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Abstract. We contrast theorem provers and computer algebra systeinsing out the advan-
tages and disadvantages of each, and suggest a simple walyidoeaa synthesis of some of
the best features of both. Our method is based on the systesepiaration of search for a
solution and checking the solution, using a physical cotimetetween systems. We describe
the separation of proof search and checking in some detétimg it to proof planning and
to the complexity class NP, and discuss different ways ofctipg a physical link between
systems. Finally, the method is illustrated by some corcexamples of computer algebra
results proved formally in the HOL theorem prover with the af Maple.
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1. Theorem proversvs. computer algebra systems

Computer algebra systems (CASs) seem superficially sirtolaromputer
theorem provers: both are computer programs for helpinglpewith for-
mal symbolic manipulations. However in practice there ipsgsingly little
common ground between them, either as regards the intermdings of
the systems themselves or their respective communitieagéimentors and
users. CASs are used by (mostly applied) mathematiciaiesitsts and engi-
neers, typically to perform multiprecision arithmetic,esgtions on polyno-
mials (usually oveR) and classical ‘continuous’ mathematics such as differ-
entiation, integration and series expansion. By conttheyrem provers are
mainly used by computer scientists interested in systemicadion, or by
logically-inclined mathematicians interested in formation of mathematics
or experimenting with new logics.

CASs are much more popular than theorem provers. The mogiusbv
reason is that there are more people in their natural usememities as
described above; in general, formal logic is a more speeidlinterest than
differentiation. However there are other reasons too feigiieater popularity
of CASs. They tend to be easier to use, so much so that thepaeasingly
applied in education (though this is controversial). Thigp aisually work
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faster since they are optimized for dealing efficiently witbh-level mathe-
matical problems. However theorem provers offer the folhgaadvantages:
they are more expressive, they are more precise, and theyaeereliable.

As remarked by Corless and Jeffrey [14], the typical compatgebra
system supports a rather limited style of interaction. Theruypes in an
expression¥; the CAS cogitates, usually not for very long, before reitugn
another expressiof’. (If £ andE’ are identical, that usually means that the
CAS was unable to do anything useful. Unfortunately, as vl See, the
converse does not always hold!) The implication is that weikhaccept the
theorem~ E = E'. Occasionally some slightly more sophisticated data may
be returned, e.g. a condition on the validity of the equat@mreven a set of

possible expressiongy,. .., E! with corresponding conditions on validity,
e.g.

5 o ifz>0

= { —z ifz <0

However, the simple equational style of interaction is bytlfi@ most usu-
al. Certainly, CASs are almost never capable of expressialfyrsophisticat-
ed logical dependencies as theorem provers are.

When we say that CASs are imprecise, we mean that their matieh
semantics is not always clear. For example, the polynomjadessionz? +
2z + 1 can be read in several ways: as a member of the polynomiakiirlg
(not to mentionz[z] or C[z] ...), as the associated functi®— R, or as
the value of that expression for some particulae R. Such ambiguities
are particularly insidious since in many situations it doematter which
interpretation is chosen. We hawé + 2z + 1 = (z + 1)? for any of them.
However if we want to talk about irreducibility of a polynoahi we must be
dealing with the first interpretation, while an equation:

(2 =1)/(z—1)=z+1

is only strictly valid if we are considering the polynomias elements of
the field of rational function®(x); if they are interpreted as the associated
function or value this is false far = 1.

At least, it is false if we interpret = ¢ as ‘boths andt¢ are defined and
equal’ or ‘either boths and¢ are undefined or both are defined and equal’,
but it is true on an interpretation ‘whereveandt are both defined, they are
equal’. These ways of interpreting the equality sign alhsée appear in cer-
tain places if one reads the mathematical literature afiyicActually, Freyd
and Scedrov [17] use a special asymmetric ‘Venturi tube’atyumeaning
‘if the left is defined then so is the right and they are equadi.there is yet
another ambiguity here.
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Even when a CAS can be relied upon to give a result that adrpitscse
mathematical interpretation, that doesn’t mean that isvens are always
right. For example, a recent version of Maple evaluates:

