
contributed articles

66 communications of the acm | april 2014 | vol. 57 | no. 4

From the point of view of the foundations of
mathematics, one of the most significant advances
in mathematical logic around the turn of the 20th
century was the realization that ordinary mathematical
arguments can be represented in formal axiomatic
systems in such a way their correctness can be verified
mechanically, at least in principle. Gottlob Frege
presented such a formal system in the first volume
of his Grundgesetze der Arithmetik, published in 1893,
though in 1903 Bertrand Russell showed the system
to be inconsistent. Subsequent foundational systems
include the ramified type theory of Russell and Alfred
North Whitehead’s Principia Mathematica, published
in three volumes from 1910 to 1913; Ernst Zermelo’s
axiomatic set theory of 1908, later extended by
Abraham Fraenkel; and Alonzo Church’s simple
type theory of 1940. When Kurt Gödel presented
his celebrated incompleteness theorems in 1931,
he began with the following assessment:

“The development of mathematics
toward greater precision has led, as
is well known, to the formalization of
large tracts of it, so one can prove any
theorem using nothing but a few me-
chanical rules. The most comprehen-
sive formal systems that have been set
up hitherto are the system of Principia
Mathematica on the one hand and the
Zermelo-Fraenkel axiom system of
set theory (further developed by J. von
Neumann) on the other. These two
systems are so comprehensive that in
them all methods of proof used today
in mathematics are formalized, that
is, reduced to a few axioms and rules
of inference. One might therefore con-
jecture that these axioms and rules of
inference are sufficient to decide any
mathematical question that can at all
be formally expressed in these systems.
It will be shown below that this is not
the case…”4

Gödel was right to claim the math-
ematics of his day could generally be
formalized in axiomatic set theory and
type theory, and these have held up,
to today, as remarkably robust foun-
dations for mathematics. Indeed, set-
theoretic language is now ubiquitous,
and most mathematicians take the
language and axioms of set theory to
underwrite their arguments, in the
sense that any ambiguities in a claim
or proof could, in principle, be elimi-
nated by spelling out the details in
set-theoretic terms. In the mid-1930s,
a group of mathematicians writing
under the pen name Nicolas Bourba-
ki adopted set theory as the nominal
foundation for a series of influential
treatises aiming to provide a self-con-

Formally
Verified
Mathematics

doi:10.1145/2591012

With the help of computational proof
assistants, formal verification could become
the new standard for rigor in mathematics.

By Jeremy Avigad and John Harrison

 key insights

 � �Among the sciences, mathematics
is distinguished by its precise language
and clear rules of argumentation.

 � �This fact makes it possible to
model mathematical proofs as
formal axiomatic derivations.

 � �Computational proof assistants make
it possible to check the correctness
of these derivations, thereby increasing
the reliability of mathematical claims.

http://dx.doi.org/10.1145/2591012

april 2014 | vol. 57 | no. 4 | communications of the acm 67

I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 w

a
l

l
p

a
p

e
r

s
u

s
.c

o
m

tained, rigorous presentation of the
core branches of mathematics:

“…the correctness of a mathemati-
cal text is verified by comparing it,
more or less explicitly, with the rules of
a formalized language.”3

From this standpoint, the contem-
porary informal practice of writing a
mathematical proof is an approxima-
tion to that ideal, whereby the task of
a referee is to exercise professional
judgment as to whether the proof
could be expressed, in principle, in a
way that conforms to the rules. The
mathematician Saunders Mac Lane
put it as follows:

“A Mathematical proof is rigorous
when it is (or could be) written out in
the first-order predicate language L(∈)
as a sequence of inferences from the
axioms ZFC, each inference made ac-
cording to one of the stated rules…
When a proof is in doubt, its repair is
usually just a partial approximation to
the fully formal version.”15

This point of view is to some ex-
tent anticipated by the 17th century
philosopher Gottfried Leibniz, who
called for development of a universal
language (characteristica universalis)
in which anything can be expressed
and a calculus of reasoning (calculus
ratiocinator) for deciding the truth of
assertions expressed in the character-
istica. Leibniz’s ambitions were not
limited to mathematics; he dreamed

of a time when any disputants could
translate their disagreement into the
characteristica and say to each other
“calculemus” (“let us calculate”). In the
20th century, however, even Bourbaki
conceded complete formalization was
an unattainable ideal:

“…the tiniest proof at the beginning
of the Theory of Sets would already re-
quire several hundreds of signs for its
complete formalization… formalized
mathematics cannot in practice be
written down in full… We shall there-
fore very quickly abandon formalized
mathematics.”3

Due to developments in computer
science over the past few decades, it is
now possible to achieve complete for-
malization in practice. Working with
“computational proof assistants,” us-
ers are able to verify substantial mathe-
matical theorems, constructing formal
axiomatic derivations of remarkable
complexity. Our goal in this article is to
describe the current technology and its
motivations, survey the state of the art,
highlight some recent advances, and
discuss prospects for the future.

Mathematical Rigor
The notion of proof lies at the heart
of mathematics. Although early re-
cords of measurement and numeric
computation predate the ancient
Greeks, mathematics proper is com-
monly seen as having begun with de-

velopment of the deductive method,
as exemplified by Euclid’s Elements
of Geometry. Starting from axioms
and postulates, a mathematical proof
proceeds by a chain of incontrovert-
ible logical steps to its conclusion.
Through the ages, the method of the
Elements was held to represent the
paradigm of rigorous argumenta-
tion, to mathematicians, scientists,
and philosophers alike. Its appeal is
eloquently conveyed in John Aubrey’s
short biography1 of the philosopher
Thomas Hobbes (1588–1697), who
made his first serious contact with
mathematics at the age of 40:

“Being in a Gentleman’s Library,
Euclid’s Elements lay open, and ’twas
the 47 El. libri 1 [Pythagoras’s Theo-
rem]. He read the proposition. By
G—, sayd he (he would now and then
sweare an emphaticall Oath by way
of emphasis) this is impossible! So he
reads the Demonstration of it, which
referred him back to such a Proposi-
tion; which proposition he read. That
referred him back to another, which
he also read. Et sic deinceps [and so
on] that at last he was demonstratively
convinced of that trueth. This made
him in love with Geometry.”1

