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Abstract. We contrast theorem provers and computer algebra systems, pointing out the advan-
tages and disadvantages of each, and suggest a simple way to achieve a synthesis of some of
the best features of both. Our method is based on the systematic separation of search for a
solution and checking the solution, using a physical connection between systems. We describe
the separation of proof search and checking in some detail, relating it to proof planning and
to the complexity class NP, and discuss different ways of exploiting a physical link between
systems. Finally, the method is illustrated by some concrete examples of computer algebra
results proved formally in the HOL theorem prover with the aid of Maple.
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1. Theorem provers vs. computer algebra systems

Computer algebra systems (CASs) seem superficially similarto computer
theorem provers: both are computer programs for helping people with for-
mal symbolic manipulations. However in practice there is surprisingly little
common ground between them, either as regards the internal workings of
the systems themselves or their respective communities of implementors and
users. CASs are used by (mostly applied) mathematicians, scientists and engi-
neers, typically to perform multiprecision arithmetic, operations on polyno-
mials (usually overR) and classical ‘continuous’ mathematics such as differ-
entiation, integration and series expansion. By contrast,theorem provers are
mainly used by computer scientists interested in systems verification, or by
logically-inclined mathematicians interested in formalization of mathematics
or experimenting with new logics.

CASs are much more popular than theorem provers. The most obvious
reason is that there are more people in their natural user communities as
described above; in general, formal logic is a more specialized interest than
differentiation. However there are other reasons too for the greater popularity
of CASs. They tend to be easier to use, so much so that they are increasingly
applied in education (though this is controversial). They also usually work



2 J. Harrison and L. Théry

faster since they are optimized for dealing efficiently withhigh-level mathe-
matical problems. However theorem provers offer the following advantages:
they are more expressive, they are more precise, and they aremore reliable.

As remarked by Corless and Jeffrey [14], the typical computer algebra
system supports a rather limited style of interaction. The user types in an
expressionE; the CAS cogitates, usually not for very long, before returning
another expressionE0. (If E andE0 are identical, that usually means that the
CAS was unable to do anything useful. Unfortunately, as we shall see, the
converse does not always hold!) The implication is that we should accept the
theorem` E = E0. Occasionally some slightly more sophisticated data may
be returned, e.g. a condition on the validity of the equation, or even a set of
possible expressionsE01; : : : ; E0n with corresponding conditions on validity,
e.g. px2 = � x if x � 0�x if x � 0

However, the simple equational style of interaction is by far the most usu-
al. Certainly, CASs are almost never capable of expressing really sophisticat-
ed logical dependencies as theorem provers are.

When we say that CASs are imprecise, we mean that their mathematical
semantics is not always clear. For example, the polynomial expressionx2 +2x+ 1 can be read in several ways: as a member of the polynomial ringR[x]
(not to mentionZ[x] or C [x] . . . ), as the associated functionR ! R, or as
the value of that expression for some particularx 2 R. Such ambiguities
are particularly insidious since in many situations it doesn’t matter which
interpretation is chosen. We havex2 + 2x + 1 = (x + 1)2 for any of them.
However if we want to talk about irreducibility of a polynomial, we must be
dealing with the first interpretation, while an equation:(x2 � 1)=(x � 1) = x+ 1
is only strictly valid if we are considering the polynomialsas elements of
the field of rational functionsR(x); if they are interpreted as the associated
function or value this is false forx = 1.

At least, it is false if we interprets = t as ‘boths andt are defined and
equal’ or ‘either boths andt are undefined or both are defined and equal’,
but it is true on an interpretation ‘wherevers andt are both defined, they are
equal’. These ways of interpreting the equality sign all seem to appear in cer-
tain places if one reads the mathematical literature critically. Actually, Freyd
and Scedrov [17] use a special asymmetric ‘Venturi tube’ equality meaning
‘if the left is defined then so is the right and they are equal’.So there is yet
another ambiguity here.
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Even when a CAS can be relied upon to give a result that admits aprecise
mathematical interpretation, that doesn’t mean that its answers are always
right. For example, a recent version of Maple evaluates:Z 1�1px2 dx = 0