1
/ Vz2dr =0
-1

What seems to happen is that the simplificatidn? = = is applied,
regardless of the sign af. In general, CASs tend to perform simplifications
fairly aggressively, even if they aren't strictly correat all circumstances.
The policy is to try always to deomethingeven if it isn't absolutely sound.
After all, it often happens that ignoring a few singulasti@ the middle of
a calculation does make no difference to the result. Thikcypahay also
be a consequence of the limited equational style of intera¢hat we have
already drawn attention to. If the CAS has only two altekreesj to do nothing
or to return an equation which is true only with a few provisbmight be felt
that it's better to do the latter. The two concerns of immieei and incorrect-
ness are in any case not easy to separate. For example, if «l@iA% that
%(1/@ = —1/22, is it assuming an interpretation of equality ‘either both
sides are undefined or both are defined and equal’? Or is it\simgking a
mistake and forgetting the conditian# 0? Very often this is not clear.

While computer algebra systems concentrate on efficientpatation,
theorem provers stress validity. We shall see below thatighparticularly
true of HOL and other members of the LCF family. Designersuzhstheo-
rem provers try hard to ensure that they do not make wrongenées, even
if this leads to its being hard to make their systems do angthseful at all.

Interaction with theorem provers may vary. In automaticoteen prov-
ing, the user proposes challenges that the prauesmaticallytries to prove.
In interactive theorem proving, the user not only proposeschallenge but
gives some (if not all) reasoning steps that lead to the piRetently both
communities seem to be converging to a middle ground. Fanpie aproof
planning component has been added to automatic theorem proversen ord
to make user and prover cooperate in the discovery of the,pnddle more
and more automation and decision procedures are being addeecha-
nized theorem provers. Generally, interaction with theoprovers is more
intricate than interaction with computation algebra systeRather than lines
of computation the user often has to deal with trees where leaf contains
a formula to prove in some specific context.

Theorem provers are good at expressing and manipulatingegies pre-
cisely. For example the property

\/x—QZ{.’E ifz>0

-z ifz <0
can be represented by the theorem:
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VieR. (z>0= Va2 =) A (¢ < 0= Va2 = —x)

It is then ensured that any attempt to rewrite an expresgighfor some
y with this theorem leads to the discharge of one of the two itiond.

2. LCFand HOL

Theorem provers descended from Edinburgh LCF [20] insigedncing all
reasoning to formal proofs in something like a standard rahtdeduction
system. However, the user is able to write arbitrary programthe meta-
language ML to automate patterns of inferences and henceedte tedium
involved. The original LCF system implemented Scott’s loogfiComputable
Functions (hence the name LCF), but as emphasized by Golid@jnthe
basic LCF approach is applicable to any logic, and now therelescendants
implementing a variety of higher order logics, set theodgd constructive
type theories.

HOL [19] implements a version of simply typedcalculus with logical
operations defined on top, more or less following Church.[ltOfakes the
LCF approach a step further in that all theory developmemrgtparsued ‘def-
initionally’: new mathematical structures may be definety day exhibiting
a model for them in the existing theories, and new constamtg omly be
introduced by definitional extension (roughly speakingrehebeing a short-
hand for an expression in the existing theory). This fits raiyiwith the LCF
style, since it ensures that all extensions, whether of duictive system or
the mathematical theories, are consistent per construclioe former holds
because theorems manly be created by composing the basic logical rules.
This is enforced by encoding theorems as an ML abstract typsevonly
constructors are these primitive rules. HOL has about ardsaeh rules, and
they are all very simple.

The LCF methodology thus gives an outstanding combinatiopro-
grammability and reliability. Assuming that the primitiveles are correct,
then none of the derived rules built on top can ever give & faleeorem’,
and none of the derived theories can be inconsistent. Amd th@o shortage
of such extensions: HOL includes derived rules for rewgitinssociative-
commutative rearrangement, linear arithmetic, tautoldggcking, inductive
definitions and free recursive type definitions, among athehile the math-
ematical theories include numbers of various kinds, sets,dnd others. And
should a user want another rule or theory, they can writesitn$elves using
the same methodology.

