latter is an overestimate, it is immediate
that if the true result is � a rounding boundary, so is the
estimate. So we just need to check that if the true answer is
< a rounding boundary, so is the estimate. We know that if
the true answer is < a rounding boundary, then so is
10e

2f
mð1þ �Þ, so it suffices to show that

10e

2f
mþ 10d

2q
� 10e

2f
mð1þ �Þ;

i.e., that 10d

2q � 10e

2f
m�. By the choice of f made, we have

2f2p�1 � 10em, so it suffices to establish that 10d

2q � 2p�1�.
We also want to be able to test whether a conversion is

exact. If it is, then the fractional part of mr2q is between 0 and
10d=2q by the bound noted above. If it is not, then the
fractional part is at least 2p�1�� 10d=2q. To discriminate
cleanly, we want this to be at least 10d=2q, so we actually
want to pick a q such that 10d

2q � 2p�2� or, in other words,
2q � 10d

2p�2�
.

For example, to convert from Decimal64 to Binary64, we
need 2q � 1016

251�2�114:62 (based on the above best approximation

results), i.e., q � 117. To convert from Decimal32 to
Binary32, we need 2q � 107

2222�54:81 , i.e., q � 57. In fact, we
almost always make q slightly larger than necessary so that
it is a multiple of 32 or 64. This makes the shift by q more
efficient since it just amounts to picking words of a
multiword result.

When q is chosen satisfying these constraints, we just
need to consider the product mr to make our rounding
decisions. The product with the lowest q bits removed is the
correctly truncated significand. Bit q � 1 is the rounding bit,
and the bottom q � 1 bits (0 to q � 2) can be considered as a
sticky bit: test if it is at least 10d=2q. Using this information,
we can correctly round in all rounding modes. Where the
input is smaller in magnitude than the smallest possible
number in the output format, we artificially limit the
effective shift so that the simple interpretation of “sticky”
bits does not need changing.

The mechanics of rounding uses a table of “boundaries”
against which the lowest q bits of the reciprocal product
(i.e., the “round” and “sticky” data) is compared. If this
value is strictly greater than the boundary value, the
truncated product is incremented. (In the case where it
overflows the available significands, the output exponent is
one greater than the provisional exponent.) To avoid
lengthy tests, these boundaries are indexed by a composi-
tion of bitfields 4rþ 2sþ l, where r is the rounding mode, s
is the sign of the input, and l is the least significant bit of the
truncated exponent.

5.2.2 Binary-Decimal Conversion Algorithm

Consider converting from a binary format with precision p
to a decimal format with d decimal digits. An important
difference from decimal-binary conversion is that the
exponent in the output is supposed to be chosen as close
to zero as possible for exact results and as small as possible
for inexact results. The core algorithm is given as follows:

. Handle NaN, infinity and zero, and extremely large
and small inputs.

. Strip off the sign, so the input is 2em with
0 < m < 2p.

. Normalize the input so that 2p�1 � m < 2p (this will
usually be the case already).

. Filter out and handle exact results where the main
path would give the wrong choice of output
exponent (albeit numerically the same).

. Pick provisional decimal exponent f based on m
and e.

. Form scaled product 2e

10f
m to approximate the

decimal coefficient.
. Round depending on the sign and rounding mode to

give decimal coefficient n. If n ¼ 10d, set n ¼ 10d�1

and add 1 to the provisional exponent.
. Check for overflow, underflow, and inexactness and

combine with the sign.

We consider some of the main steps in more detail,
starting with the filtering out of exact cases where we
cannot rely on the main path of the algorithm to correctly
force the exponent toward zero. We let through either
inexact cases or those where the main path will behave
correctly, e.g., large integers beyond the output coefficient
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range such as 2200. To maximize code sharing in this part of

the algorithm, we always treat the input as a quad precision

number, so 2112 � m < 2113, and the exponent is adjusted

accordingly. We can pass through any inputs with e > 0

since in this case, the input is � 2113, which is too large for

the significand of any of the decimal formats. So we can

assume that e � 0; let us write t for the number of trailing

zeros in m. Now, there are two cases:

. If eþ t � 0, the input is an integer, so we treat it
specially iff it fits in the coefficient range. We just
need to test if the shifted coefficient m0 ¼ m=2�e is
within range for the coefficient range of the output
format. If so, that is the output coefficient, and the
output exponent is zero. Otherwise, we can pass
through to the main path.