What seems to happen is that the simplification
px2 = x is applied,

regardless of the sign ofx. In general, CASs tend to perform simplifications
fairly aggressively, even if they aren’t strictly correct in all circumstances.
The policy is to try always to dosomething, even if it isn’t absolutely sound.
After all, it often happens that ignoring a few singularities in the middle of
a calculation does make no difference to the result. This policy may also
be a consequence of the limited equational style of interaction that we have
already drawn attention to. If the CAS has only two alternatives, to do nothing
or to return an equation which is true only with a few provisos, it might be felt
that it’s better to do the latter. The two concerns of imprecision and incorrect-
ness are in any case not easy to separate. For example, if a CASclaims thatddx(1=x) = �1=x2, is it assuming an interpretation of equality ‘either both
sides are undefined or both are defined and equal’? Or is it simply making a
mistake and forgetting the conditionx 6= 0? Very often this is not clear.

While computer algebra systems concentrate on efficient computation,
theorem provers stress validity. We shall see below that this is particularly
true of HOL and other members of the LCF family. Designers of such theo-
rem provers try hard to ensure that they do not make wrong inferences, even
if this leads to its being hard to make their systems do anything useful at all.

Interaction with theorem provers may vary. In automatic theorem prov-
ing, the user proposes challenges that the proverautomaticallytries to prove.
In interactive theorem proving, the user not only proposes the challenge but
gives some (if not all) reasoning steps that lead to the proof. Recently both
communities seem to be converging to a middle ground. For example, aproof
planningcomponent has been added to automatic theorem provers in order
to make user and prover cooperate in the discovery of the proof, while more
and more automation and decision procedures are being addedto mecha-
nized theorem provers. Generally, interaction with theorem provers is more
intricate than interaction with computation algebra systems. Rather than lines
of computation the user often has to deal with trees where each leaf contains
a formula to prove in some specific context.

Theorem provers are good at expressing and manipulating properties pre-
cisely. For example the propertypx2 = � x if x � 0�x if x � 0
can be represented by the theorem:
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4 J. Harrison and L. Théry8x 2 R: (x � 0)px2 = x) ^ (x � 0)px2 = �x)
It is then ensured that any attempt to rewrite an expression

py2 for somey with this theorem leads to the discharge of one of the two conditions.

2. LCF and HOL

Theorem provers descended from Edinburgh LCF [20] insist onreducing all
reasoning to formal proofs in something like a standard natural deduction
system. However, the user is able to write arbitrary programs in the meta-
language ML to automate patterns of inferences and hence reduce the tedium
involved. The original LCF system implemented Scott’s Logic of Computable
Functions (hence the name LCF), but as emphasized by Gordon [18], the
basic LCF approach is applicable to any logic, and now there are descendants
implementing a variety of higher order logics, set theoriesand constructive
type theories.

HOL [19] implements a version of simply typed�-calculus with logical
operations defined on top, more or less following Church [10]. It takes the
LCF approach a step further in that all theory developments are pursued ‘def-
initionally’: new mathematical structures may be defined only by exhibiting
a model for them in the existing theories, and new constants may only be
introduced by definitional extension (roughly speaking, merely being a short-
hand for an expression in the existing theory). This fits naturally with the LCF
style, since it ensures that all extensions, whether of the deductive system or
the mathematical theories, are consistent per construction. The former holds
because theorems mayonly be created by composing the basic logical rules.
This is enforced by encoding theorems as an ML abstract type whose only
constructors are these primitive rules. HOL has about a dozen such rules, and
they are all very simple.