1 And of course that the implementation environment workseaily, but that's always a
necessary assumption or we descend into infinite regress.
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While HOL was originally intended for hardware verificatigpplications,
it has been used for many other things too. In particularethigra defini-
tional construction of the real numbers and associatediteeof elementary
real analysis, including sequences, series, limits, naityi, differentiation
and integration, as well as the properties of common trantsgal func-
tions such asin andlog [21]. The integration theory we formalized, the
gauge integral [28, 24], obeys the Fundamental Theorem loiia without
additional differentiability assumptions; it also has #ame attractive limit
behaviour as the Lebesgue integral, which it properly et This analysis
development has helped to eliminate the bias towards &liscmathematics
typical in theorem proving systems, and so it seems a godtbpta from
which to explore the relationship with computer algebra. Meleen't devel-
oped complex analysis, algebraic numbers, multivariateuttes, matrices,
and many other topics. But we have at least a foundation ftindu efforts,
and because of the LCF approach, we can feel more confideiiftweaprove
computer algebra results in HOL, they are both more precisenzore reli-
able.

The LCF approach would seem at first sight to be hopelesdiyatage for
programming really advanced derived rules such as thoswfoucomput-
er algebra. When one thinks of the wide variety of speciappse decision
procedures available, it seems implausible that they ¢e ahodified to per-
form a breakdown to standard logical primitives, let aloffieiently. Perhaps
surprisingly, it often is practical — for a detailed anatysind a comparison
with other techniques such as ‘reflection’, see [22]. Onearas that infer-
ence patterns may be represented as general (object) nieonich need
only be proved once, and can thereafter be used with juskeifistantiation.
Algorithms can often be implemented in more or less the stahstyle, with
each step justified by a theorem. Another reason is that teepses of proof
discovery and proof checking can be quite different, whighds us back to
the topic of this paper.

Even under the LCF strictures, a result can be arrived ayitnay what-
soever provided that it isheckedoy a rigorous reduction to primitive infer-
ences. This idea has already been used for example in worksbrofder
automation [27] and solving linear inequalities [7] in HONlow many com-
puter algebra systems include complicated algorithms andstics for var-
ious tasks. Implementing these directly in the LCF style idae a major
undertaking, and it seems unlikely that the results wouldrghing like as
efficient. However one often sees, at least when one is edlydooking, that
many of the answers found may beeckedrelatively easily. The CAS can
arrive at the result in its usual way, and need not be hamp®ratie need
to produce any kind of formal proof. The eventual checkingyrtieen be
done rigorously a la LCF, with proportionately little extdifficulty. To inte-
grate finding and checking, we can physically link the prauet the CAS. In
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what follows, these themes appear several times, so we bggiiscussing
at length the issues that arise.

3. Finding and checking

From the perspective of computer theorem proving, therénéeeesting dif-
ferences between proof finding and proof checking. Oftercteeking pro-
cess is ‘easier’ in two particular senses, both of which kuetiated by the
factorization of numbers. For example, contrast the tagkufiplying:

34905295108476509491478496199038981334177646384883890820577

and

327691329932667095499619881908344614131776429642929798288533

with the task of going from the product (say) back to the above factors.
The latter seems more difficult, first from the point of viewcoimputation-
al complexity and second from the point of view of programming difficulty.
Multiplying n-digit numbers even in the most naive way requires orly
operations. But factorizing am-digit number is not even known to be poly-
nomial inn, and certainly seems likely to be worse than quadfiireover,
writing an adequate multiprecision arithmetic routine @ a very challeng-
ing programming exercise, but present-day factorizati@thods are rather
complex — it's a hot research topic — and often rely for thestification on
fairly highbrow mathematics.