The encounter turned Hobbes into
an enthusiastic amateur geometer
“wont to draw lines on his thigh and
on the sheets, abed.” He became no-
torious in later years for bombarding

contributed articles

68 communications of the acm | april 2014 | vol. 57 | no. 4

referees, even those with the best of
intentions, are fallible, and mistakes
are inevitably made in the peer-review
process. A book written by Lecat in
1935 included 130 pages of errors
made by major mathematicians up to
1900, and even mathematicians of the
stature of J.E. Littlewood have pub-
lished faulty proofs:

“Professor Offord and I recently
committed ourselves to an odd mistake
(Annals of Mathematics Annals of Math-
ematics (2) 49, 923, 1.5). In formulating
a proof a plus sign got omitted, becom-
ing in effect a multiplication sign. The
resulting false formula got accepted as
a basis for the ensuing fallacious argu-
ment. (In defence, the final result was
known to be true.)”14

Every working mathematician must
routinely deal with inferential gaps,
misstatements, missing hypotheses,
unstated background assumptions,
imprecise definitions, misapplied re-
sults, and the like. A 2013 article in the
Notices of the American Mathematical
Society (Grcar7) on errors in the math-
ematical literature laments the fact
that corrections are not published as
often as they should be. Some errors
are not easily repaired. The first pur-
ported proof of the four-color theorem
in 1879 stood for a decade before a flaw
was pointed out. Referees reviewing
Andrew Wiles’s first proof of Fermat’s
Last Theorem found a mistake, and it
took Wiles and a former student, Rich-
ard Taylor, close to a year to find a way
to circumvent it. Daniel Gorenstein an-
nounced, in 1983, that the classifica-
tion of finite simple groups had been
completed, unaware there was a gap
in the treatment of the class of “qua-
sithin” groups. The gap was not filled
until 2001, and doing so required a
1,221-page proof by Michael Aschbach-
er and Stephen Smith.

Even when an argument turns out
to be correct, judging it to be so can
take a long time. Grigori Perelman
posted three papers on arXiv in 2002
and 2003 presenting a proof of Thur-
ston’s geometrization conjecture.
This result, in turn, implies the Poin-
caré conjecture, one of the Clay Math-
ematics Institute’s famed Millen-
nium Prize challenges. The proof was
scrutinized by dozens of researchers,
but it was not until 2006 that three
independent groups determined that

top mathematicians with his error-
ridden ruler-and-compass geometric
constructions, some of which are now
known to be impossible in principle.

But what, exactly, constitutes a
proof? Who is to say whether a proof is
correct or not? Maintaining that a proof
need convince only the person reading
it gives the notion a subjective charac-
ter. In practice, proofs tend to become
generally accepted when they persuade
not just one or two people but a broad
or particularly influential group of
mathematicians. Yet as Hobbes him-
self noted, this does not entirely avoid
the subjective and fallible character of
the judgment:

“But no one mans Reason, nor the
Reason of any one number of men,
makes the certaintie; no more than
an account is therefore well cast up,
because a great many men have unani-
mously approved it.”12

In the history of mathematics, there
is no shortage of controversy over the
validity of mathematical arguments.
Berkeley’s extended critique of the
methods of the calculus in The Analyst
(1734) is one example. Another is the
“vibrating string controversy” among
Leonhard Euler, Jean d’Alembert, and
Daniel Bernoulli, hinging on whether
an “arbitrary” continuous function on
a real interval could be represented by
a trigonometric series. Carl Friedrich
Gauss is usually credited with provid-
ing the first correct proof of the funda-
mental theorem of algebra, asserting
that every nonconstant polynomial
over the complex numbers has a root,
in his doctoral dissertation of 1799;
but the history of that theorem is espe-
cially knotty, since it was not initially
clear what methods could legitimately
be used to establish the existence of
the roots in question. Similarly, when
Gauss presented his proof of the law of
quadratic reciprocity in his Disquitio-
nes Arithmeticae (1801), he began with
the observation that Legendre’s al-
leged proof a few years prior contained
a serious gap.

Mathematicians have always been
reflectively conscious of their meth-
ods, and, as proofs grew more complex
in the 19th century, mathematicians
became more explicit in emphasizing
the role of rigor. This is evident in, for
example, Carl Jacobi’s praise of Johann
Peter Gustav Lejune Dirichlet:

“Dirichlet alone, not I, nor Cauchy,
nor Gauss knows what a completely
rigorous mathematical proof is. Rather
we learn it first from him. When Gauss
says that he has proved something, it
is very clear; when Cauchy says it, one
can wager as much pro as con; when
Dirichlet says it, it is certain…” (quoted
by Schubring21).

Mathematics has, at critical junc-
tures, developed in more speculative
ways. But these episodes are invariably
followed by corresponding periods of
retrenchment, analyzing foundations
and increasingly adopting a strict de-
ductive style, either to resolve apparent
problems or just to make the material
easier to teach convincingly.6

Reflecting on the history of math-
ematics, we can to some extent dis-
entangle two related concerns. The
first is whether the methods used in a
given proof are valid, or appropriate to
mathematics. This has to do with com-
ing to consensus as to the appropriate
rules of argumentation. For example,
is it legitimate to refer to negative
numbers, complex numbers, and in-
finitesimals, and, if so, what properties
do they have? Is it legitimate to use the
axiom of choice or to apply the law of
the excluded middle to statements in-
volving infinite structures? The second
concern has to do with whether, given
a background understanding of what
is allowed, a particular proof meets
those standards; that is, whether or not
the proof is correct. The foundational
debates of the early 20th century, and
the set-theoretic language and formal-
ism that emerged, were designed to
address the question as to what meth-
ods are legitimate, by establishing an
in-principle consensus as to the infer-
ences that are allowed. Formal verifica-
tion is not designed to help with that;
just as human referees can strive only
to establish correctness with respect
to an implicit conception of what is ac-
ceptable, formal correctness can be as-
sessed only modulo an underlying axi-
omatic framework. But, as will become
clear in the next section, establishing
correctness is a nontrivial concern,
and is where formal methods come
into play.

