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Abstract. We present a fully proof-producing implementation of a quantifier
elimination procedure for real closed fields. To our knowledge, this is the first
generally useful proof-producing implementation of such an algorithm. While
many problems within the domain are intractable, we demonstrate convincing
examples of its value in interactive theorem proving.

1 Overview and related work

Arguably the first automated theorem prover ever written was for a theory of linear
arithmetic [8]. Nowadays many theorem proving systems, even those normally clas-
sified as ‘interactive’ rather than ‘automatic’, contain procedures to automate routine
arithmetical reasoning over some of the supported number systems likeN, Z, Q, R and
C. Experience shows that such automated support is invaluable in relieving users of
what would otherwise be tedious low-level proofs. We can identify several very com-
mon limitations of such procedures:

– Often they are restricted to proving purely universal formulas rather than dealing
with arbitrary quantifier structure and performing general quantifier elimination.

– Often they are not complete even for the supported class of formulas; in partic-
ular procedures for the integers often fail on problems that depend inherently on
divisibility properties (e.g.∀x y ∈ Z. 2x + 1 6= 2y)

– They seldom handle non-trivial nonlinear reasoning, even in such simple cases as
∀x y ∈ R. x > 0 ∧ y > 0 ⇒ xy > 0, and those that do [18] tend to use heuristics
rather than systematic complete methods.

– Many of the procedures are standalone decision algorithms that produce no certifi-
cate of correctness and do not produce a ‘proof’ in the usual sense. The earliest
serious exception is described in [4].

Many of these restrictions are not so important in practice, since subproblems aris-
ing in interactive proof can still often be handled effectively. Indeed, sometimes the
restrictions are unavoidable: Tarski’s theorem on the undefinability of truth implies that
there cannot even be a complete semidecision procedure for nonlinear reasoning over



the integers. At the other end of the tower of number systems, one of the few imple-
mentations that has none of the above restrictions is described in [16], but that is for the
complex numbers where quantifier elimination is particularly easy.

Over the real numbers, there are algorithms that can in principle perform quan-
tifier elimination from arbitrary first-order formulas built up using addition, multipli-
cation and the usual equality and inequality predicates. In this paper we describe the
implementation of such a procedure in the HOL Light theorem prover [14], a recent
incarnation of HOL [11]. It is in principle complete, and can handle arbitrary quantifier
structure and nonlinear reasoning. For example it is able to prove the criterion for a
quadratic equation to have a real root automatically:

∀a b c. (∃x. ax2 + bx + c = 0) ⇔ a = 0 ∧ (b = 0 ⇒ c = 0) ∨ a 6= 0 ∧ b2 ≥ 4ac

Similar — and indeed more powerful — algorithms have been implemented before,
the first apparently being by Collins [7]. However, our algorithm has the special feature
that it is integrated into the HOL Light prover and rather than merely asserting the
answer itprovesit from logical first principles.

The second author has previously implemented another algorithm for this subset in
proof-producing style [15] but the algorithm was so inefficient that it never managed
to eliminate two nested quantifiers and has not been useful in practice. The closest
previous work is by Mahboubi and Pottier in Coq [21], who implemented precisely the
same algorithm as us — in fact we originally learned of the algorithm itself via Pottier.
However, while it appeared to reach a reasonable stage of development, this procedure
seems to have been abandoned and there is no version of it for the latest Coq release.
Therefore, our algorithm promises to be the first generally useful version that produces
proofs.

2 Theoretical background

In this section we describe the theoretical background in more detail. Some of this
material will already be familiar to the reader.

2.1 Quantifier elimination

We say that a theoryT in a first-order languageL admits quantifier eliminationif for
each formulap of L, there is a quantifier-free formulaq such thatT |= p ⇔ q. (We
assume that the equivalent formula contains no new free variables.) For example, the
well-known criterion for a quadratic equation to have a (real) root can be considered as
an example of quantifier elimination in a suitable theoryT of reals:

T |= (∃x. ax2 + bx + c = 0) ⇔ a 6= 0 ∧ b2 ≥ 4ac ∨ a = 0 ∧ (b 6= 0 ∨ c = 0)

If a theory admits quantifier elimination, then in particular any closed formula (one
with no free variables, such as∀x. ∃y. x < y) has aT -equivalent that is ground, i.e.



contains no variables at all. In many cases of interest, we can quite trivially decide
whether a ground formula is true or false, since it just amounts to evaluating a Boolean
combination of arithmetic operations applied to constants, e.g.2 < 3 ⇒ 42 + 5 < 23.
(One interesting exception is the theory of algebraically closed fields of unspecified
characteristic, where quantifiers can be eliminated but the ground formulas cannot in
general be evaluated without knowledge about the characteristic.) Consequently quan-
tifier elimination in such cases yields a decision procedure, and also shows that such a
theoryT is complete, i.e. every closed formula can be proved or refuted fromT . For a
good discussion of quantifier elimination and many explicit examples, see [19].