In general, to achieve a separation of proof search and preadking, we
want the search stage to produce some kind of ‘certificatet’ dows the
result to be arrived at by proof with acceptable efficientiythe case of fac-
torization, the certificate was simply the factors. Oftea tiertificate can be
construed simply as the ‘answer’ and the checking processfirmation of
it. But as we shall see, other certificates are possible. Bsifgroof plans’,
for example, essentially use a complete proof as the cattfimbviously
a uniquely convenient one for checking by inference. Théezaxample of

2 The security of certain cryptographic schemes dependsainttiough perhaps nonly
on that. In fact the above factorization was set as a chal¢R5A129’), and was eventually
achieved by a cooperative effort of around a thousand uaseishing spare CPU cycles on the
task.

3 The problem is known to be in P if the Extended Riemann Hymishieolds. Also, it's
generally not as hard to prove compositeness nonconsilycte.g. it's pretty quick to check
that2”~! £ 1 (mod+), so by Fermat's little theorenm,is composite.
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first order automation in HOL is similar, though there theqgfisearch is com-

putationally intensive, whereas in proof planning, thenrdifference is that

the proof search involves sophisticated Al techniqueseéddaccording to
[8], checking proof plans seenstowerthan finding them, though it is much
easier to implement. In fact they report that ‘it is an ordemagnitude less

expensive to find a plan that to execute it’, though this magiueeto a badly

implemented inference engine and the relatively limiteabfgm domain for

the planner (inductive proofs).

3.1. RELATIONSHIP TONP PROBLEMS

The classic definition of the complexity class NP is that ihisclass of prob-
lems solvable in polynomial time by a nondeterministic mgrimachine (one
that can explore multiple possibilities in parallel, e.g.replicating itself).
However, many complexity theory texts give another egenadefinition:

it is the class of problems whose solutions maycheckedn polynomial
time on adeterministicTuring machine. Of course when they are framed as
decision problems, as they usually are, there is no ‘selutmthe problems
beyond yes/no; checking that is no different from findindBitit in general
there exists for each problem a key piece of data calleer@ficatethat can

be used in polynomial time to confirm the result. Often thithe ‘answer’ to
the problem if the problem is rephrased as ‘findzasuch thatP[z] rather
than ‘is there am such thatP[z]?". But in general, the certificate can be some
other piece of data.

The close similarity with our wish for efficient proof chenki should now
be clear. We are interested in cases where a certificate ganotheced by an
algorithm, and this easily checked. Our version of the id=ssily check-
able’ is less pure and more practical, since in the assessohevhat can
be checked ‘easily’ we include a number of somewhat arpiti@tors such
as the nature of the formal system at issue and the mathetnatid pro-
gramming difficulty underlying the checking procedure.r(Egample, even
if factoring numbers turns out to be i, it will almost certainly be dramat-
ically harder than multiplying the factors out again.) Bug analogy is still
strikingly close.

The complementary problems to the NP ones are the co-NP biegs.
it is negativeanswers that can be accompanied by a certificate allowing eas
checking. A good example of a co-NP problem is tautology kimeg the dual
of the NP-complete problem of Boolean satisfiability. Bawmiesatisfiability
admits an easily checked certificate, viz, a satisfying atidm, but no such
certificate exists for tautologies, unleBs= N P. We may expect, therefore,
that our analogs of c&¥ P complete problems will be harder to support with
an efficient checking process. From a theoretical point @fnthis is almost
true by definition, but the practical situation is not so cléamay be that
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algorithms that are used with reasonable success to pestaigh in practice
could produce a certificate that allows easy checking.

For example, a problem that looks intuitively complementarthe prob-
lem of factorization is primality testing. However as shotw Pratt [32],
short certificates are possible and so the problem is notiontp-NP but
also in NP An especially strong form of this result is due to PomerdgBag,
who shows that every prime has @1log p) certificate, or more precisely
that ‘for every primep there is a proof that it is prime which requires for its
verification(2 +o(1))log>p multiplications mody'. Of course whether useful
primality testing algorithms can naturally produce suchifieates is still an
open question, but this very idea has been explored in pedoyi Elbers [15].