Correctness Concerns
Mathematical proofs are complex ob-
jects, and becoming more so. Human

contributed articles

april 2014 | vol. 57 | no. 4 | communications of the acm 69

any gaps in Perelman’s original proof
were minor, and could be filled using
the techniques he had developed.

The increased complexity is exac-
erbated by the fact that some proofs
rely on extensive calculation. Kenneth
Appel’s and Wolfgang Hakken’s 1976
proof of the four-color theorem relied
on an exhaustive computer enumera-
tion of combinatorial configurations.
Subsequent proofs, though more effi-
cient, have this same character. Proofs
that depend on explicit checking of
cases are nothing new in themselves;
for example, proofs of Bertrand’s con-
jecture (for n ≥ 1 there is a prime n ≤ p
≤ 2n) often begin with a comment like
“Let us assume n ≥ 4,000, since one
can verify it explicitly for other cases.”
But this feature took on dramatic pro-
portions with Thomas Hales’s 1998
proof of the Kepler conjecture, stat-
ing that no packing of spheres in 3D
space has higher density than the
natural face-centered cubic packing
commonly used to stack oranges,
cannonballs, and such. Hales, work-
ing with Samuel Ferguson, arrived at a
proof in 1998 consisting of 300 pages
of mathematics and calculations per-
formed by approximately 40,000 lines
of computer code. As part of the peer-
review process, a panel of 12 refer-
ees appointed by the Annals of Math-
ematics studied the proof for four
full years, finally returning with the
verdict that they were “99% certain”
of the correctness, but in the words of
the editor Robert MacPherson:

“The news from the referees is bad,
from my perspective. They have not
been able to certify the correctness of
the proof, and will not be able to certify
it in the future, because they have run
out of energy to devote to the problem.
This is not what I had hoped for…

“Fejes Tóth thinks that this situa-
tion will occur more and more often
in mathematics. He says it is similar
to the situation in experimental sci-
ence—other scientists acting as refer-
ees can’t certify the correctness of an
experiment, they can only subject the
paper to consistency checks. He thinks
that the mathematical community will
have to get used to this state of affairs.”

The level of confidence was such
that the proof was indeed published
in the Annals, and no significant error
has been found in it. Nevertheless, the

verdict is disappointingly lacking in
clarity and finality. In fact, as a result
of this experience, the journal changed
its editorial policy on computer-assist-
ed proof so it will no longer even try
to check the correctness of computer
code. Dissatisfied with this state of af-
fairs, Hales turned to formal verifica-
tion, as we will see.

In November 2005, the Notices of
the American Mathematical Society pub-
lished an article by Brian Davies called
“Whither Mathematics?” that raised
questions about the mounting com-
plexity of mathematical proof and the
role of computers in mathematics. In
August 2008, the Notices published an
opinion piece by Melvyn Nathanson
that also raised concerns about the sta-
tus of mathematical proof:

“…many great and important theo-
rems don’t actually have proofs. They
have sketches of proofs, outlines of ar-
guments, hints and intuitions that were
obvious to the author (at least, at the
time of writing) and that, hopefully, are
understood and believed by some part
of the mathematical community.”18

He concluded:
“How do we recognize mathemati-

cal truth? If a theorem has a short
complete proof, we can check it. But
if the proof is deep, difficult, and al-
ready fills 100 journal pages, if no one
has the time and energy to fill in the
details, if a ‘complete’ proof would be
100,000 pages long, then we rely on the
judgments of the bosses in the field. In
mathematics, a theorem is true, or it’s
not a theorem. But even in mathemat-
ics, truth can be political.”18

Nathanson’s essay did not explicitly
mention contemporary work in formal
verification. But a few months later, in
December 2008, the Notices devoted
an entire issue to formal proof, focus-
ing on methods intended to alleviate
Nathanson’s concerns.

Automating Mathematics
As noted, for suitable formal proof
systems, there is a purely mechanical
process for checking whether an al-
leged proof is in fact a correct proof of
a certain proposition. So, given a prop-
osition p, we could in principle run a
search program that examines in some
suitable sequence (in order of, say,
length and then alphabetical order)
every potential proof of p and termi-

Every working
mathematician
routinely has
to deal with
inferential gaps,
misstatements,
missing hypotheses,
unstated
background
assumptions,
imprecise
definitions,
misapplied results,
and the like.

contributed articles

70 communications of the acm | april 2014 | vol. 57 | no. 4

nates with success if it finds one. That
is, in the terminology of computability
theory, the set of provable formulas is
recursively enumerable.

But this naive program has the fea-
ture that if p is not provable, it will run
fruitlessly forever, so it is not a yes/no
decision procedure of the kind Leibniz
imagined. A fundamental limitative re-
sult due to Church and Turing shows
this cannot be avoided, because the set
of provable formulas is not recursive
(computable). This inherent limita-
tion motivates the more modest goal of
having the computer merely check the
correctness of a proof provided (at least
in outline form) by a person. Another
reaction to limitative results like this,
and related ones due to Gödel, Tarski,
Post, and others, is to seek special cas-
es (such as restricting the logical form
of the problem) where a full decision
procedure is possible.

All three possibilities have been well
represented in the development of for-
mal proof and automated reasoning:

˲˲ Complete but potentially nonter-
minating proof search;

˲˲ Decision procedures for special
classes of problems; and

˲˲ Checking of proof hints or sketch-
es given by a person.

In the category of general proof
search, there were pioneering experi-
ments in the late 1950s by Gilmore,
Davis, Putnam, Prawtiz, Wang, and
others, followed by the more system-
atic development of practically effec-
tive proof procedures, including “tab-
leaux” (Beth, Hintikka), “resolution”
(Robinson, Maslov), and “model elim-
ination” (Loveland), as well as more
specialized techniques for “equation-
al” reasoning, including “Knuth-Ben-
dix completion.” Perhaps the most
famous application of this kind of
search is the proof of the Robbins con-
jecture, discovered by McCune17 using
the automated theorem prover EQP in
1996 that settled a problem that had
been open since the 1930s.