2.2 Real-closed fields

We consider a decision procedure for the theory of real arithmetic with addition and
multiplication. While we will mainly be interested in the real numbersR, the same
procedure can be exploited for more general algebraic structures, so-calledreal closed
fields. The real numbers are characterized up to isomorphism by the axioms for an
ordered field together with some suitable second-order completeness axiom (e.g. ‘every
bounded nonempty set of reals has a least upper bound’). The real-closed field axioms
are those for an ordered field together with the assumptions that every nonnegative
element has a square root:

∀x. x ≥ 0 ⇒ ∃y. x = y2

and second that all polynomials of odd degree have a root, i.e. we have an infinite set of
axioms, one like the following for eachoddn:

∀a0, . . . , an. an 6= 0 ⇒ ∃x. anxn + an−1x
n−1 + . . . + a1x + a0 = 0.

We will implement quantifier elimination for the reals using quite a number of an-
alytic properties. All of these have been rigorously proven in HOL Light starting from
a definitional construction of the reals [15]. However, these proofs sometimes rely on
the completeness property, which is true for the reals but not for all real-closed fields.
With more work, we could in fact show that all these analytic facts follow from the real-
closed field axioms alone, and hence make the procedure applicable to other real-closed
fields (e.g. the algebraic or computable reals). However, since we don’t envisage any
practical applications, this is not a high priority.

2.3 Quantifier elimination for the reals

A decision procedure for the theory of real closed fields, based on quantifier elimina-
tion, was first demonstrated by Tarski [30]1. However, Tarski’s procedure, a generaliza-
tion of the classical technique due to Sturm [29] for finding the number of real roots
of a univariate polynomial, was both difficult to understand and highly inefficient in

1 Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards.



practice. Many alternative decision methods were subsequently proposed; two that are
significantly simpler were given by Seidenberg[27] and Cohen[6].

Perhaps the most efficient general algorithm currently known, and the first actually
to be implemented on a computer, is the Cylindrical Algebraic Decomposition (CAD)
method introduced by Collins[7]. A relatively simple but rather inefficient, algorithm
is also given in [19] (see [9] for a more leisurely description). Another even simpler
but generally rather more efficient algorithm is given by Hörmander [17] based on an
unpublished manuscript by Paul Cohen2 (see also [10, 3] and a closely related algorithm
due to Muchnik [26, 22]). It was this algorithm that we chose to implement.

2.4 Fully-expansive decision procedures

Theorem provers like HOL Light belong to the tradition established in Edinburgh LCF
[12], where all theorems must be produced by application of simple primitive logical
rules, though arbitrary programmability can be used to compose them. Thus, we need
a procedure that does not simply assert that a formula is a quantifier-free equivalent of
the input, butprovesit from first principles.

At first sight, implementing decision procedures such that they produce proofs
seems a daunting task. Indeed, it is in general significantly harder than simply writ-
ing a standalone ‘black box’ that returns an answer. However, if we want to really be
sure about correctness, the only other obvious alternative, often loosely called ‘reflec-
tion’ [13], is to formally prove a standalone implementation correct. This is generally
far more difficult again, and has so far only been applied to relatively simple algorithms.
Moreover, it is of no help if one wants an independently checkable proof for other rea-
sons, e.g. for use in proof-carrying code [23].

Even discounting the greater implementation difficulty of a proof-producing deci-
sion procedure, what about the cost in efficiency of producing a proof? In many cases
of practical interest, neither the implementation difficulty nor the inefficiency need be
as bad as it might first appear, because it is easy to arrange for a more computation-
ally intensive phase not so different from a standalone implementation to produce some
kind of certificate that can then be checked by the theorem prover. Since inference only
needs to enter into the second phase, the overall slowdown is not so large. The first
convincing example seems to have been [20], where a pretty standard first-order prover
is used to search for a proof, which when eventually found, is translated into HOL in-
ferences. Blum [2] generalizes such observations beyond the realm of theorem proving,
by observing that in many situations, having an algorithm produce an easily checkable
certificate is an effective way of ensuring result correctness, and more tractable than
proving the original program correct.

In a more ‘arithmetical’ vein, the second author has recently been experimenting
with a technique based on real Nullstellensatz certificates to deal with the universal
subset of the present theory of reals [24]. This involves a computationally expensive
search using a separate semidefinite programming package, but this search usually re-
sults in a compact certificate which needs only a few straightforward inferences to ver-

2 ‘A simple proof of Tarski’s theorem on elementary algebra’, mimeographed manuscript, Stan-
ford University 1967.



ify. For example, using this procedure we can verify the ‘universal half’ of the quadratic
example:

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

by considering the certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

Since the first term on the right is a square, and the second is zero by hypothesis, it
is clear that the LHS is nonnegative. Almost all the computational cost is in coming up
with the appropriate square term and multiple of the input equation to make this identity
hold; checking it is then easy.

However, Ḧormander’s algorithm (in common with all others for the full theory that
we are familiar with) does not seem to lend itself to this kind of separation of ‘search’
and ‘checking’, and so we need to essentially implement all the steps of the procedure
in a theorem-producing way. However, we can make this somewhat more efficient, as
well as more intellectually manageable, by proving very general lemmas that apply to
large families of special cases. By coding up relatively complicated syntactic structures
using logical constructs, we avoid re-proving many analytical lemmas for many differ-
ent cases. This will be seen more clearly when we look at the implementation of the
algorithm in detail.