3.2. WHAT MUST BE INTERNALIZED?

The separation of proof search and proof checking offerseamy avay of
incorporating sophisticated algorithms, computatigniaifensive search tech-
nigues and elaborate heuristics, without compromisirtgeethe efficiency of
search or the security of proofs eventually found. It isnesting to enquire
which algorithms can, in theory and in practice, providedppropriate cer-
tificates. If formal checkability is considered importaibtnay lead to a shift
in emphasis in the development and selection of algorittotmsithematical
computations.

We have placed in opposition two extreme ways of implemegrdimalgo-
rithm as an LCF derived rule: to implement it entirely insitie logic, jus-
tified by formal inference at each stage, or to perform anrélgo without
any regard to logic, yet provide a separate check afterwéatdaever, there
are intermediate possibilities, depending on what is regui

For example, consider the use of Knuth-Bendix completiothetive con-
sequences from a set of algebraic laws. Slind [34] has imgi¢ea this pro-
cedure in HOL, where at each stage the new equations areddiwinfer-
ence. However the fact that any particular rewrite systesultiag is canon-
ical is not proved inside the logic. This could be done either in an ad hoc
way for the particular system concerned, or could be donentgrnalizing
the algorithm and proving its correctness. Either wouldunegmuch more
work, and cost much more in efficiency. And if all we want is to\e posi-
tive consequences of the rewrites, this offers no benefits. Ootliee hand to
provenegativeresults, e.g. that a group exists that does not satisfy aicert
equation, then this kind of internalization would be neaegsSuch a theme
often appears in HOL, where the steps in an algorithm mayegligtified by
inference, but the overall reasoning justifying its usefsls, completeness,
efficiency or whatever are completely external (one migitistormal). We
shall give an example below where the correctness of a puoedd easy

1 As already remarked, it's probably iR.
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to see, but its completeness requires slightly more sutistamathematics.
Specifically, the presence of a certain factor suffices fergroof, but the
knowledge that such a factor will always be found, whichifiest complete-
ness, is completely external.

4. Combining systems

The general issue of combining theorem provers and othebalencom-

putation systems has recently been attracting more aiterfis well as our
own experiments with a computer algebra system, detailemvbe&lOL has

for example been linked to other theorem provers [2] and tdehoheckers
[33]. Methodologies for cooperation between systems assified by Cal-
met et al. [9] according to several different properties. &ample, if more
than two systems are involved, the network topology is fiicamit: are there
links between each pair or is all communication mediateddyies central
system? A related issue is which, if any, systems in the mitaxct as master
or slave. In our case, we use a system with just two compone@& and

Maple, and HOL is clearly the master.

4.1. TRuUST

One of the most interesting categorizations of such arraegés is accord-
ing todegree of trustFor example, our work does not involve trusting Maple
at all, since all its results are rigorously checked. Howeree might, at the
other end of the scale, trust all Maple’s results completiélywhen given
an expressiort;, Maple returnst’, then the theoretht E = E' is accept-
ed. Such an arrangement, exploiting a link between IsalagiteMaple, is
described by Ballarin et al. [3]. This runs the risk of impagtinto the theo-
rem prover all the defects in correctness of the CAS, whicthaxe already
discussed. However it may, if used only for problems in atiahidomain, be
quite acceptable. For example, despite our best effoithnatic by infer-
ence in HOL is inevitably rather slow, and the results of CABsgenerally
pretty reliable. So one might use such a scheme, restriotétetevaluation
of ground terms, perhaps making explicit in the HOL theorémthe case
of irrational numbers, the implied accuracy of the CAS'sifeg-or example
if “‘eval f (Pi, 20) " in Maple returns3. 1415926535897932385, we
may assert the theorem:

- | — 3.1415926535897932385| < 10718
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An interesting way of providing an intermediate level ofstravas pro-
posed by Mike GordahThis is to tag each theorem« derived by trusting
an external tool with an additional assumption logicallyigglent to falsity.
We can define a new constant symbol for this purpose, bedrengame of
the external tool concernet¥APLE in our case. The theoreMAPLE -
is, from a logical point of view, trivially true. But pragmedally it is quite
appealing. First, it has a natural reading ‘assuming Mapkound, ther)'.
Moreover, any derived theorems that use this fact will a@tirally inherit
the assumptioMAPL E and any others like it, so indicating clearly the depen-
dence of the theorem on the correctness of external toolkgltly different
version of this idea is implemented as the ‘oracles’ medmarnn the latest
version of Isabelle [30].