The LCF methodology thus gives an outstanding combination of pro-
grammability and reliability. Assuming that the primitiverules are correct,1
then none of the derived rules built on top can ever give a false ‘theorem’,
and none of the derived theories can be inconsistent. And there is no shortage
of such extensions: HOL includes derived rules for rewriting, associative-
commutative rearrangement, linear arithmetic, tautologychecking, inductive
definitions and free recursive type definitions, among others, while the math-
ematical theories include numbers of various kinds, sets, lists and others. And
should a user want another rule or theory, they can write it themselves using
the same methodology.1 And of course that the implementation environment works correctly, but that’s always a
necessary assumption or we descend into infinite regress.
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While HOL was originally intended for hardware verificationapplications,
it has been used for many other things too. In particular there is a defini-
tional construction of the real numbers and associated theories of elementary
real analysis, including sequences, series, limits, continuity, differentiation
and integration, as well as the properties of common transcendental func-
tions such assin and log [21]. The integration theory we formalized, the
gauge integral [28, 24], obeys the Fundamental Theorem of Calculus without
additional differentiability assumptions; it also has thesame attractive limit
behaviour as the Lebesgue integral, which it properly includes. This analysis
development has helped to eliminate the bias towards ‘discrete’ mathematics
typical in theorem proving systems, and so it seems a good platform from
which to explore the relationship with computer algebra. Wehaven’t devel-
oped complex analysis, algebraic numbers, multivariate calculus, matrices,
and many other topics. But we have at least a foundation for further efforts,
and because of the LCF approach, we can feel more confident that if we prove
computer algebra results in HOL, they are both more precise and more reli-
able.

The LCF approach would seem at first sight to be hopelessly restrictive for
programming really advanced derived rules such as those found in comput-
er algebra. When one thinks of the wide variety of special purpose decision
procedures available, it seems implausible that they can all be modified to per-
form a breakdown to standard logical primitives, let alone efficiently. Perhaps
surprisingly, it often is practical — for a detailed analysis and a comparison
with other techniques such as ‘reflection’, see [22]. One reason is that infer-
ence patterns may be represented as general (object) theorems, which need
only be proved once, and can thereafter be used with just a little instantiation.
Algorithms can often be implemented in more or less the standard style, with
each step justified by a theorem. Another reason is that the processes of proof
discovery and proof checking can be quite different, which brings us back to
the topic of this paper.

Even under the LCF strictures, a result can be arrived at it any way what-
soever provided that it ischeckedby a rigorous reduction to primitive infer-
ences. This idea has already been used for example in work on first order
automation [27] and solving linear inequalities [7] in HOL.Now many com-
puter algebra systems include complicated algorithms and heuristics for var-
ious tasks. Implementing these directly in the LCF style would be a major
undertaking, and it seems unlikely that the results would beanything like as
efficient. However one often sees, at least when one is especially looking, that
many of the answers found may becheckedrelatively easily. The CAS can
arrive at the result in its usual way, and need not be hamperedby the need
to produce any kind of formal proof. The eventual checking may then be
done rigorously à la LCF, with proportionately little extra difficulty. To inte-
grate finding and checking, we can physically link the proverand the CAS. In
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what follows, these themes appear several times, so we beginby discussing
at length the issues that arise.

3. Finding and checking

From the perspective of computer theorem proving, there areinteresting dif-
ferences between proof finding and proof checking. Often thechecking pro-
cess is ‘easier’ in two particular senses, both of which are illustrated by the
factorization of numbers. For example, contrast the task ofmultiplying:

3490529510847650949147849619903898133417764638493387843990820577

and

32769132993266709549961988190834461413177642967992942539798288533

with the task of going from the product (say ‘r’) back to the above factors.
The latter seems more difficult, first from the point of view ofcomputation-
al complexity2, and second from the point of view of programming difficulty.
Multiplying n-digit numbers even in the most naive way requires onlyn2
operations. But factorizing ann-digit number is not even known to be poly-
nomial inn, and certainly seems likely to be worse than quadratic3. Moreover,
writing an adequate multiprecision arithmetic routine is not a very challeng-
ing programming exercise, but present-day factorization methods are rather
complex — it’s a hot research topic — and often rely for their justification on
fairly highbrow mathematics.