. If a ¼ �ðeþ tÞ > 0, then we have a noninteger
input. If special treatment is necessary, the result
will have a coefficient of m0 ¼ 5aðm=2tÞ and an
exponent of �a. If a > 48, this can be dismissed
since 549 > 1034, which is too big for any decimal
format’s coefficient range. Otherwise, we determine
whether we are indeed in range by a table based
on a and, if so, get the multiplier from another
table indexed by a.

Now, we consider the main path. If we set

f ¼ dðeþ pÞ log10 2e � d, we have 10f�1þd < 2eþp � 10fþd.

This means that for any floating-point number x with

exponent e, we have

10f�110d�1 ¼ 10f�1þd=10 < 2eþp=10

< 2eþp�1 � x < 2eþp � 10fþd:

That is, x lies strictly between the smallest normalized

decimal number with exponent f � 1 and the next beyond

the largest with exponent f . We therefore have only two

possible choices for the “provisional exponent” f . (We say

provisional because rounding may still bump it up to the

next decade, but this is easy to check at the end.) And that is

without any knowledge of m, except the assumption that it

is normalized. Moreover, we can pick the exact mmin that

acts as the breakpoint between these possibilities:

mmin ¼ d10fþd�1=2ee � 1;

so 2emmin < 10fþd�1 � 2eðmmin þ 1Þ. Thus, we can pick the

provisional exponent to be f � 1 for all m � mmin and f for

all m > mmin, and we are sure that 10f10d�1 � x < 10f10d.

In the future, we will just use f for this correctly chosen

provisional exponent.
Now, we aim to compute n with 10fn � 2em, i.e., the left-

hand side should be a correctly rounded approximation of

the right-hand side. Staying with the provisional exponent f ,

this entails finding a correctly rounded n � 2e

10f
m. We do this

multiplying by an approximation to 2e=10f scaled by 2q for

some suitably chosen q and rounded up, i.e.,

r ¼ d2qþe=10fe;

and truncating by shifting to the right by q bits. How do we

choose q? From the results above, we know an � such that if

n 6¼ 2e

10f
m or nþ 1

2 6¼ 2e

10f
, then their relative difference is at

least �. We have

2qþe

10f
� r < 2qþe

10f
þ 1;

and therefore (since m < 2p)

2e

10f
m � mr

2q
<

2e

10f
mþ 2p�q:

We want to make a rounding decision for 2e

10f
m based on

mr
2q . First, since the latter is an overestimate, it is immediate
that if the true result is � a rounding boundary, so is the
estimate. So we just need to check that if the true answer is
< a rounding boundary, so is the estimate. We know that if
the true answer is < a rounding boundary, then so is
2e

10f
mð1þ �Þ, so it suffices to show that

2e

10f
mþ 2p�q � 2e

10f
mð1þ �Þ;

i.e., that 2p�q � 2e

10f
m�. By the choice of f made, we have

10f10d�1 � 2em, so it suffices to establish that 2p�q � 10d�1�.
We also want to be able to test whether a conversion is

exact. If it is, then the fractional part of mr2q is between 0 and
2p�q by the bound noted above. If it is not, then the
fractional part is at least 10d�1�� 2p�q. To discriminate
cleanly, we want this to be at least 2p�q, so we actually want
to pick a q such that 2p�qþ1 � 10d�1� or, in other words,
2q � 2pþ1

10d�1�
.

For example, to convert from Binary64 to Decimal64,
we need 2q � 254

10152�115:53 (based on the above best approx-
imation results), i.e., q � 120. To convert from Binary32 to
Decimal32, we need 2q � 225

1062�51:32 , i.e., q � 57.
When q is chosen satisfying these constraints, we just

need to consider the product mr to make our rounding
decisions. The product with the lowest q bits removed is the
correctly truncated significand. Bit q � 1 is the rounding bit,
and the bottom q � 1 bits (0 to q � 2) can be considered as a
sticky bit: zero out the lowest p bits and test whether the
result is zero or nonzero or, in other words, test whether the
bitfield from bit p to bit q � 2 is nonzero. Using this
information, we can correctly round in all rounding modes.
The approach uses exactly the same boundary tables as in
the decimal-binary case discussed previously.