3 The Algorithm

Our procedure was designed by systematically modifying to produce proofs a stan-
dalone implementation of Ḧormander’s algorithm in OCaml.3 We will sometimes ex-
plain the algorithm with reference to this code, since it shows the detailed control flow
explicitly; it is hoped that this will still be clarifying even though it sometimes con-
tains other functions that are not explained. In the next section we consider some of
the special problems that arise when reimplementing the procedure in proof-producing
style. It is instructive to see the parallels and differences: the basic control flow is all but
identical, yet we produce theorems at each stage, replacing ad hoc term manipulation
by logical inference.

Note first that, since our terms are built up from constants by negation, addition,
subtraction and multiplication, we can rewrite all the atomic formulas in the form
p(x1, . . . , xn) ./ 0 wherep(x1, . . . , xn) is a polynomial inx1, . . . , xn and./ is an
equality or inequality predicate (=,≤, <, 6= etc.) It greatly helps if we initially rewrite
the polynomials into a canonical representation and maintain this throughout the algo-
rithm. In particular, we regard a multivariate polynomialp(x1, . . . , xn) as a polynomial
in xn with parameters polynomials inp(x1, . . . , xn−1), each of those in turn regarded
as a polynomial inxn−1 etc., where the sorting of the variables is determined by the
nesting of quantifiers,x1 being the outermost andxn the innermost.

3 Available from http://www.cl.cam.ac.uk/users/jrh/atp in real.ml with
some support functions from other files.



3.1 The role of sign matrices

The key idea of the algorithm is to obtain a ‘sign matrix’ for a set of univariate poly-
nomialsp1(x), . . . , pn(x). Such a matrix is a division of the real line into a (possibly
empty) ordered sequence ofm pointsx1 < x2 < · · · < xm representing precisely the
zeros of the polynomials, with the rows of the matrix representing, in alternating fash-
ion, the points themselves and the intervals between adjacent pairs and the two intervals
at the ends:

(−∞, x1), x1, (x1, x2), x2, . . . , xm−1, (xm−1, xm), xm, (xm,+∞)

and columns representing the polynomialsp1(x), . . . , pn(x), with the matrix entries
giving the signs, either positive (+), negative (−) or zero (0), of each polynomialpi at
the points and on the intervals. For example, for the collection of polynomials:

p1(x) = x2 − 3x + 2
p2(x) = 2x− 3

the sign matrix looks like this:

Point/Intervalp1 p2

(−∞, x1) + −
x1 0 −

(x1, x2) − −
x2 − 0

(x2, x3) − +
x3 0 +

(x3,+∞) + +

Note thatx1 andx3 represent the roots1 and2 of p1(x) while x2 represents1.5,
the root ofp2(x). However the sign matrix contains no numerical information about
the location of the pointsxi, merely specifying the order of the roots of the various
polynomials and what signs they take there and on the intervening intervals. It is easy to
see that the sign matrix for a set of univariate polynomialsp1(x), . . . , pn(x) is sufficient
to answer any question of the form∃x. P [x] where the bodyP [x] is quantifier-free and
all atoms are of the formpi(x) ./i 0 for any of the relations=, <, >, ≤, ≥ or their
negations. We simply need to check each row of the matrix (point or interval) and see
if one of them makes each atomic subformula true or false; the formula as a whole can
then simply be “evaluated” by recursion.

In order to perform general quantifier elimination, we simply apply this basic op-
eration to all the innermost quantified subformulas first (we can consider a universally
quantified formula∀x. P [x] as¬(∃x. ¬P [x]) and eliminate from∃x. ¬P [x]). This can
then be iterated until all quantifiers are eliminated. The only difficulty is that the coeffi-
cients of a polynomial may now contain other variables as parameters; we will consider



the univariate case first for simplicity, and then consider the fairly straightforward gen-
eralization to the parametrized case.

We will explain the key parts of the algorithm both in English and with refer-
ence to the OCaml code. We use a simple representation of the sign matrix as a list
of lists of sign values, the sign values belonging to a four-member enumerated type
{Positive , Negative , Zero , Nonzero }. The top-level list corresponds to the se-
quence of points and intervals, and each sublist gives the sign values for the various
polynomials there. For example, the sign matrix given above would be represented by

[[Positive; Negative];
[Zero; Negative];
[Negative; Negative];
[Negative; Zero];
[Negative; Positive];
[Zero; Positive];
[Positive; Positive]]

3.2 Computing the sign matrix

The following simple observation is key. To find the sign matrix for

p, p1, . . . , pn

it suffices to find one for the set of polynomials

p′, p1, . . . , pn, q0, q1, . . . , qn

wherep′, which we will sometimes writep0 for regularity’s sake, is the derivative ofp,
andqi is the remainder on dividingp by pi. For suppose we have a sign matrix for the
second set of polynomials. We can proceed as follows.