Finally, another possible method is to perform checkingdegerit until
later, e.g. batching the checks and running them all ovketnithis fits natu-
rally into the framework of lazy theorems proposed by Bau[&]. Of course,
there is the defect that if one of the checks fails overnitjign the day’s work
might be invalidated, but one hopes that the external tobblg@nerally give
correct answers.

Our finding-checking approach may seem unnecessarily fiecar dif-
ficult, but it gives a reliable way of conforming to a definitgyical calculus.
In any case, from a research point of view, it seems to rasenbst interest-
ing questions.

4.2. IMPLEMENTATION ISSUES

In order to connect a computer algebra and a prover, we nestddidefine

how data are exchanged and how control is passed betweewahsys-

tems. In our experiment, the implementation has been dirawpired by

CAS/PI [26]. In this work, the author presents an interactivathematical
environment where different computer algebra systems eamsbd to per-
form computations. The connection between CAS/PI and tiiereint com-

puter algebras use the ideasofftware busleveloped in [13]. Applying this to
the problem of connecting a theorem prover to a computebedgeve obtain
a software bus with three different processes: HOL, Mapld,abridge:

Answer Answer

BRIDGE

Request Request

Data integration has been obtained by adding the formalf$dQd. terms
to the ones already defined in [26] for Maple and Mathematcas. Con-

5 Message to info-hol mailing list on 13 Jan 93, available anwWeb as
ftp://ftp.cl.cam ac. uk/ hvg/i nfo- hol - archi ve/ 09xx/ 0972
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trol integration follows a simple question/answer modefteduest is sent by
HOL which is received and translated by the bridge and theamnteto the
computer algebra system. The answer from the CAS is thesfénaad back
to the prover through the bridge.

From the toplevel of the prover one can access the CAS by titidun
cal | _CASwhich takes a HOL term and a method to be applied on this term,
and returns the resulting term. In the current implemesrainly two meth-
ods are availablesl MPLI FY gives the answer as if the term had been typed
at the top level of the CASACTORI ZE tries to factorize the term. Here are
some examples of how this function could be used:

# call _CAS "(((FACT 5)EXP2) - 1) MOD(3EXP2)" * SI MPLI FY' ;;
"8" : term
Run time: 0.1s

# call _CAS "(x*x)+(7*x)+12" ‘ FACTORI ZE' ;;
"(x +3) * (x +4)" : term
Run time: 0.1s

The organization we have adopted is very flexible. First gtiaightfor-
ward to share one computer algebra between different HOtegs®s. For
this, every new HOL session simply needs to be incorporatedthe same
software bus. A more interesting extension is the possibith broadcast
requests from the prover to several CASs. In that case, iitiauido con-
necting the different CASs to the same software bus, an@uatiechanism
for prioritizing results from the CASs is required. For thement, the bene-
fit of such an extension is not obvious. The only other CAS wddeasily
integrate is Mathematica as its term syntax is known by ostesy. This
problem of data integration is not new. As a matter of factia tomputer
algebra community there have been a number of attemptsite atra stan-
dard for language and translation; recently many of these baen unified
in an ambitious project called ‘OpenMafiTime will tell whether this will
be a success.

Independently of these extensions, two limitations of oyplementation
are worth noticing. First we use a stateless communicateiwden HOL
and Maple. While this has not been a problem so far in our éxgerts, we
believe a more complex dialogue between the theorem prawkiree CAS
would make it necessary to relax this limitation. Seconidypk information
that is present in a term is automatically deleted when tha te shipped
to Maple. This is a consequence of the computer algebrarsywtechoose,

6 See the OpenMath Web page,
http://ww. rrz. uni-koel n. de/t henen/ Conput er al gebr a/ OpenMat h/ i ndex. ht m
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where terms are type-free. Other computer algebra systeaisas Axiom

[25] have proved that real use can be made of type informaGomnecting

HOL with these systems would imply coupling the protocolxolenge data
with a system that can interpret type values.