In the category of decision proce-
dures, perhaps the first real “automat-
ed theorem prover” was Davis’s proce-
dure for the special case of Presburger
arithmetic, a generalization of integer
programming. Implementations of
many other decision procedures have
followed, motivating further theoreti-
cal developments. Some procedures

have been particularly effective in prac-
tice (such as Gröbner basis algorithms
and Wu’s method, both applicable to
theorem proving in geometry).

Although automation is an exciting
and ambitious goal, there is little realis-
tic hope of automated provers routinely
proving assertions with real mathemati-
cal depth. Attention has thus focused
on methods of verification making
use of substantial interaction between
mathematician and computer.

Interactive Theorem Proving
The idea behind interactive theorem
proving is to allow users to work with
a computational “proof assistant” to
convey just enough information and
guidance for the system to be able to
confirm the existence of a formal axi-
omatic proof. Many systems in use to-
day actually construct a formal proof
object, a complex piece of data that can
be verified by independent checkers.

One of the earliest proof systems
was de Bruijn’s Automath, which ap-
peared in the late 1960s. The compu-
tational assistance it rendered was
minimal, since the project’s empha-
sis was on developing a compact, ef-
ficient notation for describing math-
ematical proof. An early milestone
was Jutting’s 1977 Ph.D. thesis in
which he presented a complete for-
malization of Landau’s book on a
foundational construction of the real
numbers as “Dedekind cuts,” deduc-
ing that the reals so constructed are a
complete ordered field.

Proof checkers soon came to in-
corporate additional computer assis-
tance. Andrzej Trybulec’s Mizar sys-
tem, introduced in 1973 and still in
use today, uses automated methods
to check formal proofs written in a
language designed to approximate in-
formal mathematical vernacular. The
Boyer-Moore NQTHM theorem prover
(an ancestor of ACL2), also actively
used today, was likewise introduced
in the early 1970s as a fully automatic
theorem prover; in 1974 the project’s
efforts shifted to developing methods
of allowing users to prove facts in-
crementally, then provide the facts as
“hints” to the automated prover in sub-
sequent proofs.

Influential systems introduced in
the 1980s include Robert Constable’s
Nuprl, Mike Gordon’s HOL, and the

Although
automation
is an exciting
and ambitious
goal, there is
little realistic
hope of having
automated provers
routinely prove
assertions with
real mathematical
depth.

contributed articles

april 2014 | vol. 57 | no. 4 | communications of the acm 71

Coq system, based on a logic developed
by Thierry Coquand and Gerard Huet,
and, in the 1990s, Lawrence Paulson’s
Isabelle and the Prototype Verification
System, or PVS, developed by John
Rushby, Natarjan Shankar, and Sam
Owre.a By 1994, William Thurston
could write the following in an article
in the Bulletin of the American Math-
ematical Society:

“There are people working hard
on the project of actually formalizing
parts of mathematics by computer,
with actually formally correct formal
deductions. I think this is a very big but
very worthwhile project, and I am con-
fident we will learn a lot from it.”23

Many of these systems are based on
an architecture developed by Robin
Milner with his 1972 proof LCF proof
checker, which implemented Dana
Scott’s Logic of Computable Functions.
An LCF-style prover is based on a small,
trusted core of code used to construct
theorems by applying basic rules of the
axiomatic system. Such a system can
then include more elaborate pieces of
code built on top of the trusted core,
to provide more complex proof pro-
cedures that internally decompose to
(perhaps many) invocations of basic
rules. Correctness is guaranteed by
the fact that, ultimately, only the basic
rules can change the proof state; ev-
erything the system does is mediated
by the trusted core. (This restriction is
often enforced by using a functional
programming language like ML and
OCaml and implementing the basic in-
ference rules as the only constructors
of an abstract data type.)

Many provers support a mode of
working where the theorem to be proved
is presented as a “goal” that is trans-
formed by applying “tactics” in a back-
ward fashion; for example, Figure 1 is a
proof of the fact that every natural num-
ber other than 1 has a prime divisor in
the Isabelle proof assistant.

The “lemma” command establishes
the goal to be proved, and the first in-
struction invokes a form of complete
induction. The next two statements
split the proof into two cases, depend-
ing on whether or not n = 0. When n = 0,

a	 For a more comprehensive list of provers, see
http://www.cs.ru.nl/˜freek/digimath/index.html;
for an overview of 17 proof assistants in use
today, see Wiedijk.26

setting p = 2 witnesses the conclusion;
the system confirms this automatically
(using “auto”). Otherwise, the proof
splits into two cases, depending on
whether or not n is prime. If n is prime,
the result is immediate. The case where
n is not prime is handled by appealing
to a previously proved fact.

A user can step through such a “pro-
cedural” proof script within the proof
assistant itself to see how the goal state
changes in successive steps. But the
script is difficult to read in isolation,
since the reader must simulate, or
guess, the results of applying each tac-
tic. Ordinary mathematical proofs tend
to emphasize, in contrast, the interme-
diate statements and goals, often leav-
ing the justification implicit. The Mizar
proof language was designed to model
such a “declarative” proof system, and

such features have been incorporated
into LCF-style provers. For example,
Figure 2 is a proof of the same state-
ment, again in Isabelle, but written in a
more declarative style.