In general, to achieve a separation of proof search and proofchecking, we
want the search stage to produce some kind of ‘certificate’ that allows the
result to be arrived at by proof with acceptable efficiently.In the case of fac-
torization, the certificate was simply the factors. Often the certificate can be
construed simply as the ‘answer’ and the checking process a confirmation of
it. But as we shall see, other certificates are possible. Bundy’s ‘proof plans’,
for example, essentially use a complete proof as the certificate; obviously
a uniquely convenient one for checking by inference. The earlier example of2 The security of certain cryptographic schemes depends on that, though perhaps notonly
on that. In fact the above factorization was set as a challenge (‘RSA129’), and was eventually
achieved by a cooperative effort of around a thousand users lavishing spare CPU cycles on the
task.3 The problem is known to be in P if the Extended Riemann Hypothesis holds. Also, it’s
generally not as hard to prove compositeness nonconstructively, e.g. it’s pretty quick to check
that2r�1 6� 1 (modr), so by Fermat’s little theorem,r is composite.
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first order automation in HOL is similar, though there the proof search is com-
putationally intensive, whereas in proof planning, the main difference is that
the proof search involves sophisticated AI techniques. Indeed according to
[8], checking proof plans seemsslowerthan finding them, though it is much
easier to implement. In fact they report that ‘it is an order of magnitude less
expensive to find a plan that to execute it’, though this may bedue to a badly
implemented inference engine and the relatively limited problem domain for
the planner (inductive proofs).

3.1. RELATIONSHIP TO NP PROBLEMS

The classic definition of the complexity class NP is that it isthe class of prob-
lems solvable in polynomial time by a nondeterministic Turing machine (one
that can explore multiple possibilities in parallel, e.g. by replicating itself).
However, many complexity theory texts give another equivalent definition:
it is the class of problems whose solutions may becheckedin polynomial
time on adeterministicTuring machine. Of course when they are framed as
decision problems, as they usually are, there is no ‘solution’ to the problems
beyond yes/no; checking that is no different from finding it.But in general
there exists for each problem a key piece of data called acertificatethat can
be used in polynomial time to confirm the result. Often thisis the ‘answer’ to
the problem if the problem is rephrased as ‘find anx such thatP [x]’ rather
than ‘is there anx such thatP [x]?’. But in general, the certificate can be some
other piece of data.

The close similarity with our wish for efficient proof checking should now
be clear. We are interested in cases where a certificate can beproduced by an
algorithm, and this easily checked. Our version of the idea ‘easily check-
able’ is less pure and more practical, since in the assessment of what can
be checked ‘easily’ we include a number of somewhat arbitrary factors such
as the nature of the formal system at issue and the mathematical and pro-
gramming difficulty underlying the checking procedure. (For example, even
if factoring numbers turns out to be inP , it will almost certainly be dramat-
ically harder than multiplying the factors out again.) But the analogy is still
strikingly close.

The complementary problems to the NP ones are the co-NP ones.Here
it is negativeanswers that can be accompanied by a certificate allowing easy
checking. A good example of a co-NP problem is tautology checking, the dual
of the NP-complete problem of Boolean satisfiability. Boolean satisfiability
admits an easily checked certificate, viz, a satisfying valuation, but no such
certificate exists for tautologies, unlessP = NP . We may expect, therefore,
that our analogs of co-NP complete problems will be harder to support with
an efficient checking process. From a theoretical point of view this is almost
true by definition, but the practical situation is not so clear. It may be that
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algorithms that are used with reasonable success to performsearch in practice
could produce a certificate that allows easy checking.

For example, a problem that looks intuitively complementary to the prob-
lem of factorization is primality testing. However as shownby Pratt [32],
short certificates are possible and so the problem is not onlyin co-NP but
also in NP4. An especially strong form of this result is due to Pomerance[31],
who shows that every prime has anO(log p) certificate, or more precisely
that ‘for every primep there is a proof that it is prime which requires for its
verification(52+o(1))log2pmultiplications modp’. Of course whether useful
primality testing algorithms can naturally produce such certificates is still an
open question, but this very idea has been explored in practice by Elbers [15].