5. A running example

In some cases, verification is not trivial, but requires samie powerful
simplification mechanisms to verify the answer. For exammhe can verify
antiderivatives by differentiating, and closed-form suations by induction
or differencing [12], but this still may leave a difficult tasf simplifying the
result to show it is as required. We will now give an extendeahgple which
illustrates this phenomenon, and show how it may be solved bgcond
pass, exploitation the same finding/checking separatibns,Twe illustrate
how the combined system can be used in a ‘cascaded’ or nestieid.

The procedure we present is a tactic written in HOL that aatarally
finds the integrals of trigonometric polynomials. We ilhagé the steps of
this procedure on the following simple trigonometric irdg

T
/ sin(u)® du
0
In Step 1, we ask Maple to simplify this integral and it telks that the
result is
3

which we will write asf(z). Now if we can prove tha%f(x) = sin(z)?,
then by the Fundamental Theorem of Calculus, we can derive:

—%sin(m)zcos(m) - %cos(w) + -

/ " sin(u)?® du = f(z) — £(0)

and since we also havg0) = 0 (this amounts to checking that the right
‘constant of integration’ has been used) Maple’s resultlddae confirmed.
In Step 2 we differentiaté () inside HOL, usinddl FF_CONV, a derived rule
which works strictly by inference and collects any necessate-conditions
on the derivative theorem. We get:

d 1 2
- —f(z) = —=(2sin(z)cos(x)cos(x) — sin(z)?) + = sin(z)
dx 3 3
Unfortunately, even after routine simplification, we hae¢derivedsin (z)3.
Note that this is not because our simplification in HOL is rwprful enough;
Maple itself gives more or less the same result when aske@rform the
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differentiation. However, it is not hard to give a simplifiica procedure that
suffices for proving that a polynomial isin(z) and cos(z) is identically
zero. The idea is that every trigonometric polynomial tisatlentically zero
must havesin(z)? + cos(z)? — 1 as a factor. So in Step 3 we ask Maple to
factorize

2
—§(2uvv —ud) + 3U— u?

and finally in Step 4 we check the result in HOL by a straighwimd expan-
sion, so we get a theorem:

1 2 2
H —§(2uvv —ud) + 3U— u? = —gu(v2 +u? —1)

which contains the required factor. From this we get thelrese wanted:

Maple’s original result is echoed in HOL. But this time theuk is an abso-
lutely formal statement based on a precisely defined andxipty construct-
ed integration theory, itself founded on a definitionallynswucted theory of
reals. Moreover, the HOL proof we have derived with Maplestphuses just
the dozen or so primitive rules of higher order logic, everpgoform the

arithmetic on polynomial coefficients. We speculate thahsa ‘high level

mathematical result has never been proved in such a pamgtaky before.

But with our combined system, it and many others like it cardbee auto-
matically in a few seconds.

6. Other applications

There are several examples of computer algebra resulthwiay be checked
relatively easily:

— Factorizing polynomials (or numbers)

— Finding GCDs of polynomials (or numbers)

— Solving equations (algebraic, simultaneous, differéntia)
— Finding antiderivatives

— Finding closed forms for summations

In most cases the certificate is simply the answer. An exmept the
GCD, where a slightly more elaborate certificate is betteotw purposes. If
we ask Maple to find the GCD af — 1 andz® + 1 using itsgcd function, for
example, it responds with+ 1. How can this result be checked? It's certainly
straightforward to check that this &common divisor. If we don’t want to
code polynomial division ourselves in HOL, we can call M&plai vi de
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function, and then simply verify the quotient as above. Bwtlzan we prove
thatz + 1 is agreatestcommon divisof? At first sight, there is no easy way,
short of replicating something like the Euclidean algaritinside the logic
(though that isn't a really difficult prospect).