A number of important theorems
have been verified in the systems de-
scribed here, including the prime
number theorem, the four-color theo-
rem, the Jordan curve theorem, the
Brouwer fixed-point theorem, Gödel’s
first incompleteness theorem, Dirich-
let’s theorem on primes in an arithme-
tic progression, the Cartan fixed-point
theorems, and many more.b In the next
section we describe even more impres-
sive milestones, though even more im-

b	 For a list of “100 great theorems,” including those
formalized in various systems, see http://www.
cs.ru.nl/˜freek/100/

Figure 1. An LCF tactic-style proof in Isabelle.

lemma prime_factor_nat: “n ~= (1::nat) ==> EX p. prime p & p dvd n”
 apply (induct n rule: nat_less_induct)
 apply (case_tac “n = 0”)
 apply (rule_tac x = 2 in exI)
 apply auto
 apply (case_tac “prime n”)
 apply auto
 apply (subgoal_tac “n > 1”)
 apply (frule (1) not_prime_eq_prod_nat)
 apply (auto intro: dvd_mult dvd_mult2)
done

Figure 2. A declarative proof in Isabelle.

lemma prime_factor_nat: “n ~= (1::nat) ==> EX p. prime p & p dvd n”
proof (induct n rule: nat_less_induct)
	 fix n :: nat
	 assume "n ~= 1" and
		 ih: "ALL m < n. m ~= 1 --> (EX p. prime p & p dvd m)"
	 then show "EX p. prime p & p dvd n"
	 proof -
	 { assume "n = 0"
		 hence "prime (2 :: nat) & 2 dvd n"
			 by auto
		 hence ?thesis by blast }
	 moreover
	 { assume "prime n"
		 hence ?thesis by auto }
	 moreover
	 { assume "n ~= 0" and "~prime n"
		 with `n ~= 1` have "n > 1" by auto
		 with `~prime n` and not_prime_eq_prod_nat
		 obtain m k where "n = m * k" and "1 < m" and "m < n" by blast
		 with ih obtain p where "prime p" and "p dvd m" by blast
		 with `n = m * k` have ?thesis by auto }
	 ultimately show ?thesis by auto
	 qed
qed

contributed articles

72 communications of the acm | april 2014 | vol. 57 | no. 4

I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 p

i
c

h
o

s
t

.m
e

tinct from those in the verification of
ordinary mathematics, and the details
would take us too far afield. So, here,
in this article, we deliberately set aside
hardware and software verification,
referring the reader to Donald MacK-
enzie’s book Mechanizing Proof: Com-
puting, Risk and Trust16 for a thoughtful
exploration of the topic.

Contemporary Efforts
Interactive theorem proving reached
a major landmark on September 20,
2012, when Georges Gonthier an-
nounced he and a group of research-
ers under his direction had completed
a verification of the Feit-Thompson
theorem. The project relied on the
Coq interactive proof assistant and a
proof language, SSReflect, Gonthier
designed. The Feit-Thompson theo-

rem, sometimes called the odd-order
theorem, says every finite group of odd
order is solvable; equivalently, that the
finite simple groups of odd order are
exactly the cyclic groups of prime or-
der. This theorem was an important
first step in the classification of finite
simple groups mentioned earlier. The
original proof by Walter Feit and John
Thompson, published in 1963, filled
255 journal pages. While a proof that
long would not raise eyebrows today, it
was unheard of at the time.

Gonthier launched the project in
2006 with support from the Micro-
soft Research - Inria Joint Centre in
Orsay, France. Because Coq is based
on a constructive logic, Gonthier had
to reorganize the proof in such a way
every theorem has a direct computa-

tional interpretation. The resulting
proof has approximately 150,000 lines
of “code,” or formal proof scripts, in-
cluding 4,000 definitions and 13,000
lemmas and theorems. As a basis for
the formalization, Gonthier and his
collaborators had to develop substan-
tial libraries of facts about finite group
theory, linear algebra, Galois theory,
and representation theory. From
there, they worked from a presenta-
tion of the Feit-Thompson theorem in
two texts, one by Helmut Bender and
George Glauberman describing the
“local analysis,” the other by Thomas
Peterfalvi describing a “character-the-
oretic” component. As one might ex-
pect, they had to cope with numerous
errors and gaps, some not easy to fix,
though none fatal.

Hales’s Flyspeck project is another
ambitious formalization effort. In re-
sponse to the outcome of the referee
process at the Annals, Hales decided
to formally verify a proof of the Kepler
conjecture. (The name “Flyspeck” is a
contraction of “Formal Proof of the Ke-
pler Conjecture.”) He made it clear he
viewed the project as a prototype:

“In truth, my motivations for the
project are far more complex than
a simple hope of removing residual
doubt from the minds of few referees.
Indeed, I see formal methods as fun-
damental to the long-term growth of
mathematics.”9

The proof involves three essential
uses of computation: enumerating
a class of combinatorial structures
called “tame hypermaps”; using linear-
programming methods to establish
bounds on a large number of systems
of linear constraints; and using inter-
val methods to verify approximately
1,000 nonlinear inequalities that arise
in the proof. All this is in addition to
the textual “paper” proof, which in
and of itself is quite long and involves
Euclidean measure theory, geometric
properties of polyhedral, and various
combinatorial structures. Partly as a
result of the formalization effort, both
the “paper” and “machine” parts of
proof have been streamlined and re-
organized.8 The combination of non-
trivial paper proofs and substantial
time-consuming computational com-
ponents make it a particularly difficult
formalization challenge, yet after a
substantial effort by a large, geograph-

portant are the bodies of mathemati-
cal theory that have been formalized,
often on the way to proving such “big
name” theorems. Substantial libraries
have been developed for elementary
number theory, real and complex anal-
ysis, measure theory and measure-
theoretic probability, linear algebra,
finite group theory, and Galois theory.
Formalizations are now routinely de-
scribed in journals, including the Jour-
nal of Automated Reasoning, Journal of
Formalised Reasoning, and Journal of
Formalized Mathematics. The annual
Interactive Theorem Proving confer-
ence includes reports on formaliza-
tion efforts and advances in interactive
theorem proving technology.

Also worth noting is that interactive
proof systems are also commonly used
to verify hardware and software sys-

tems. In principle, this is no different
from verifying mathematical claims;
for the purposes of formal verification,
hardware and software systems must
be described in mathematical terms,
and the statement that such a system
meets a certain specification is a theo-
rem to be proved. Most of the systems
described here are thus designed to
serve both goals. The connections run
deeper; hardware and software specifi-
cations often make sense only against
background mathematical theory
of, say, the integers or real numbers;
and, conversely, methods of verify-
ing software apply to the verification
of code that is supposed to carry out
specifically mathematical computa-
tions. However, hardware and software
verification raises concerns largely dis-

contributed articles

april 2014 | vol. 57 | no. 4 | communications of the acm 73

ically distributed team, the project is
nearing completion.