3.2. WHAT MUST BE INTERNALIZED?

The separation of proof search and proof checking offers an easy way of
incorporating sophisticated algorithms, computationally intensive search tech-
niques and elaborate heuristics, without compromising either the efficiency of
search or the security of proofs eventually found. It is interesting to enquire
which algorithms can, in theory and in practice, provide theappropriate cer-
tificates. If formal checkability is considered important,it may lead to a shift
in emphasis in the development and selection of algorithms for mathematical
computations.

We have placed in opposition two extreme ways of implementing an algo-
rithm as an LCF derived rule: to implement it entirely insidethe logic, jus-
tified by formal inference at each stage, or to perform an algorithm without
any regard to logic, yet provide a separate check afterwards. However, there
are intermediate possibilities, depending on what is required.

For example, consider the use of Knuth-Bendix completion toderive con-
sequences from a set of algebraic laws. Slind [34] has implemented this pro-
cedure in HOL, where at each stage the new equations are derived by infer-
ence. However the fact that any particular rewrite system resulting is canon-
ical is not proved inside the logic. This could be done either in an ad hoc
way for the particular system concerned, or could be done by internalizing
the algorithm and proving its correctness. Either would require much more
work, and cost much more in efficiency. And if all we want is to proveposi-
tiveconsequences of the rewrites, this offers no benefits. On theother hand to
provenegativeresults, e.g. that a group exists that does not satisfy a certain
equation, then this kind of internalization would be necessary. Such a theme
often appears in HOL, where the steps in an algorithm may all be justified by
inference, but the overall reasoning justifying its usefulness, completeness,
efficiency or whatever are completely external (one might say informal). We
shall give an example below where the correctness of a procedure is easy4 As already remarked, it’s probably inP .
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to see, but its completeness requires slightly more substantial mathematics.
Specifically, the presence of a certain factor suffices for the proof, but the
knowledge that such a factor will always be found, which justifies complete-
ness, is completely external.

4. Combining systems

The general issue of combining theorem provers and other symbolic com-
putation systems has recently been attracting more attention. As well as our
own experiments with a computer algebra system, detailed below, HOL has
for example been linked to other theorem provers [2] and to model checkers
[33]. Methodologies for cooperation between systems are classified by Cal-
met et al. [9] according to several different properties. For example, if more
than two systems are involved, the network topology is significant: are there
links between each pair or is all communication mediated by some central
system? A related issue is which, if any, systems in the network act as master
or slave. In our case, we use a system with just two components, HOL and
Maple, and HOL is clearly the master.

4.1. TRUST

One of the most interesting categorizations of such arrangements is accord-
ing todegree of trust. For example, our work does not involve trusting Maple
at all, since all its results are rigorously checked. However one might, at the
other end of the scale, trust all Maple’s results completely: if when given
an expressionE, Maple returnsE0, then the theorem̀ E = E0 is accept-
ed. Such an arrangement, exploiting a link between Isabelleand Maple, is
described by Ballarin et al. [3]. This runs the risk of importing into the theo-
rem prover all the defects in correctness of the CAS, which wehave already
discussed. However it may, if used only for problems in a limited domain, be
quite acceptable. For example, despite our best efforts, arithmetic by infer-
ence in HOL is inevitably rather slow, and the results of CASsare generally
pretty reliable. So one might use such a scheme, restricted to the evaluation
of ground terms, perhaps making explicit in the HOL theorem,in the case
of irrational numbers, the implied accuracy of the CAS’s result. For example
if ‘ evalf(Pi,20)’ in Maple returns3.1415926535897932385, we
may assert the theorem:` j� � 3:1415926535897932385j < 10�18
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An interesting way of providing an intermediate level of trust was pro-
posed by Mike Gordon5. This is to tag each theorem̀ derived by trusting
an external tool with an additional assumption logically equivalent to falsity.
We can define a new constant symbol for this purpose, bearing the name of
the external tool concerned;MAPLE in our case. The theoremMAPLE `  
is, from a logical point of view, trivially true. But pragmatically it is quite
appealing. First, it has a natural reading ‘assuming Maple is sound, then ’.
Moreover, any derived theorems that use this fact will automatically inherit
the assumptionMAPLE and any others like it, so indicating clearly the depen-
dence of the theorem on the correctness of external tools. A slightly different
version of this idea is implemented as the ‘oracles’ mechanism in the latest
version of Isabelle [30].