First, we split the sign matrix into two equally-sized parts, one for thep′, p1, . . . , pn

and one for theq0, q1, . . . , qn, but for now keeping all the points in each matrix, even
if the corresponding set of polynomials has no zeros there. We can now infer the sign
of p(xi) for each pointxi that is a zero of one of the polynomialsp′, p1, . . . , pn, as
follows. Sinceqk is the remainder ofp after division bypk, p(x) = sk(x)pk(x)+qk(x)
for somesk(x). Therefore, sincepk(xi) = 0 we havep(xi) = qk(xi) and so we can
derive the sign ofp at xi from that of the correspondingqk. If the point xi is not a
zero of one of thep′, p1, . . . , pn, or we are dealing with an interval, we just arbitrarily
assignNonzero ; it will be dealt with in the next step. The following code, given sign
matricespd for p′, p1, . . . , pn andqd for q0, . . . , qn, gives a corresponding sign matrix
for p, p′, p1, . . . , pn, with the correct signs forp at the points, but not in general at
intervals. (Hereindex gets the position index of the first occurrence of an element in
a list, andel gets an indexed element.)

let inferpsign pd qd =
try let i = index Zero pd in el i qd :: pd
with Failure _ -> Nonzero :: pd;;

Now we can throw away the second sign matrix, giving signs for theq0, . . . , qn,
and retain the (partial) matrix forp, p′, p1, . . . , pn. We next ‘condense’ this matrix to
remove points that are not zeros of one of thep′, p1, . . . , pn, but only of one of theqi.



The signs of thep′, p1, . . . , pn in an interval from which some other points have been
removed can be read off from any of the subintervals in the original subdivision — they
cannot change because there are no zeros for the relevant polynomials there.

let rec condense ps =
match ps with

int::pt::other -> let rest = condense other in
if mem Zero pt then int::pt::rest else rest

| _ -> ps;;

Now we have a sign matrix with correct signs at all the points that are zeros of the
the set of polynomials it involves, but with undetermined signs forp on the intervals,
and the possibility that there may be additional zeros ofp inside these intervals. But note
that since there are certainly no zeros ofp′ inside the intervals, there can be at most one
additional root ofp in each interval. Whether there is one can be inferred, for an internal
interval(xi, xi+1), by seeing whether the signs ofp(xi) andp(xi+1), determined in the
previous step, are both nonzero and are different. If not, we can take the sign on the
interval from whichever sign ofp(xi) andp(xi+1) is nonzero (we cannot have them
both zero, since then there would have to be a zero ofp′ in between). Otherwise we
insert a new pointy betweenxi andxi+1 which is a zero (only) ofp, and infer the signs
on the new subintervals(xi, y) and (y, xi+1) from the signs at the endpoints. Other
polynomials have the same signs on(xi, y), y and(y, xi+1) that had been inferred for
the original interval(xi, xi+1). For external intervals, we can use the same reasoning
if we temporarily introduce new points−∞ and +∞ and infer the sign ofp(−∞)
by flipping the sign ofp′ on the lowest interval(−∞, x1) and the sign ofp(+∞) by
copying the sign ofp′ on the highest interval(xn,+∞). (Because the extremal behavior
of polynomials is determined by the leading term, and those ofp andp′ are related by a
positive multiple ofx.) The following function assumes that these ‘infinities’ have been
added first:

let rec inferisign ps =
match ps with

pt1::int::pt2::other ->
let res = inferisign(pt2::other)
and tint = tl int and s1 = hd pt1 and s2 = hd pt2 in
if s1 = Positive & s2 = Negative then

pt1::(Positive::tint)::(Zero::tint)::(Negative::tint)::res
else if s1 = Negative & s2 = Positive then

pt1::(Negative::tint)::(Zero::tint)::(Positive::tint)::res
else if (s1 = Positive or s2 = Negative) & s1 = s2 then

pt1::(s1::tint)::res
else if s1 = Zero & s2 = Zero then

failwith "inferisign: inconsistent"
else if s1 = Zero then

pt1::(s2 :: tint)::res
else if s2 = Zero then

pt1::(s1 :: tint)::res
else failwith "inferisign: can’t infer sign on interval"

| _ -> ps;;

The overall operation is built up following the above lines. We structure it in such a
way that it modifies a matrix and rather than returning it, passes it to a continuation func-
tion cont . As we will see later, this makes the overall implementation of the algorithm
smoother. (Hereunzip separates a list of pairs into two separate lists,chop list



splits a list in two at a numbered position,replicate k a makes a list containingk
copies ofa, tl is the tail of a list andbutlast returns all but the very last element.)

let dedmatrix cont mat =
let n = length (hd mat) / 2 in
let mat1,mat2 = unzip (map (chop_list n) mat) in
let mat3 = map2 inferpsign mat1 mat2 in
let mat4 = condense mat3 in
let k = length(hd mat4) in
let mats = (replicate k (swap true (el 1 (hd mat3))))::mat4@

[replicate k (el 1 (last mat3))] in
let mat5 = butlast(tl(inferisign mats)) in
let mat6 = map (fun l -> hd l :: tl(tl l)) mat5 in
cont(condense mat6);;

3.3 Multivariate polynomials

Note that this reasoning relies only on fairly straightforward observations of real anal-
ysis. Essentially the same procedure can be used even for multivariate polynomials,
treating other variables as parameters while eliminating one variable. The only slight
complication is that instead of literally dividing one polynomials by another onep:

s(x) = p(x)q(x) + r(x)

we may instead have only a pseudo-division

aks(x) = p(x)q(x) + r(x)

wherea is the leading coefficient ofp, in general a polynomial in the other variables. In
this case, to infer the sign ofp(x) from that ofr(x) whereq(x) = 0 we need to know
thata 6= 0 and what its sign is. Determining this may require a number of case-splits
over signs or zero-ness of polynomials in other variables, complicating the formula if
we then eliminate other variables. We will maintain an environment of sign hypotheses
sgns , and when we perform pseudo-division, we will check thata 6= 0 and make sure
that the signs ofs(x) andr(x) are the same, by negatingr(x) or multiplying it by a
when necessary, depending on how much we know about the sign ofa and whetherk
is odd or even. (Herepdivide is a raw syntactic pseudo-division operation with no
check on the nature of the divisor’s head coefficient.)