6 NONHOMOGENEOUS DECIMAL FLOATING-POINT

OPERATIONS

The IEEE 754R Standard mandates that the binary and the
decimal floating-point operations of addition, subtraction,
multiplication, division, square root, and fused multiply-
add have to be capable of rounding results correctly to any
supported floating-point format, for operands in any
supported floating-point format in the same base (2 or 10).

The more interesting cases are those where at least some of

the operands are represented in a wider precision than that of

the result (such a requirement did not exist in IEEE 754-1985).

There are thus a relatively large number of operations that

need to be implemented in order to comply with this

requirement. Part of these are redundant (because of the

commutative property), and others are trivial, but several
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where at least some of the operands have a larger precisionN0

than the precision N of the result require a more careful

implementation. One solution is to implement each operation

separately, for example, for Decimal128þDecimal64 ¼
Decimal64, Decimal128þDecimal128 ¼ Decimal64, etc. How-

ever, since these nonhomogeneous operations will occur

quite rarely in practice, an alternate solution was chosen. If a

floating-point operation has to be performed on operands of

precision N0 and the result has to be rounded to precision

N < N0, the implementation is based on

1. an existing operation of the same type that accepts
operands of precision N0 and rounds the result to
precision N0 and

2. an existing floating-point conversion operation from
precision N0 to precision N .

This is a more economical solution than implementing an
independent operation with operands of precision N0 and
result of precision N , especially since the number of pairs
ðN0; NÞ can be quite large for practical purposes when
several floating-point formats are supported (the same
method is applicable to binary floating-point operations,
where the precisions may include formats with 24, 53, 64,
and 113 bits in the significand). However, this two-step
method works correctly only with directed IEEE rounding
modes: rounding down, rounding up, and rounding toward
zero. If the rounding method is to nearest-even or to
nearest-away, then in rare cases, double rounding errors
(of 1 ulp) may occur (rounding to nearest-away is similar to
the rounding to nearest-even, with one difference: mid-
points between two consecutive floating-point numbers are
rounded to the floating point of larger magnitude of the two
by the former and to the floating-point with an even
significand by the latter). To correct against the possibility
of such errors, a third component is added to the
implementation:

3. correction logic against double rounding errors.

The conditions that cause double rounding errors and
the logical equations for their correction will be presented
next—first for rounding to nearest-even and then for
rounding to nearest-away.

In rounding-to-nearest-even mode, double rounding
errors may occur when the exact result res	0 of a floating-
point operation with operands of precision N0 is rounded
correctly (in the IEEE 754R sense) first to a result res0 of
precision N0, and then, res0 is rounded again to a narrower
precision N . Sometimes, the result res does not represent
the IEEE-correct result res0 that would have been obtained
were the original exact result res	0 rounded directly to
precision N . In such cases, res differs from res0 by 1 ulp,
and the error that occurs is called a double rounding error.
Only positive results will be considered in this context, as
the treatment of negative results is similar because round-
ing to nearest is symmetric with respect to zero. A double
rounding error for rounding to nearest-even can be upward
(when the result res is too large by 1 ulp) or downward
(when the result res is too small by 1 ulp).

For example, consider the addition operation of two
decimal floating-point values in 128-bit format ðN0 ¼ 34Þ,

with the result rounded correctly to 128-bit format
ðN0 ¼ 34Þ, as specified by the IEEE 754R Standard:

a ¼ 10000000000000015 	 10�16;

b ¼ �1 	 10�34;

res0 ¼ ðaþ bÞRN;34

¼ 1000000000000001500000000000000000 	 10�33:

(The notation xRN;34 indicates the rounding of x to
nearest-even to 34 decimal digits.) Next, the result res0 is
rounded to 64-bit format ðN ¼ 16Þ:

res ¼ ðres0ÞRN;16 ¼ 1000000000000002 	 10�15:

This result is different from what would have been
obtained by rounding a + b directly to precision N ¼ 16; a
double rounding error of 1 ulp, upward, has occurred:

res0

¼ ð10000000000000014999999999999999999 	 10�34ÞRN;16

¼ 1000000000000001 	 10�15:

However, not all nonhomogeneous operations can lead
to double rounding errors. For example, of the eight
possible variations of addition (each argument and the
result can be in any of the three formats), only three
required the presence of correction logic, where some
operands are in Decimal128 format, and the result is in
Decimal64. In general, correction of double rounding errors
can be achieved by using minimal additional information
from the floating-point operation applied to operands of
precision N0 with the result rounded to precision N0 and
the conversion of the result of precision N0 to precision N ,
where N0 > N . This extra information consists of four
logical indicators for each of the two rounding operations
(N0 to N0 and then N0 to N), which can be used for
correcting the result when a double rounding occurs
(C notation is used; MP denotes a midpoint between two
consecutive floating-point numbers):

inexact lt MP; inexact gt MP; MP lt even; MP gt even:

A fifth indicator can be derived from the first four:

exact ¼ !inexact lt MP && !inexact gt MP &&

!MP lt even && !MP gt even:

This information is used to either add 1 or subtract 1 to/
from the significand of the second result, in case a double
rounding error occurred. This can be an efficient solution
for implementing correctly rounded operations with oper-
ands of precision N0 and results of precision N ðN0 > NÞ,
instead of having complete implementations for these less
frequently used but mandatory operations defined in
IEEE 754R. (It can be noted, however, that for certain
floating-point operations, under special circumstances,
double rounding errors will not occur; in most cases,
however, when performing two consecutive rounding
operations as explained above, double rounding errors
can occur. For example, if a binary floating-point division
operation or square root operation is performed on an
operand(s) of precision N0 and the result of precision N0 is
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then rounded a second time to a smaller precision N , then

double rounding errors are not possible if N0 > 2 �N þ 1.)
The logic for correcting double rounding errors when

rounding results to nearest-even is based on the observation

that such errors occur when

1. the first rounding pulls up the result to a value that
is a midpoint situated to the left of an even floating-
point number (as seen on the real axis) for the
second rounding (double rounding error upward) or

2. the first rounding pulls down the result to a value that
is a midpoint situated to the right of an even floating-
point number (on the real axis) for the second
rounding (double rounding error downward).

In C-like pseudocode, the correction method can be

expressed as follows (0 identifies the first rounding):

// avoid double rounding for rounding to nearest-even

sub1 ¼ MP lt even && ðinexact gt MP0kMP lt even0Þ
add1 ¼ MP gt even && ðinexact lt MP0kMP gt even0Þ
if sub1 // double rounding error upward

significand- - // significand becomes odd

if significand ¼¼ b^ðN� 1Þ � 1

// falls below the smallest N-digit significand

significand ¼ b^N� 1 // largest significand in base b

unbiased_exp- - // decrease exponent by 1

endif

else if add1 // double rounding error downward

significand++

// significand becomes odd (so it cannot be b^N for b ¼ 2

or b ¼ 10)

endif

// Otherwise no double rounding error; result is already correct

If l, r, and s represent the least significant decimal digit

before rounding, the rounding digit, and the sticky bit

(which is 0 if all digits to the right of r are 0 and 1

otherwise), then

inexact lt MP ¼ ððr ¼¼ 0 && s ! ¼ 0Þk ð1 <¼ r&&r <¼ 4ÞÞ;
inexact gt MP ¼ ððr ¼¼ 5 && s ! ¼ 0Þk ðr > 5ÞÞ;
MP lt even¼ðððl percent 2Þ¼¼1Þ&&ðr¼¼5Þ&&ðs¼¼0ÞÞ;
MP gt even¼ðððl percent 2Þ¼¼0Þ&&ðr¼¼5Þ&&ðs¼¼0ÞÞ;
exact ¼ ððr ¼¼ 0Þ && ðs ¼¼ 0ÞÞ:

The correction logic modifies the result res of the second
rounding only if a double rounding error has occurred;
otherwise, res0 ¼ res is already correct. Note that after
correction, the significand of res0 can be smaller by 1 ulp
than the smallest N-digit significand in base b. The
correction logic has to take care of this corner case too.
For the example considered above, l0 ¼ 9, r0 ¼ 9, s0 ¼ 0,
l ¼ 1, r ¼ 5, and s ¼ 0. It follows that add1 ¼ 0 and sub1 ¼ 1,
and so, the double rounding error upward will be corrected
by subtracting 1 from the significand of the result. (But in
practice, for the BID library implementation, it was not
necessary to determine l, r, and s in order to calculate the
values of these logical indicators.)

The logic shown above remedies a double rounding
error that might occur when rounding to nearest-even and
generates the correct value of the result in all cases.