Finally, another possible method is to perform checking yetdefer it until
later, e.g. batching the checks and running them all overnight. This fits natu-
rally into the framework of lazy theorems proposed by Boulton [6]. Of course,
there is the defect that if one of the checks fails overnight,then the day’s work
might be invalidated, but one hopes that the external tool will generally give
correct answers.

Our finding-checking approach may seem unnecessarily pedantic and dif-
ficult, but it gives a reliable way of conforming to a definite logical calculus.
In any case, from a research point of view, it seems to raise the most interest-
ing questions.

4.2. IMPLEMENTATION ISSUES

In order to connect a computer algebra and a prover, we need first to define
how data are exchanged and how control is passed between the two sys-
tems. In our experiment, the implementation has been directly inspired by
CAS/PI [26]. In this work, the author presents an interactive mathematical
environment where different computer algebra systems can be used to per-
form computations. The connection between CAS/PI and the different com-
puter algebras use the idea ofsoftware busdeveloped in [13]. Applying this to
the problem of connecting a theorem prover to a computer algebra, we obtain
a software bus with three different processes: HOL, Maple, and a bridge:

HOL BRIDGE

Request

Answer

Request

Answer

CAS

Data integration has been obtained by adding the formalism of HOL terms
to the ones already defined in [26] for Maple and Mathematica terms. Con-5 Message to info-hol mailing list on 13 Jan 93, available on the Web as
ftp://ftp.cl.cam.ac.uk/hvg/info-hol-archive/09xx/0972.
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trol integration follows a simple question/answer model. Arequest is sent by
HOL which is received and translated by the bridge and then resent to the
computer algebra system. The answer from the CAS is then transferred back
to the prover through the bridge.

From the toplevel of the prover one can access the CAS by the function
call CASwhich takes a HOL term and a method to be applied on this term,
and returns the resulting term. In the current implementation, only two meth-
ods are available.SIMPLIFY gives the answer as if the term had been typed
at the top level of the CAS.FACTORIZE tries to factorize the term. Here are
some examples of how this function could be used:

# call_CAS "(((FACT 5)EXP2)-1)MOD(3EXP2)" ‘SIMPLIFY‘;;
"8" : term
Run time: 0.1s

# call_CAS "(x*x)+(7*x)+12" ‘FACTORIZE‘;;
"(x + 3) * (x + 4)" : term
Run time: 0.1s

The organization we have adopted is very flexible. First it isstraightfor-
ward to share one computer algebra between different HOL processes. For
this, every new HOL session simply needs to be incorporated into the same
software bus. A more interesting extension is the possibility to broadcast
requests from the prover to several CASs. In that case, in addition to con-
necting the different CASs to the same software bus, an auction mechanism
for prioritizing results from the CASs is required. For the moment, the bene-
fit of such an extension is not obvious. The only other CAS we could easily
integrate is Mathematica as its term syntax is known by our system. This
problem of data integration is not new. As a matter of fact in the computer
algebra community there have been a number of attempts to arrive at a stan-
dard for language and translation; recently many of these have been unified
in an ambitious project called ‘OpenMath’6. Time will tell whether this will
be a success.

Independently of these extensions, two limitations of our implementation
are worth noticing. First we use a stateless communication between HOL
and Maple. While this has not been a problem so far in our experiments, we
believe a more complex dialogue between the theorem prover and the CAS
would make it necessary to relax this limitation. Second, all type information
that is present in a term is automatically deleted when the term is shipped
to Maple. This is a consequence of the computer algebra system we choose,6 See the OpenMath Web page,
http://www.rrz.uni-koeln.de/themen/Computeralgebra/OpenMath/index.html
.
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where terms are type-free. Other computer algebra systems such as Axiom
[25] have proved that real use can be made of type information. Connecting
HOL with these systems would imply coupling the protocol to exchange data
with a system that can interpret type values.