let pdivides vars sgns q p =
let s = findsign vars sgns (head vars p) in
if s = Zero then failwith "pdivides: head coefficient is zero" else
let (k,r) = pdivide vars q p in
if s = Negative & k mod 2 = 1 then poly_neg r
else if s = Positive or k mod 2 = 0 then r
else poly_mul (tl vars) (head vars p) r;;

We will also need to case-split over positive/negative status of coefficients, and the
following function fits a case-split into the continuation-passing framework; there is a
similar functionsplit zero used as well:

let split_sign vars sgns pol cont_p cont_n =
let s = findsign vars sgns pol in
if s = Positive then cont_p sgns
else if s = Negative then cont_n sgns



else if s = Zero then failwith "split_sign: zero polynomial" else
let ineq = Atom(R(">",[pol; Fn("0",[])])) in
Or(And(ineq,cont_p (assertsign vars sgns (pol,Positive))),

And(Not ineq,cont_n (assertsign vars sgns (pol,Negative))));;

We have explained a recursive algorithm for determining a sign matrix, but we
haven’t explained where to stop. If we reach a constant polynomial, then the sign will
be determined (perhaps after case splitting) independent of the main variable, so we
want to be able to insert a fixed sign at a certain place in a sign matrix. Again, we use a
continuation-based interface:

let matinsert i s cont mat = cont (map (insertat i s) mat);;

The main loop will use the continuation to convert the finally determined sign matrix
(of which there may be many variants because of case splitting) to a formula. However,
note that because of the rather naive case-splitting, we may reach situations where an
inconsistent set of sign assumptions is made — for examplea < 0 anda3 > 0 or just
a2 < 0. This can in fact lead to the ‘impossible’ situation that the sign matrix has two
zeros of somep(x) with no zero ofp′(x) in between them — which ininferisign
will generate an exception. We do not want to actually fail here, but we are at liberty
to return whatever formula we like, such as⊥. This is dealt with by the following
exception-trapping function:

let trapout cont m =
try cont m with Failure "inferisign: inconsistent" -> False;;

The main loop is organized as mutually recursive functions. The main function
matrix assumes that the signs of all the leading coefficients of the polynomials are
known, i.e. insgns . If the set of polynomials is empty, we just apply the continuation
to the trivial sign matrix, remembering the error trap. If there is a constant among the
polynomials, we remove it and set up the continuation so the appropriate sign is re-
inserted. Otherwise, we pick the polynomial with the highest degree, which will be the
p in our explanation above, and recurse tosplitzero , adding logic to rearrange the
polynomials so that we can assumep is at the head of the list.

let rec matrix vars pols cont sgns =
if pols = [] then trapout cont [[]] else
if exists (is_constant vars) pols then

let p = find (is_constant vars) pols in
let i = index p pols in
let pols1,pols2 = chop_list i pols in
let pols’ = pols1 @ tl pols2 in
matrix vars pols’ (matinsert i (findsign vars sgns p) cont) sgns

else
let d = itlist (max ** degree vars) pols (-1) in
let p = find (fun p -> degree vars p = d) pols in
let p’ = poly_diff vars p and i = index p pols in
let qs = let p1,p2 = chop_list i pols in p’::p1 @ tl p2 in
let gs = map (pdivides vars sgns p) qs in
let cont’ m = cont(map (fun l -> insertat i (hd l) (tl l)) m) in
splitzero vars qs gs (dedmatrix cont’) sgns

The functionsplitzero simply case-splits over the zero status of the coefficients
of the polynomials in the listpols , assuming those indun are already fixed:



and splitzero vars dun pols cont sgns =
match pols with

[] -> splitsigns vars [] dun cont sgns
| p::ops -> if p = Fn("0",[]) then

let cont’ = matinsert (length dun) Zero cont in
splitzero vars dun ops cont’ sgns

else split_zero (tl vars) sgns (head vars p)
(splitzero vars dun (behead vars p :: ops) cont)
(splitzero vars (dun@[p]) ops cont)

When all polynomials are dealt with, we recurse to another level of splitting where
we split over positive-negative status of the coefficients that are already determined to
be nonzero:

and splitsigns vars dun pols cont sgns =
match pols with

[] -> dun
| p::ops -> let cont’ = splitsigns vars (dun@[p]) ops cont in

split_sign (tl vars) sgns (head vars p) cont’ cont’

That is the main loop of the algorithm; we start with a continuation that will perform
an appropriate test on the sign matrix entries for each literal in the formula, and we
construct the sign matrix for all polynomials that occur in the original formula.

4 Proof-producing implementation

The proof-producing version, by design, follows the same structure. In this section we
concentrate on interesting design decisions for this variant.