However, in certain situations, it is useful to know also
the correct rounding indicators from the second rounding.
For example, they can be used for correct denormalization
of the result res0 if its exponent falls below the minimum
exponent in the destination format. In this case, the
complete logic is expressed by the following pseudocode,
where in addition to correcting the result, the four rounding
indicators from the second rounding are also corrected if
double rounding errors occur:

// avoid a double rounding error and adjust rounding indicators

// for rounding to nearest-even

if MP lt even && ðinexact gt MP0kMP lt even0Þ
// double rounding error upward

significand- - // significand becomes odd

if significand ¼¼ b^ðN� 1Þ � 1

// falls below the smallest N-digit significand

significand ¼ b^N� 1 // largest significand in base b

unbiased_exp- - // decrease exponent by 1

endif

MP lt even ¼ 0

inexact lt MP ¼ 1

else if MP gt even && ðinexact lt MP0kMP gt even0Þ
// double rounding error downward

significand++
// significand becomes odd (so it cannot be b^N for b ¼ 2 or

b ¼ 10)

MP gt even ¼ 0

inexact gt MP ¼ 1

else if !MP lt even && !MP gt even && !inexact lt MP &

& !inexact gt MP

// if this second rounding was exact the result may still be

// inexact because of the previous rounding

if ðinexact gt MP0kMP lt even0Þ
inexact gt MP ¼ 1

endif

if ðinexact lt MP0kMP gt even0Þ
inexact lt MP ¼ 1

endif

else if ðMP gt even && ðinexact gt MP0kMP lt even0ÞÞ
// pulled up to a midpoint greater than an even floating-point

number

MP gt even ¼ 0

inexact lt MP ¼ 1

else if MP lt even && ðinexact lt MP0kMP gt even0Þ
// pulled down to a midpoint less than an even floating-point

number

MP lt even ¼ 0

inexact gt MP ¼ 1

else

// the result and the rounding indicators are already correct

endif

In rounding-to-nearest-away mode, double rounding

errors may also occur just as they do in rounding-to-

nearest-even mode: when the exact result res	0 of a floating-

point operation with operands of precision N0 is rounded

correctly (in the IEEE 754R sense) first to a result res0 of

precision N0, and then, res0 is rounded again to a narrower

precision N . Sometimes, the result res does not represent
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the IEEE-correct result res0 that would have been obtained

were the original exact result res	0 rounded directly to

precision N . In this case too, only positive results will be

considered, because rounding to nearest-away is symmetric

with respect to zero. A double rounding error for rounding

to nearest-away can only be upward.
The same example considered above for rounding to

nearest-even can be used for rounding to nearest-away. In

this case, we have

res0 ¼ ðaþ bÞRA;34

¼ 1000000000000001500000000000000000 	 10�34:

(The notation xRA;34 indicates the rounding of x to

nearest-away to 34 decimal digits.) The result res0 rounded

to 64-bit format ðN ¼ 16Þ is

res ¼ ðres0ÞRA;16 ¼ 1000000000000002 	 10�16:

This result is different from what would have been

obtained by rounding a + b directly to precision N ¼ 16; a

double rounding error of 1 ulp, upward, has occurred,

because

res0

¼ ð10000000000000014999999999999999999 	 10�34ÞRA;16

¼ 1000000000000001 	 10�16:

Again, correction of double rounding errors can be

achieved by using minimal additional information from the

floating-point operation applied to operands of precision N0

and result rounded to precision N0 and the conversion of

the result of precision N0 to precision N , where N0 > N .
The additional information consists in this case of just

three logical indicators for each of the two rounding

operations (N0 to N0 and then N0 to N):

inexact lt MP; inexact gt MP; MP:

A fourth indicator can be derived from the first three:

exact ¼ !inexact lt MP && !inexact gt MP && !MP:

The method for correction of double rounding errors

when rounding results to nearest-away is based on a similar

observation that such errors occur when the first rounding

pulls up the result to a value that is a midpoint between two

consecutive floating-point numbers, and therefore, the

second rounding causes an error of 1 ulp upward.
The correction method can be expressed as follows

(0 identifies again the first rounding):