5. A running example

In some cases, verification is not trivial, but requires somequite powerful
simplification mechanisms to verify the answer. For example, one can verify
antiderivatives by differentiating, and closed-form summations by induction
or differencing [12], but this still may leave a difficult task of simplifying the
result to show it is as required. We will now give an extended example which
illustrates this phenomenon, and show how it may be solved bya second
pass, exploitation the same finding/checking separation. Thus, we illustrate
how the combined system can be used in a ‘cascaded’ or nested fashion.

The procedure we present is a tactic written in HOL that automatically
finds the integrals of trigonometric polynomials. We illustrate the steps of
this procedure on the following simple trigonometric integral:Z x0 sin(u)3 du

In Step 1, we ask Maple to simplify this integral and it tells us that the
result is �13sin(x)2cos(x)� 23cos(x) + 23
which we will write asf(x). Now if we can prove thatddxf(x) = sin(x)3,
then by the Fundamental Theorem of Calculus, we can derive:Z x0 sin(u)3 du = f(x)� f(0)
and since we also havef(0) = 0 (this amounts to checking that the right
‘constant of integration’ has been used) Maple’s result would be confirmed.
In Step 2 we differentiatef(x) inside HOL, usingDIFF CONV, a derived rule
which works strictly by inference and collects any necessary side-conditions
on the derivative theorem. We get:` ddxf(x) = �13(2sin(x)cos(x)cos(x) � sin(x)3) + 23sin(x)

Unfortunately, even after routine simplification, we have not derivedsin(x)3.
Note that this is not because our simplification in HOL is not powerful enough;
Maple itself gives more or less the same result when asked to perform the
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differentiation. However, it is not hard to give a simplification procedure that
suffices for proving that a polynomial insin(x) and cos(x) is identically
zero. The idea is that every trigonometric polynomial that is identically zero
must havesin(x)2 + cos(x)2 � 1 as a factor. So in Step 3 we ask Maple to
factorize �13(2uvv � u3) + 23u� u3
and finally in Step 4 we check the result in HOL by a straightforward expan-
sion, so we get a theorem:` �13(2uvv � u3) + 23u� u3 = �23u(v2 + u2 � 1)
which contains the required factor. From this we get the result we wanted:
Maple’s original result is echoed in HOL. But this time the result is an abso-
lutely formal statement based on a precisely defined and rigorously construct-
ed integration theory, itself founded on a definitionally constructed theory of
reals. Moreover, the HOL proof we have derived with Maple’s help uses just
the dozen or so primitive rules of higher order logic, even toperform the
arithmetic on polynomial coefficients. We speculate that such a ‘high level’
mathematical result has never been proved in such a painstaking way before.
But with our combined system, it and many others like it can bedone auto-
matically in a few seconds.

6. Other applications

There are several examples of computer algebra results which may be checked
relatively easily:� Factorizing polynomials (or numbers)� Finding GCDs of polynomials (or numbers)� Solving equations (algebraic, simultaneous, differential, . . . )� Finding antiderivatives� Finding closed forms for summations

In most cases the certificate is simply the answer. An exception is the
GCD, where a slightly more elaborate certificate is better for our purposes. If
we ask Maple to find the GCD ofx2�1 andx5+1 using itsgcd function, for
example, it responds withx+1. How can this result be checked? It’s certainly
straightforward to check that this isa common divisor. If we don’t want to
code polynomial division ourselves in HOL, we can call Maple’s divide
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function, and then simply verify the quotient as above. But how can we prove
thatx+ 1 is agreatestcommon divisor7? At first sight, there is no easy way,
short of replicating something like the Euclidean algorithm inside the logic
(though that isn’t a really difficult prospect).