4.1 Polynomials

Our canonical representation of polynomials is as lists of coefficients with the constant
term first. For example, the polynomialx3−2x+6 is represented by the list[6;−2; 0; 1].
The corresponding ‘evaluation’ function is simply expressed as a primitive recursive
definition over lists:

` (poly [] x = &0) ∧
(poly (CONS h t) x = h + x * poly t x)

This representation is used in a nested fashion to encode multivariate polynomials.
A key point is that we can prove many analytical theorems such as special intermediate-
value properties generically for all polynomials just by usingpoly l for a general
list of realsl (the proofs usually proceed by induction over lists). Thus we can avoid
proving many special cases for the actual polynomials we use: they are deduced by a
single primitive inference step of variable instantiation from the generic versions.

4.2 Data Structures

The first difficult choice we encountered was how to represent our current knowledge
about the state of the sign matrix. We were faced with the task of organizing the follow-
ing information, for example, giving a partial sign matrix for the polynomials



p0(x) = x2

p1(x) = x− 1

(Here,x0 andx1 correspond to the roots0 of λx. x2 and1 of λx. x− 1 respectively.)

∀x. x < x0 ⇒ p0(x) > 0
∀x. x < x0 ⇒ p1(x) < 0
p0(x0) = 0
p1(x0) < 0
∀x. x0 < x < x1 ⇒ p0(x) > 0
∀x. x0 < x < x1 ⇒ p1(x) < 0
p0(x1) > 0
p1(x1) = 0
∀x. x1 < x ⇒ p0(x) > 0
∀x. x1 < x ⇒ p1(x) > 0

As the matrices become larger (which is immediate due to the exponential nature of
the procedure), the task of managing these facts using simple data types like lists and
products becomes daunting. Instead, we chose to define a series of predicates that allow
us to organize this data in a succinct fashion. We begin by defining an enumerated type
of signs with membersZero, Pos, Neg, Nonzero, Unknown. The additional element
Unknown is useful in order to be able to make rigorous proven statements at intermediate
steps, whereas in the original we could just say ‘the setting of this sign may be wrong
now but we’ll fix it in the next step’. We then define a predicate which, given a domain
and a polynomial, interprets the sign:

interpsign S p Zero := (∀x.x ∈ S ⇒ (p(x) = 0))
interpsign S p Pos := (∀x.x ∈ S ⇒ (p(x) > 0))
interpsign S p Neg := (∀x.x ∈ S ⇒ (p(x) < 0))
interpsign S p Nonzero := (∀x.x ∈ S ⇒ (p(x) 6= 0))
interpsign S p Unknown := (∀x.x ∈ S ⇒ (p(x) = p(x)))

Now, the previous set of formulas can be written as follows:



interpsign (λx.x < x0) p0 Pos

interpsign (λx.x < x0) p1 Neg

interpsign (λx.x = x0) p0 Zero

interpsign (λx.x = x0) p1 Neg

interpsign (λx.x0 < x < x1) p0 Pos

interpsign (λx.x0 < x < x1) p1 Neg

interpsign (λx.x = x1) p0 Pos

interpsign (λx.x = x1) p1 Zero

interpsign (λx.x1 < x) p0 Pos

interpsign (λx.x1 < x) p1 Pos

But these formulas are of a very predictable form, so we can use HOL Light ’s
cababilities for making primitive recursive definitions:

ALL2 P [] l2 ⇔ (l2 = []))
ALL2 P (CONS h1 t1) l2 ⇔

if l2 = [] then F else (P h1 (HD l2)) ∧ (ALL2 P t1 (TL l2))

This allows us to compact the formulas for a given set with another predicate:

interpsigns polys S signs = ALL2 (interpsign S) polys signs

Our formulas can now be represented slightly more succinctly:

interpsigns (λx.x < x0) [p0, p1] [Pos, Neg]
interpsigns (λx.x = x0) [p0, p1] [Zero, Neg]
interpsigns (λx.x0 < x < x1) [p0, p1] [Pos, Neg]
interpsigns (λx.x = x1) [p0, p1] [Pos, Zero]
interpsign (λx.x1 < x) [p0, p1] [Pos, Pos]

Now, given a predicateOrderedList which indicates that the points in the list are
sorted, and a functionPartitionLine that breaks the real line into intervals based on
the points of the list, we can represent the entire matrix with a final predicate.

interpmat points polys signs =
OrderedList points ∧
ALL2 (interpsigns polys) (PartitionLine points) signs



Thus, our entire set of formulas is represented by the simple formula

interpmat [x0, x1] [p0, p1] [[Pos, Neg], [Zero, Neg], [Pos, Neg], [Pos, Zero], [Pos, Pos]]

As the sign matrix is the primary data structure in the algorithm, this succinct rep-
resentation makes the implementation much smoother than dealing with the formulas
individually.

One potential drawback to this approach is the time spent assembling and disassem-
bling the representation to extract or add formulas. While in a high level programming
language this would not be a concern, for large matrices this is a substantial amount of
term rewriting.

On the other hand, the representation can also speed up rewriting. For example, sup-
pose we’ve deduced thatp2 = p0 and would like to replacep0 by p2 in the sign matrix.
This is a trivial one step rewrite for our representation, while many rewrites would be
required to achieve the same result if the matrix were represented by individual formu-
las.