// avoid a double rounding error for rounding to nearest-away

sub1 ¼ MP && ðMP0kinexact gt MP0Þ
if sub1 // double rounding error upward

significand- -

if significand ¼¼ b^ðN� 1Þ � 1

// falls below the smallest N-digit significand

significand ¼ b^N� 1

unbiased_exp- - // decrease exponent by 1

endif

// Otherwise no double rounding error; the result is already

correct

endif

Just as for rounding to nearest-even, the values of the
rounding digit r and of the sticky bit s can be used to
calculate

inexact lt MP ¼ ððr¼¼0&& s ! ¼0Þ jj ð1 <¼ r&& r <¼4ÞÞ;
inexact gt MP ¼ ððr¼¼5 && s ! ¼0Þ jj ðr > 5ÞÞ;
MP ¼ ððr¼¼5Þ && ðs¼¼0ÞÞ;
exact ¼ ððr¼¼0Þ && ðs¼¼0ÞÞ:

The correction is applied to the result res of the second
rounding based on the value of sub1 but only if a double
rounding error has occurred. Otherwise, res0 ¼ res is
already correct. Note that after correction, the significand
of res0 can be smaller by 1 ulp than the smallest N-digit
significand in base b. Again, the correction logic has to take
care of this corner case too. For the example shown above,
the correction signal sub1 ¼ 1 is easily calculated given
r0 ¼ 9, s0 ¼ 0, r ¼ 5, and s ¼ 0. The double rounding error is
corrected by subtracting 1 from the significand of the result.

Again, it may be useful to know also the correct
rounding indicators from the second rounding. The com-
plete correction logic is similar to that obtained for round-
ing to nearest-even.

This method was successfully applied for implementing
various nonhomogeneous decimal floating-point opera-
tions, with minimal overhead. It is worth mentioning again
that the same method can be applied for binary floating-
point operations in hardware, software, or a combination of
the two.

7 PERFORMANCE DATA

In this section, we present performance data in terms of
clock cycle counts needed to execute several library
functions. The median and maximum values are shown.
The minimum values were not considered very interesting
(usually, a few clock cycles) because they reflect just a quick
exit from the function call for some special-case operands.
To obtain the results shown here, each function was run on
a set of tests covering corner cases and ordinary cases. The
mix of data has been chosen to exercise the library
(including special cases such as treatment of NaNs and
infinities) rather than to be a representative of a specific
decimal floating-point workload.

These preliminary results give a reasonable estimate of
worst case behavior, with the median information being a
good measure of the performance of the library.

Test runs were carried out on four different platforms to
get a wide sample of performance data. Each system was
running Linux. The best performance was on the Xeon 5100
Intel164 platform, where the numbers are within one to
two orders of magnitude from those for possible hardware
solutions.

Table 1 contains clock cycle counts for a sample of
arithmetic functions. These are preliminary results as the
library is in the pre-beta development stage. A small
number of optimizations were applied, but significant
improvements may still be possible through exploitation
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of specific hardware features or careful analysis and
reorganization of the code.

Table 2 contains clock cycle counts for conversion
functions. It is worth noting that the BID library performs
well even for conversion routines to and from string format.

Table 3 contains clock cycle counts for other miscellaneous
IEEE 754R functions, which can be found in [20] under
slightly different names. For example, rnd_integral_

away128 and q_cmp_lt_unord128 are our implementa-
tions of, respectively, the IEEE 754R operations round-

ToIntegralTiesAway and compareQuietLess

Unordered on the Decimal128 type.
It is interesting to compare these latencies with those for

other approaches. For example, the decNumber package [9]
run on the same Xeon 5100 system has a maximum latency
of 684 clock cycles and a median latency of 486 clock cycles
for the add64 function. As a comparison, the maximum and
median latencies of a 64-bit addition on the 3.0-GHz Xeon
5100 are 133 and 71 clocks cycles, respectively. Another

example is that based on its median latency (71 clock cycles
for add64 in Table 1), the 64-bit BID add is less than four
times slower than a four-clock-cycle single-precision binary
floating-point add operation in hardware on a 600-MHz
Ultra Sparc III CPU of just a few years ago.

8 CONCLUSION

In this paper, we presented some mathematical properties
and algorithms used in the first implementation in software of
the IEEE 754R decimal floating-point arithmetic, based on the
BID encoding. We concentrated on the problem of rounding
correctly decimal values that are stored in binary format
while using binary operations efficiently and also presented
briefly other important or interesting algorithms used in the
library implementation. Finally, we provided a wide sample
of performance numbers that demonstrate that the possible
speedup of hardware implementations over software may
not be as dramatic as previously estimated. The implementa-
tion was validated through testing against reference func-
tions implemented independently, which used, in some
cases, existing multiprecision arithmetic functions.