However, a variant of Maple’s GCD algorithm, callgddex will, given
polynomialsp andg, produce not just the GCB, but also two other polyno-
mialsr ands such thatd = pr + ¢s. (Indeed, the coefficients in this sort of
Bezout identity follow easily from the Euclidean GCD aldgbm.) For exam-
ple, applied tar? — 1 andz® + 1 we get the following equation:

(-2 —z) (@ - 1)+ 1> +1) =z +1

This again can be checked easily, and from that, the factithat is the
greatesitommon divisor follows by an easily proved theorem, sincéamks-
ly any common factor af? —1 andz® +1 must, by the above equation, divide
x + 1 too. So here, given a certificate slightly more elaborate #uaply the
answer, easy and efficient checking is possible.

As for integration, the techniques we describe here are djunitited, in
that in general they apply only to indefinite integrals. Hearehere are some
special circumstances where one can achieve similar afgetki differenti-
ating with respect to free variables in the body of the iraédeading to the
popular trick of ‘differentiating under the integral sigi].

We have contented ourselves with trying out elementary plesrsuch as
the one presented above, and have not yet made a systemdiossymbol-
ic algorithms to assess which ones admit useful certificdtes certificates
we have been using so far are still very simple and are condgagerms of
the answers of the CAS. But it is clear from the above thatethiique is in
principle of reasonably wide applicability, and for gerelinuseful problems
at that. This is borne out by recent work on the verificatioa @ibating point
algorithm [23]. Here, Maple is used to find squarefree deasitipns, Sturm
sequences and sets of isolating intervals for the rootslghpmials, as well
as performing polynomial division. These results are afloked rigorously
in HOL in order to arrive at a theorem provably charactegzafl the roots
of a certain polynomial. (Admittedly, the version of HOL dseas different
and so the particular linkup described here was not expljite

7. Summary and related work
The most substantial attempt to create a sound and reliabiputer algebra
system is probably the work of Beeson [4] on Mathpert. Thia Gmputer
" The use of ‘greatest’ is a misnomer: in a general ring we satutiis a GCD ofb andc

iff it is a common divisor, and any other common divisorbadindc dividesa. For example,
both2 and—2 are GCDs o and10 overZ.
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algebra system designed mainly for educational use, anihtbeded use
dictates two important features. First, it attempts to qrenf only logically
sound steps. Secondly, it tries to justify its reasoningeimd of producingx
cathedrapronouncements. Since it has not yet been used extensfigghgrd
to judge how successful it is. By contrast, our effort is tieédy modest, but
gets quite a long way for relatively little implementatioiffidulty.

Conversely, the most convincing example of importing regidal expres-
siveness and theorem proving power into computer algebttaeisvork of
Clarke and Zhao [12] on Analytica. Here a theorem prover tedoin the
Mathematica system. It is capable of proving some remaykadnnplicated
theorems, e.g. some expressions due to Ramanujan, colypletematical-
ly. However, it still relies on Mathematica’s native sinfigr, so it is does yet
provide such a high level of rigour as our LCF approach. Otesearch on
linking theorem provers and CASs which we have not alreadytioreed is
by Farmer et al. [16], who describe how the list of assumpgtiona sequent
can be used to deal with contextual computation.

Our general theme of checkability has been stressed byedegsearchers,
notably Blum [5], who also mentions the GCD example. He satggthat in
many situations, checking results may be more practicaledfedtive than
verifying code. This argument is related to, in some sensengmglization
of, arguments by Harrison [22] in favour of the LCF approashheorem
proving rather than so-called ‘reflection’. Mehlhorn et[29] describe the
addition of verification to routines in the LEDA library of G+outines for
computational geometry (e.g. finding convex hulls and Voratiagrams).
Our interest is a little different in that it involves cheogiaccording to a for-
mal deductive calculus. However it seems that many of theesasuies arise.
For instance, they remark that ‘a convex hull program théivels a trian-
gulation of the hull is much easier to check than a prograrhahby returns
the hull polytope’, which parallels our example of a ceréfie for the GCD
consisting of more than just the answer.
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