4.3 Existential Formulas

Creating the sign matrix involves instantiating a large number of existential theorems,
such as a theorem used for adding the “points at infinity”:

(∀x. x > y ⇒ p′(x) < 0) ⇒ ∃Y.Y > y ∧ (∀y. y ≥ Y ⇒ p(y) < 0)

These existential formulas are instantiated by the usual method of choosing an un-
used variable name for the instance and assuming the body of the theorem. The as-
sumptions are then eliminated using the usual existential elimination rule of natural
deduction. This is unproblematic in the univariate case, where there are no splits in the
control flow due to sign variations. In the general case, though, the existential theorems
themselves can depend on sign assumptions. Thus we must be careful to carry these
existential theorems through every step of the algorithm until we reach an appropriate
place to eliminate them. This was a common characteristic of adapting the procedure
given above to produce proofs. A number of environments and continuations were nec-
essary to pass necessary theorems both up and down the tree of sign splits.

4.4 Effort Comparison

Generating proofs for each step of the code above was a significant challenge. To com-
pare the procedures, we first consider the amount of code that was necessary to imple-
ment the procedure. The code given above, when augmented with the necessary library
functions, runs around 600 lines. In contrast, our version runs around 4000. This does
not include the additional 4000 lines of proof scripts, proving lemmas needed at various
points in the procedure. An illustrative (and perhaps amusing) example in the algorithm
presented above occurs indedmatrix where the “points at infinity” are added and
removed smoothly in 3 lines of code. Our subroutine to add these points is 90 lines,
based on lemmas requiring 3000 lines of proof guaranteeing their existence. This is an
extreme, but not uncharacteristic example of the difference in effort required.



5 Results

It is well-known that quantifier elimination for the reals is in general computationally
intractable, both in theoretical complexity [31] and in the limited success on real ap-
plications. So we cannot start with high expectations of routinely solving really inter-
esting problems. This applies with all the more force since proof production makes the
algorithm considerably slower, apparently about 3 orders of magnitude for our current
prototype.

However, in the field of interactive theorem proving, the algorithm could be an
important tool. A great deal of time can be spent proving trivial facts of real arithmetic
that do not fall into one of the well known decidable (and implemented) subsets, such as
linear arithmetic, or linear programming. One author spent many hours proving simple
lemmas in preparation for implementing this procedure. Some indicative examples are

∀x∀y. x · y > 0 ⇔ (x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)
∀x∀y. x · y < 0 ⇔ (x > 0 ∧ y < 0) ∨ (x < 0 ∧ y > 0)
∀x∀y. x < y ⇒ ∃z. x < z ∧ z < y

Our procedure easily dispenses with such problems, and compares favorably with
the time it takes to prove such problems “by hand”. Thus, it could be a potentially
valuable tool in the day to day use of theorem provers like HOL Light.

5.1 Times

Without further ado, we give some of the problems the algorithm can solve and running
times. The procedure is written in OCaml and was run uncompiled on a 3GHz Pentium
4 processor running Linux kernel 2.4. Times are in seconds unless otherwise indicated.

Univariate Examples We’ve arranged the results into loose categories. We first con-
sider some routine univariate examples, the results collected in Table 1. A final pair of
examples demonstrates the key bound properties of the first two “Chebyshev Polyno-
mials” which are useful in function approximation; these had running times of 24 and
65 seconds respectively.

∀x. − 1 ≤ x ∧ x ≤ 1 ⇒ −1 ≤ 2x2 − 1 ∧ 2x2 − 1 ≤ 1

∀x. − 1 ≤ x ∧ x ≤ 1 ⇒ −1 ≤ 4x3 − 3x ∧ 4x3 − 3x ≤ 1

Multivariate Examples



CategoryFormula ResultRunning Time
Linear ∃x. x− 1 > 0 T 1.5
Linear ∃x. 3− x > 0 ∧ x− 1 > 0 T 4.0

Quadratic∃x. x2 = 0 T 3.0
Quadratic∃x. x2 + 1 = 0 F 2.9
Quadratic∃x. x2 − 2x + 1 = 0 T 3.1

Cubic ∃x. x3 − 1 = 0 T 4.9
Cubic ∃x. x3 − 3x2 + 3x− 1 > 0 T 5.1
Cubic ∃x. x3 − 4x2 + 5x− 2 > 0 T 10.6
Cubic ∃x. x3 − 6x2 + 11x− 6 = 0 T 11.2

Quartic ∃x.x4 − 1 > 0 T 7.2
Quartic ∃x.x4 + 1 < 0 F 6.1
Quartic ∃x.x4 − x3 = 0 T 27.6
Quartic ∃x.x4 − 2 ∗ x2 + 2 = 0 T 32.6
Quintic ∃x.x5 − 15 ∗ x4 + 85 ∗ x3 − 225 ∗ x2 + 274 ∗ x− 120 = 0 T 600

Table 1.Runtimes on simple univariate examples

– Here is an instance of a more complicated quantifier structure. Our implementation
returns the theorem in 63 seconds.

(∀a f k. (∀e. k < e ⇒ f < a · e) ⇒ f ≤ a · k)

– Here is an example arising as a polynomial termination ordering for a rewrite sys-
tem for group theory, which takes around 2 minutes.