As we look toward the future, we expect further
improvements in performance through algorithm and code
optimizations, as well as enhanced functionality, for
example, through addition of transcendental function
support. Furthermore, we believe that hardware support
can be added incrementally to improve decimal floating-
point performance as demand for it grows.

APPENDIX

ALGORITHMS FOR BEST RATIONAL APPROXIMATIONS

The standard problem in Diophantine approximation is to
investigate how well a number x can be approximated by
rationals subject to an upper bound on the size of the
denominator. That is, what is the minimal value of jx� p=qj
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for jqj � N? The usual approach to finding such approx-
imations is to generate sequences of rationals p1=q1 < x <

p2=q2 straddling the number of interest such that
p2q1 ¼ p1q2 þ 1, so-called convergents.

Usually, in the standard texts, one assumes that x is itself
irrational, so the case p=q ¼ x does not need to be
considered. In our context, however, the x we will be
concerned with are rational, so we need to make a few small
modifications to the standard approach. Moreover, it will be
useful for us to be able to restrict both the denominator and
numerator of the rational approximations, and it is simple
to extend the usual techniques to this case. We will
distinguish between left and right approximants and seek
to solve the two problems:

. Best left approximation to x: what is the rational p=q
with jpj �M, jqj � N , and p=q < x that minimizes
x� p=q?

. Best right approximation to x: what is the rational
p=q with jpj �M, jqj � N , and x < p=q that mini-
mizes p=q � x?

For simplicity, we will consider nonnegative numbers in

what follows, as well as fractions where both the numerator

and the denominator are positive. This is no real loss of

generality since a best left approximation to �x is the

negation of the best right approximation to x, and so on. We

will focus on finding best approximations subject only to a

denominator bound, but incorporating a numerator bound

is analogous. Moreover, we will always assume that M � 1

and N � 1, since otherwise, the problem is of little interest.

But note that even with this assumption, there may be no

best right approximation within some bounds. For example,

if x ¼ 2, there is no rational x < p=q such that jpj � 1.

Straightforward methods for solving the one-sided ap-

proximation problems can be based on a slightly modified

notion of convergent. A pair of rationals ðp1=q1; p2=q2Þ is said

to be a pair of left convergents if p2q1 ¼ p1q2 þ 1 and

p1=q1 < x � p2=q2

and a pair of right convergents if, again,p2q1 ¼ p1q2 þ 1and also

p1=q1 � x < p2=q2:

Note that a pair ðp1=q1; p2=q2Þ is a convergent in the usual
sense if it is both a pair of left convergents and a pair of
right convergents, since in this case, proper inequalities
hold at both sides. If we consider best left and right
approximations, then left and right convergent pairs,
respectively, retain the key property of two-sided conver-
gent pairs.

Theorem 1. Suppose p1=q1 < x � p2=q2 with p2q1 ¼ p1q2 þ 1.
Any other rational a=b that is a better left approximation to x
than p1=q1 must have a � p1 þ p2 and b � q1 þ q2.

Proof. Observe that such an a=b must satisfy p1=q1 < a=b <

x � p2=q2: This implies that

p1b < aq1;

aq2 < p2b;

and so, since we are dealing with integers,

p1bþ 1 � aq1;
aq2 þ 1 � p2b;

and, therefore,

p1bq2 þ q2 � aq1q2;
aq1q2 þ q1 � p2bq1;

yielding p1bq2þq1þq2�p2bq1. By the convergent property,
p2q1¼p1q2þ1, so p1bq2þq1þq2�p1bq2þb, i.e., q1þq2�b.
The proof of p1 þ p2 � a is exactly analogous. tu

Theorem 2. Suppose p1=q1 � x < p2=q2 with p2q1 ¼ p1q2 þ 1.
Any other rational a=b that is a better right approximation to x
than p2=q2 must have a � p1 þ p2 and b � q1 þ q2.