Another significant formal verifica-
tion effort is the Univalent Foundations
project introduced by Fields Medalist
Vladimir Voevodsky.24 Around 2005,
Voevodsky, and independently Steve
Awodey and Michael Warren, realized
that constructive dependent type theo-
ry, the axiomatic basis for Coq, has an
unexpected homotopy-theoretic inter-
pretation. Algebraic topologists rou-
tinely study abstract spaces and paths
between elements of those spaces;
continuous deformations, or “higher-
order” paths, between the paths; and
deformations between the paths; and
so on. What Voevodsky, Awodey, and
Warren realized is that one can view
dependent type theory as a calculus
of topological spaces and continuous
maps between them, wherein the as-
sertion x = y is interpreted as the exis-
tence of a path between x and y.

More specifically, Voevodsky
showed there is a model of construc-
tive type theory in the category of “sim-
plicial sets,” a mathematical structure
well known to algebraic topologists.
Moreover, this interpretation validates
a surprising fact Voevodsky called the
“univalence axiom,” asserting, rough-
ly, that any two types that are isomor-
phic are identical. The axiom jibes
with informal mathematical practice,
wherein two structures that are isomor-
phic are viewed as being essentially the
same. However, it is notably false in the
universe of sets; for example, there is a
bijection between the sets {1, 2} and
{3, 4}, but the first set contains the ele-
ment 1 while the second does not. Vo-
evodsky has suggested that dependent
type theory with the univalence axiom
can provide a new foundation for
mathematics that validates structural
intuitions. There is also hope among
computer scientists that univalence
can provide a new foundation for com-
putation where code can be designed
to work uniformly on “isomorphic”
data structures (such as lists and ar-
rays) implemented in different ways.

In an excerpt from a grant proposal
posted on his Web page, Voevodsky de-
scribed his motivations for the project
as follows:

“While working on the completion
of the proof of the Block-Kato conjec-
ture I have thought a lot about what to

do next. Eventually I became convinced
that the most interesting and important
directions in current mathematics are
the ones related to the transition into a
new era which will be characterized by
the widespread use of automated tools
for proof construction and verification.”

During the 2012–2013 academic
year, the Institute for Advanced Study
in Princeton, NJ, held a program on
Univalent Foundations, drawing an in-
terdisciplinary gathering of mathema-
ticians, logicians, and computer scien-
tists from all over the world.

Rigor and Understanding
We have distinguished between two
types of concern that can attend a math-
ematical proof: whether the methods it
uses are appropriate to mathematics
and whether the proof itself represents
a correct use of those methods. How-
ever, there is yet a third concern that is
often raised—whether a proof delivers
an appropriate understanding of the
mathematics in question. It is in this
respect that formal methods are often
taken to task; a formal, symbolic proof
is for the most part humanly incompre-
hensible and so does nothing to aug-
ment our understanding. Thurston’s
article23 mentioned earlier added the
following caveat:

“…we should recognize that the hu-
manly understandable and humanly
checkable proofs that we actually do
are what is most important to us, and
that they are quite different from for-
mal proofs.”

The article was in fact a reply to an
article by Jaffe and Quinn13 in the Bulle-
tin of the American Mathematical Society
that proposed a distinction between
“theoretical” mathematics, which has
a speculative, exploratory character,
and fully rigorous mathematics. The
Jaffe-Quinn article drew passionate,
heated responses from some of the
most notable figures in mathematics,
some rising to defend the role of rigor
in mathematics, some choosing to
emphasize the importance of a broad
conceptual understanding. Given that
both are clearly important to math-
ematics, the Jaffe-Quinn debate may
come across as much ado about noth-
ing, but the episode makes clear that
many mathematicians are wary that ex-
cessive concern for rigor can displace
mathematical understanding.

However, few researchers working
in formal verification would claim that
checking every last detail of a math-
ematical proof is the most interesting
or important part of mathematics. For-
mal verification is not supposed to re-
place human understanding or the de-
velopment of powerful mathematical
theories and concepts. Nor are formal
proof scripts meant to replace ordinary
mathematical exposition. Rather, they
are intended to supplement the math-
ematics we do with precise formula-
tions of our definitions and theorems
and assurances that our theorems are
correct. One need only recognize, as we
say here, that verifying correctness is
an important part of mathematics. The
mathematical community today in-
vests a good deal of time and resources
in the refereeing process in order to
gain such assurances, and surely any
computational tools that can help in
that regard should be valued.

The Quest for Certainty
In discussions of formally verified
mathematics, the following question
often arises: Proof assistants are com-
plex pieces of software, and software
invariably has bugs, so why should we
trust such a program when it certifies a
proof to be correct?

Proof assistants are typically de-
signed with an eye toward minimizing
such concerns, relying on a small, trust-
ed core to construct and verify a proof.
This design approach focuses concern
on the trusted core, which consists of,
for example, approximately 400 lines in
Harrison’s HOL light system. Users can
obtain a higher level of confidence by
asking the system to output a descrip-
tion of the axiomatic proof that can be
checked by independent verifiers; even
if each particular verifier is buggy, the
odds that a faulty inference in a formal
proof can make it past multiple verifi-
ers shrinks dramatically. It is even pos-
sible to use formal methods to verify
the trusted core itself. There have been
experiments in “self-verifications” of
simplified versions of Coq by Bruno
Barras and HOL light by Harrison,10 as
well as Jared Davis’s work on Milawa, a
kind of bootstrapping sequence of in-
creasingly powerful approximations to
the ACL2 prover.

To researchers in formal verifica-
tion, however, these concerns seem

contributed articles

74 communications of the acm | april 2014 | vol. 57 | no. 4

Many
mathematicians
are wary
that excessive
concern for rigor
can displace
mathematical
understanding.

ful to the function described in axiom-
atic terms and the compiler respects
the appropriate semantics. However,
compared to using unverified code,
this method provides a high degree of
confidence as well.