1 < 2 ∧ (∀x. 1 < x ⇒ 1 < x2)∧
(∀x y. 1 < x ∧ 1 < y ⇒ 1 < x(1 + 2y))

– We can use open formulas to determine when polynomials have roots, as in the case
mentioned above of a quadratic polynomial,∃x. ax2 + bx + c = 0 The following
identity is established in 27 seconds.

val it : thm =
|- (?x. a * x pow 2 + b * x + c = &0) <=>

(&0 + a * &1 = &0) /\
((&0 + b * &1 = &0) /\ (&0 + c * &1 = &0) \/

˜(&0 + b * &1 = &0) /\ (&0 + b * &1 > &0 \/ &0 + b * &1 < &0)) \/
˜(&0 + a * &1 = &0) /\
(&0 + a * &1 > &0 /\

((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) \/
˜(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0) \/

&0 + a * &1 < &0 /\
((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) \/

˜(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0))



While this is not particularly readable, it does give the necessary and sufficient
conditions. We can express the answer in a somewhat nicer form by “guessing”,
and the proof takes 9940 seconds:

∀a∀b∀c.(∃x.ax2 + bx + c = 0) ⇔
(((a = 0) ∧ ((b 6= 0) ∨ (c = 0)))∨
(a 6= 0) ∧ b2 ≥ 4ac)

– Robert Solovay has shown us a method by which formulas over general real vector
spaces can be reduced to the present subset of reals. Consider the following for-
mula, wherex andy are vectors andu a real number,x ·y is the inner (dot) product
and||x|| is the norm (length) ofx:

∀x y. x · y > 0 ⇒ ∃u. 0 < u ∧ ||uy − x|| < ||x||

Our implementation of Solovay’s procedure returns the following formula over the
reals that provably implies the original. (Note that the body can be subjected to
some significant algebraic simplification, but this gets handled anyway by our tran-
sition to canonical polynomial form.) Our procedure proves this in 200 seconds.

∀a b c. 0 ≤ b ∧ 0 ≤ c ∧ 0 < ac
⇒ ∃u. 0 < u ∧ u(uc− ac)− (uac− (a2c + b)) < a2c + b

6 Future Work

The underlying algorithm is quite naive, and could be improved in many ways at rela-
tively little cost in complexity. One very promising improvement is to directly exploit
equations to substitute. At its simplest, if we are eliminating an existential quantifier
from a conjunction containing an equation with the variable on one side, we can sim-
ply replace the variable with the other side of the equation. (At present, our algorithm
uses the inefficient general sign-matrix process even when such obvious simplifica-
tions could be made.) Slightly more complicated methods can yield very good results
for low-degree equations like quadratics [32]. More generally, even more complicated
higher-degree equations can be used to substitute, and we can even try to factor. For
example, consider the assertion that the logistic mapx 7→ rx(1 − x) has a cycle with
period 2:

∃x. 0 ≤ x ∧ x ≤ 1 ∧ r(rx(1− x))(1− rx(1− x)) = x ∧ ¬(rx(1− x) = x)

By factoring the equation and then using the remaining factor to substitute, we can
reach the following formula, where the degree ofx has been reduced, making the prob-
lem dramatically easier for the core algorithm:



∃x. 0 ≤ x ∧ x ≤ 1 ∧ r2x2 − r(1 + r)x + (1 + r) = 0 ∧ ¬(2rx = 1 + r)

The translation to a proof-producing version was done quite directly, and there is
probably considerable scope for improvement by making some of the inference steps
more efficient. In the last example, the HOL Light implementation runs over103 slower
than the unchecked version. It seems that this gap can be significantly narrowed.

One interesting continuation of the current work would be to see how easily our
implementation could be translated to another theorem prover such as Isabelle [25].
Finally, there is the potential to use this procedure in a fully automated combined deci-
sion procedure environment such as CVC-Lite [1]. We have not explored these lines of
research in any detail.

7 Conclusion

It is difficult to foresee the practical benefits of using general decision procedures such
as this one in the field of interactive theorem proving. As this case study shows, even
when they exist, it is not at all clear whether, due to complexity constraints, they will
be applicable to even moderately difficult problems. Considering the examples given
above, one might even dismiss such procedures outright as entirely too inefficient. For
theuserof such a system, however, it is procedures like this one which automate tedious
low level tasks that make the process of theorem proving useful and enjoyable, or at
least tolerable.

In conclusion, the work described above can be seen in two different lights. On the
one hand, it is a rather inefficient implementation of an algorithm which, while mathe-
matically and philosophically interesting, and theoretically applicable to an enormous
range of difficult problems, is not yet practically useful for those problems. On the other
hand, it can be viewed as another tool in the (human) theorem prover’s tool chest. One
that, given the wide range of applications of the real numbers in theorem proving, could
be an importantpracticalachievement.
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des modeles’ published by Dunod, Paris in 1964.

20. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover in the HOL
environment. In M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors,Proceedings
of the 1991 International Workshop on the HOL theorem proving system and its Applications,
pages 170–176, University of California at Davis, Davis CA, USA, 1991. IEEE Computer
Society Press.

21. A. Mahboubi and L. Pottier. Elimination des quantificateurs sur les réels en Coq. In
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