This theorem is the basis for the approximation algo-
rithms: we generate a sequence of left (respectively, right)
convergent pairs with increasing denominators as far as
possible until we exceed the bound. To start off, we use a
pair of approximants with denominator 1, which we know
is within the bounds (if N < 1, the whole question makes
little sense). We can get a starting pair of left and right
convergents by, respectively

. p1=q1¼dxe�1 and p2=q2¼dxe for left convergents and

. p1=q1¼bxc and p2=q2¼bxc þ 1 for right convergents.

From the preceding theorems, we know if we ever reach a
state where q1 þ q2 > N , we know, respectively, that p1=q1 is
the best left approximation with denominator bound N and
p2=q2 is the best right approximation with denominator
bound N . If on the other hand, q1 þ q2 < N , define

p ¼ p1 þ p2;
q ¼ q1 þ q2:

The fraction p=q is called the mediant of the two fractions
p1=q1 and p2=q2. Note that the pairs ðp1=q1; p=qÞ and
ðp=q; p2=q2Þ both have the convergent property:

ðp1 þ p2Þq1 ¼ p1ðq1 þ q2Þ þ 1;
p2ðq1 þ q2Þ ¼ ðp1 þ p2Þq2 þ 1;

since these both reduce to the original property after
canceling common terms from both sides:

p2q1 ¼ p1q2 þ 1:

Note that provided p1=q1 and p2=q2 are both in their
lowest terms, so is p=q, because of the convergent property
p2q1 ¼ p1q2 þ 1. Moreover, this property implies that the
fraction p=q is “automatically” in its lowest terms. So now,
we have two possibilities:

. If p=q < x (for left approximations) or p=q � x (for
right approximations), then the next pair of one-
sided convergents will be ðp=q; p2=q2Þ.

. If x � p=q (for left approximations) or x < p=q (for
right approximations), then the next pair of left
convergents will be ðp1=q1; p=qÞ.

We keep iterating this procedure; since the denominators
properly increase, we will eventually terminate when the
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next mediant exceeds the denominator limit. In practice,

one can sometimes reach pathological situations where an

infeasible number of mediant steps are to be taken. So

rather than make these steps one at a time, we can condense

multiple “go left” and “go right” operations into one. (This

is effectively like a traditional continued fraction algorithm,

except that we are more delicate about the limits on the

numerator and the denominator.) The following defines the

number of left and right steps we can take when finding left

approximations before we either need a step of the other

kind or exceed the denominator bound:

kleft ¼
N�q2

q1

j k
; if q1x ¼ p1;

min N�q2

q1

j k
; p2�q2x

q1x�p1

j k� �
; otherwise;

8<
:

and

kright ¼
N�q1

q2

j k
; if q2x ¼ p1;

min N�q1

q2

j k
; q1x�p1

p2�q2x

l m
� 1

� �
; otherwise:

8<
:

Now, if kleft > 0, our next left convergent pair will be

ðp1=q1; p=qÞ, where p ¼ p1kleft þ p2, and q ¼ q1kleft þ q2.

Otherwise, if kright > 0, our next left convergent pair will

be ðp=q; p2=q2Þ, where p ¼ p1 þ p2kright, and q ¼ q1 þ q2kright.

Otherwise, we have reached the denominator limit, and the

best left approximation is p1=q1. When finding right

approximations, the corresponding kleft and kright are just

a little different:

kleft ¼
N�q2

q1

j k
; if q1x ¼ p1;

min N�q2

q1

j k
; p2�q2x

q1x�p1

l m
� 1

� �
; otherwise;

8<
:

and

kright ¼
N�q1

q2

j k
; if q2x ¼ p1;

min N�q1

q2

j k
; q1x�p1

p2�q2x

j k� �
; otherwise:

8<
:

Of course, to find the best approximation to a number,

we see which of its best left and right approximations is

closer and pick either if they are equally close. (If the

number is itself rational, we may, depending on context,

also include the number if its denominator is within range.)
Another advantage of distinguishing left and right

approximations is that we can very easily generate the

closest k left or right approximations. For example, let p1=q1

be the best left approximation to x with denominator

bound N . The next-best left approximation to x with

denominator bound N must in fact be the best left

approximation to p1=q1 (since if it were > p1=q1, it would

contradict the best approximation status of p1=q1), and so

forth. In this way, we can also enumerate all rationals

subject to the denominator bound that are within some

given � > 0 of x. Of course, depending on x, N , and �, the

number of such approximations may mean that they are not

feasibly enumerable.
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