However, a variant of Maple’s GCD algorithm, calledgcdex will, given
polynomialsp andq, produce not just the GCDd, but also two other polyno-
mialsr ands such thatd = pr + qs. (Indeed, the coefficients in this sort of
Bezout identity follow easily from the Euclidean GCD algorithm.) For exam-
ple, applied tox2 � 1 andx5 + 1 we get the following equation:(�x3 � x)(x2 � 1) + 1(x5 + 1) = x+ 1

This again can be checked easily, and from that, the fact thatx + 1 is the
greatestcommon divisor follows by an easily proved theorem, since obvious-
ly any common factor ofx2�1 andx5+1 must, by the above equation, dividex+ 1 too. So here, given a certificate slightly more elaborate than simply the
answer, easy and efficient checking is possible.

As for integration, the techniques we describe here are quite limited, in
that in general they apply only to indefinite integrals. However there are some
special circumstances where one can achieve similar checking by differenti-
ating with respect to free variables in the body of the integral, leading to the
popular trick of ‘differentiating under the integral sign’[1].

We have contented ourselves with trying out elementary examples such as
the one presented above, and have not yet made a systematic study of symbol-
ic algorithms to assess which ones admit useful certificates. The certificates
we have been using so far are still very simple and are composed in terms of
the answers of the CAS. But it is clear from the above that our technique is in
principle of reasonably wide applicability, and for genuinely useful problems
at that. This is borne out by recent work on the verification ofa floating point
algorithm [23]. Here, Maple is used to find squarefree decompositions, Sturm
sequences and sets of isolating intervals for the roots of polynomials, as well
as performing polynomial division. These results are all checked rigorously
in HOL in order to arrive at a theorem provably characterizing all the roots
of a certain polynomial. (Admittedly, the version of HOL used was different
and so the particular linkup described here was not exploited.)

7. Summary and related work

The most substantial attempt to create a sound and reliable computer algebra
system is probably the work of Beeson [4] on Mathpert. This isa computer7 The use of ‘greatest’ is a misnomer: in a general ring we say thata is a GCD ofb andc
iff it is a common divisor, and any other common divisor ofb andc dividesa. For example,
both2 and�2 are GCDs of8 and10 overZ.
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algebra system designed mainly for educational use, and theintended use
dictates two important features. First, it attempts to perform only logically
sound steps. Secondly, it tries to justify its reasoning instead of producingex
cathedrapronouncements. Since it has not yet been used extensively,it’s hard
to judge how successful it is. By contrast, our effort is relatively modest, but
gets quite a long way for relatively little implementation difficulty.

Conversely, the most convincing example of importing real logical expres-
siveness and theorem proving power into computer algebra isthe work of
Clarke and Zhao [12] on Analytica. Here a theorem prover is coded in the
Mathematica system. It is capable of proving some remarkably complicated
theorems, e.g. some expressions due to Ramanujan, completely automatical-
ly. However, it still relies on Mathematica’s native simplifier, so it is does yet
provide such a high level of rigour as our LCF approach. Otherresearch on
linking theorem provers and CASs which we have not already mentioned is
by Farmer et al. [16], who describe how the list of assumptions in a sequent
can be used to deal with contextual computation.

Our general theme of checkability has been stressed by several researchers,
notably Blum [5], who also mentions the GCD example. He suggests that in
many situations, checking results may be more practical andeffective than
verifying code. This argument is related to, in some sense a generalization
of, arguments by Harrison [22] in favour of the LCF approach to theorem
proving rather than so-called ‘reflection’. Mehlhorn et al.[29] describe the
addition of verification to routines in the LEDA library of C++ routines for
computational geometry (e.g. finding convex hulls and Voronoi diagrams).
Our interest is a little different in that it involves checking according to a for-
mal deductive calculus. However it seems that many of the same issues arise.
For instance, they remark that ‘a convex hull program that delivers a trian-
gulation of the hull is much easier to check than a program that only returns
the hull polytope’, which parallels our example of a certificate for the GCD
consisting of more than just the answer.
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