Similar considerations bear on the
use of automated methods and search
procedures to support the formaliza-
tion process; for example, one can rede-
sign conventional automated reason-
ing procedures so they generate formal
proofs as they proceed or invoke an
“off-the-shelf” reasoning tool and try
to reconstruct a formal proof from the
output. With respect to both reasoning
and computation, an observation that
often proves useful is that many proof
procedures can naturally be decom-
posed into two steps: a “search” for
some kind of certificate and a “check-
ing” phase where this certificate is veri-
fied.2 When implementing these steps
in a foundational theorem prover, the
“finding” (often the difficult part) can
be done in any way at all, even through
an external tool (such as a computer al-
gebra system11), provided the checking
part is done in terms of the logical ker-
nel; for example, linear programming
methods can provide easily checked
certificates that witness the fact that
a linear bound is optimal. Similarly,
semi-definite programming packages
can be used to obtain certificates that
can be used to verify nonlinear inequal-
ities.20 Along these lines, the Flyspeck
project uses optimized, unverified code
to find informative certificates witness-
ing linear and nonlinear bounds, then
uses the certificates to construct fully
formal justifications.22 Such practices
raise interesting theoretical questions
about which symbolic procedures can
in principle provide efficiently check-
able certificates, as well as the prag-
matic question of how detailed the cer-
tificates should be to allow convenient
verification without adversely affecting
the process of finding them.

Prospects
We have not touched on many impor-
tant uses of computers in mathematics
(such as in the discovery of new theo-
rems, exploration of mathematical phe-
nomena, and search for relevant infor-
mation in databases of mathematical
facts). Correctness is only one impor-
tant part of mathematics, as we have

misplaced. When it comes to informal
proof, mistakes arise from gaps in the
reasoning, appeal to faulty intuitions,
imprecise definitions, misapplied
background facts, and fiddly special
cases or side conditions the author
failed to check. When verifying a the-
orem interactively, users cannot get
away with any of this; the proof checker
keeps the formalizer honest, requiring
every step to be spelled out in complete
detail. The very process of rendering
a proof suitable for machine verifica-
tion requires strong discipline; even if
there are lingering doubts about the
trustworthiness of the proof checker,
formal verification delivers a very high
degree of confidence—much higher
than any human referee can offer with-
out machine assistance.

Mathematical results obtained
through extensive computation pose
additional challenges. There are at
least three strategies that can be used
verify such results. First, a user can re-
write the code that carries out the cal-
culations so it simultaneously uses the
trusted core to chain together the axi-
oms and rules that justify the results of
the computation. This approach pro-
vides, perhaps, the highest form of ver-
ification, since it produces formal axi-
omatic proofs of each result obtained
by calculation. This is the method be-
ing used to verify the linear and non-
linear inequalities in the Flyspeck proj-
ect.22 The second strategy is to describe
the algorithm in mathematical terms,
prove the algorithm correct, then rely
on the trusted core to carry out the
steps of the computation. This was the
method used by Gonthier in the veri-
fication5 of the four-color theorem in
Coq; because it is based on a construc-
tive logic, Coq’s “trusted computing
base” is able to normalize terms and
thereby carry out a computation. The
third strategy is to describe the algo-
rithm within the language of the proof
checker, then extract the code and run
it independently. This method was
used by Tobias Nipkow, Gertrud Bau-
er, and Paula Schultz19 to carry out the
enumeration of finite tame hypermaps
in the Flyspeck project; ML code was ex-
tracted from formal definitions auto-
matically and compiled. This approach
to verifying the results of computation
invokes additional layers of trust, that,
for example, the extracted code is faith-

contributed articles

april 2014 | vol. 57 | no. 4 | communications of the acm 75

emphasized, and the process of verifica-
tion should interact continuously with
other uses of formal methods. But even
with this restriction, the issues we have
considered touch on important aspects
of artificial intelligence, knowledge
representation, symbolic computation,
hardware and software verification, and
programming-language design. Math-
ematical verification raises its own chal-
lenges, but mathematics is a quintes-
sentially important type of knowledge,
and understanding how to manage it is
central to understanding computation-
al systems and what they can do.

The developments we have dis-
cussed make it clear that it is pragmati-
cally possible to obtain fully verified
axiomatic proofs of substantial math-
ematical theorems. Despite recent ad-
vances, however, the technology is not
quite ready for prime time. There is a
steep learning curve to the use of formal
methods, and verifying even straight-
forward and intuitively clear inferences
can be time consuming and difficult. It
is also difficult to quantify the effort
involved. For example, 15 researchers
contributed to the formalization of the
Feit-Thompson theorem over a six-year
period, and Hales suspects the Flyspeck
project has already exceeded his initial
estimate of 20 person-years to comple-
tion. However, it is ultimately difficult
to distinguish time spent verifying a
theorem from time spent developing
the interactive proof system and its li-
braries, time spent learning to use the
system, and time spent working on the
mathematics proper.

One way to quantify the difficulty of
a formalization is to compare its length
to the length of the original proof,
a ratio known as the “de Bruijn fac-
tor.” Freek Wiedijk carried out a short
study25 and, in the three examples
considered, the ratio hovers around a
factor of four, whether comparing the
number of symbols in plain-text pre-
sentations or applying a compression
algorithm first to obtain a better mea-
sure of the true information content.

A better measure of difficulty is the
amount of time it takes to formalize
a page of mathematics, though that
can vary dramatically depending on
the skill and expertise of the person
carrying out the formalization, den-
sity of the material, quality and depth
of the supporting library, and formal-

izer’s familiarity with that library.
In the most ideal circumstances, an
expert can handle approximately a
half page to a page of a substantial
mathematical text in a long, uninter-
rupted day of formalizing. But most
circumstances are far less than ideal;
an inauspicious choice of definitions
can lead to hours of fruitless struggle
with a proof assistant, and a formal-
izer often finds elementary gaps in
the supporting libraries that require
extra time and effort to fill.

We should not expect interactive the-
orem proving to be attractive to math-
ematicians until the time it takes to
verify a mathematical result formally is
roughly commensurate with the time it
takes to write it up for publication or the
time it takes a referee to check it care-
fully by hand. Within the next few years,
the technology is likely to be most use-
ful for verifying proofs involving long
and delicate calculations, whether ini-
tially carried out by hand or with com-
puter assistance. But the technology is
improving, and the work of researchers
like Hales and Voevodsky makes it clear
that at least some mathematicians are
interested in using the new methods to
further mathematical knowledge.

In the long run, formal verification
efforts need better libraries of back-
ground mathematics, better means of
sharing knowledge between the vari-
ous proof systems, better automated
support, better means of incorporat-
ing and verifying computation, bet-
ter means of storing and searching
for background facts, and better in-
terfaces, allowing users to describe
mathematical objects and their in-
tended uses, and otherwise convey
their mathematical expertise. But ver-
ification need not be an all-or-nothing
proposition, and it may not be all that
long before mathematicians routinely
find it useful to apply an interactive
proof system to verify a key lemma or
certify a computation that is central
to a proof. We expect within a couple
of decades seeing important pieces of
mathematics verified will be common-
place and by the middle of the century
may even become the new standard
for rigorous mathematics. 	

References
1.	A ubrey, J. Brief Lives. A. Clark, Ed. Clarendon Press,

Oxford, U.K., 1898.
2.	B lum, M. Program result checking: A new approach

to making programs more reliable. In Proceedings
of the 20th International Colloquium on Automata,
Languages and Programming (Lund, Sweden, July
5–9), A. Lingas, R. Karlsson, and S. Carlsson, Eds.
Springer, Berlin, 1993, 1–14.

3.	B ourbaki, N. Elements of Mathematics: Theory of
Sets. Addison-Wesley, Reading, MA, 1968; translated
from the French Théorie des ensembles in the series
Eléments de mathématique, revised version, Hermann,
Paris, 1970.

4.	G ödel, K. Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I.
Monatshefte für Mathematik und Physik 38, 1 (1931),
173–198; reprinted with English translation in Kurt
Gödel: Collected Works, Volume 1, S. Feferman et
al., Eds. Oxford University Press, Oxford, U.K., 1986,
144–195.

5.	G onthier, G. Formal proof—The four-color theorem.
Notices of the American Mathematical Society 55, 11
(Dec. 2008), 1382–1393.

6.	G rabiner, J.V. Is mathematical truth time-dependent?
In New Directions in the Philosophy of Mathematics:
An Anthology, T. Tymoczko, Ed., Birkhäuser, Boston,
1986, 201–213.

7.	G rcar, J.F. Errors and corrections in the mathematical
literature. Notices of the American Mathematical
Society 60, 4 (Apr. 2013), 418–432.

8.	H ales, T. Dense Sphere Packings: A Blueprint for Formal
Proofs. Cambridge University Press, Cambridge, U.K., 2012.

9.	H ales, T. The Kepler Conjecture (unpublished manuscript),
1998; http://arxiv.org/pdf/math/9811078.pdf

10.	H arrison, J. Towards self-verification of HOL Light.
In Proceedings of the Third International Joint
Conference in Automated Reasoning (Seattle, Aug.
17–20), U. Furbach and N. Shankar, Eds. Springer,
Berlin, 2006, 177–191.

11.	H arrison, J. and Théry, L. A sceptic’s approach to
combining HOL and Maple. Journal of Automated
Reasoning 21, 3 (1998), 279–294.

12.	H obbes, T. Leviathan. Andrew Crooke, London, 1651.
13.	 Jaffe, A. and Quinn, F. ‘Theoretical mathematics’:

Toward a cultural synthesis of mathematics and
theoretical physics. Bulletin of the American
Mathematics Society (New Series) 29, 1 (1993), 1–13.

14.	L ittlewood, J.E. Littlewood’s Miscellany. Cambridge
University Press, Cambridge, U.K., 1986.

15.	M ac Lane, S. Mathematics: Form and Function.
Springer, New York, 1986.

16.	M acKenzie, D. Mechanizing Proof: Computing, Risk and
Trust. MIT Press, Cambridge, MA, 2001.

17.	M cCune, W. Solution of the Robbins problem. Journal
of Automated Reasoning 19, 3 (1997), 263–276.

18.	N athanson, M. Desperately seeking mathematical
truth. Notices of the American Mathematical Society
55, 7 (Aug. 2008), 773.

19.	N ipkow, T., Bauer, G., and Schultz, P. Flyspeck I: Tame
graphs. In Proceedings of the Third International
Joint Conference in Automated Reasoning (Seattle,
Aug. 17–20). Springer, Berlin, 2006, 21–35.

20.	 Parrilo, P.A. Semidefinite programming relaxations for
semialgebraic problems. Mathematical Programming
96, 2 (2003), 293–320.

21.	 Schubring, G. Zur Modernisierung des Studiums
der Mathematik in Berlin, 1820–1840. In Amphora:
Festschrift für Hans Wussing Zu Seinem 65. Geburtstag,
S.S.Demidov et al., Eds. Birkhäuser, Basel, 1992, 649–675.

22.	 Solovyev, A. Formal Computation and Methods. Ph.D.
thesis, University of Pittsburgh, Pittsburgh, PA, 2012.

23.	T hurston, W.P. On proof and progress in mathematics.
Bulletin of the American Mathematical Society (New
Series) 30, 2 (1994), 161–177.

24.	U nivalent Foundations Program, Institute for
Advanced Study. Homotopy Type Theory: Univalent
Foundations of Mathematics. Princeton, NJ, 2013;
https://github.com/HoTT/book

25.	W iedijk. F. The de Bruijn Factor (unpublished
manuscript), 2000; http://www.cs.ru.nl/˜freek/factor/

26.	W iedijk, F. The Seventeen Provers of the World.
Springer, Berlin, 2006.

Jeremy Avigad (avigad@cmu.edu) is a professor in
the Department of Philosophy and the Department of
Mathematical Sciences at Carnegie Mellon University,
Pittsburgh, PA.

John Harrison (johnh@ichips.intel.com) is a principal
engineer in Intel Corporation, Hillsboro, OR.

© 2014 ACM 0001-0782/14/04 $15.00

