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From the point of view of the foundations of 
mathematics, one of the most significant advances 
in mathematical logic around the turn of the 20th 
century was the realization that ordinary mathematical 
arguments can be represented in formal axiomatic 
systems in such a way their correctness can be verified 
mechanically, at least in principle. Gottlob Frege 
presented such a formal system in the first volume  
of his Grundgesetze der Arithmetik, published in 1893, 
though in 1903 Bertrand Russell showed the system 
to be inconsistent. Subsequent foundational systems 
include the ramified type theory of Russell and Alfred 
North Whitehead’s Principia Mathematica, published 
in three volumes from 1910 to 1913; Ernst Zermelo’s 
axiomatic set theory of 1908, later extended by 
Abraham Fraenkel; and Alonzo Church’s simple  
type theory of 1940. When Kurt Gödel presented  
his celebrated incompleteness theorems in 1931,  
he began with the following assessment: 

“The development of mathematics 
toward greater precision has led, as 
is well known, to the formalization of 
large tracts of it, so one can prove any 
theorem using nothing but a few me-
chanical rules. The most comprehen-
sive formal systems that have been set 
up hitherto are the system of Principia 
Mathematica on the one hand and the 
Zermelo-Fraenkel axiom system of 
set theory (further developed by J. von 
Neumann) on the other. These two 
systems are so comprehensive that in 
them all methods of proof used today 
in mathematics are formalized, that 
is, reduced to a few axioms and rules 
of inference. One might therefore con-
jecture that these axioms and rules of 
inference are sufficient to decide any 
mathematical question that can at all 
be formally expressed in these systems. 
It will be shown below that this is not 
the case…”4 

Gödel was right to claim the math-
ematics of his day could generally be 
formalized in axiomatic set theory and 
type theory, and these have held up, 
to today, as remarkably robust foun-
dations for mathematics. Indeed, set-
theoretic language is now ubiquitous, 
and most mathematicians take the 
language and axioms of set theory to 
underwrite their arguments, in the 
sense that any ambiguities in a claim 
or proof could, in principle, be elimi-
nated by spelling out the details in 
set-theoretic terms. In the mid-1930s, 
a group of mathematicians writing 
under the pen name Nicolas Bourba-
ki adopted set theory as the nominal 
foundation for a series of influential 
treatises aiming to provide a self-con-
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tained, rigorous presentation of the 
core branches of mathematics: 

“…the correctness of a mathemati-
cal text is verified by comparing it, 
more or less explicitly, with the rules of 
a formalized language.”3 

From this standpoint, the contem-
porary informal practice of writing a 
mathematical proof is an approxima-
tion to that ideal, whereby the task of 
a referee is to exercise professional 
judgment as to whether the proof 
could be expressed, in principle, in a 
way that conforms to the rules. The 
mathematician Saunders Mac Lane 
put it as follows: 

“A Mathematical proof is rigorous 
when it is (or could be) written out in 
the first-order predicate language L(∈) 
as a sequence of inferences from the 
axioms ZFC, each inference made ac-
cording to one of the stated rules…
When a proof is in doubt, its repair is 
usually just a partial approximation to 
the fully formal version.”15 

This point of view is to some ex-
tent anticipated by the 17th century 
philosopher Gottfried Leibniz, who 
called for development of a universal 
language (characteristica universalis) 
in which anything can be expressed 
and a calculus of reasoning (calculus 
ratiocinator) for deciding the truth of 
assertions expressed in the character-
istica. Leibniz’s ambitions were not 
limited to mathematics; he dreamed 

of a time when any disputants could 
translate their disagreement into the 
characteristica and say to each other 
“calculemus” (“let us calculate”). In the 
20th century, however, even Bourbaki 
conceded complete formalization was 
an unattainable ideal: 

“…the tiniest proof at the beginning 
of the Theory of Sets would already re-
quire several hundreds of signs for its 
complete formalization… formalized 
mathematics cannot in practice be 
written down in full… We shall there-
fore very quickly abandon formalized 
mathematics.”3 

Due to developments in computer 
science over the past few decades, it is 
now possible to achieve complete for-
malization in practice. Working with 
“computational proof assistants,” us-
ers are able to verify substantial mathe-
matical theorems, constructing formal 
axiomatic derivations of remarkable 
complexity. Our goal in this article is to 
describe the current technology and its 
motivations, survey the state of the art, 
highlight some recent advances, and 
discuss prospects for the future. 

Mathematical Rigor 
The notion of proof lies at the heart 
of mathematics. Although early re-
cords of measurement and numeric 
computation predate the ancient 
Greeks, mathematics proper is com-
monly seen as having begun with de-

velopment of the deductive method, 
as exemplified by Euclid’s Elements 
of Geometry. Starting from axioms 
and postulates, a mathematical proof 
proceeds by a chain of incontrovert-
ible logical steps to its conclusion. 
Through the ages, the method of the 
Elements was held to represent the 
paradigm of rigorous argumenta-
tion, to mathematicians, scientists, 
and philosophers alike. Its appeal is 
eloquently conveyed in John Aubrey’s 
short biography1 of the philosopher 
Thomas Hobbes (1588–1697), who 
made his first serious contact with 
mathematics at the age of 40: 

“Being in a Gentleman’s Library, 
Euclid’s Elements lay open, and ’twas 
the 47 El. libri 1 [Pythagoras’s Theo-
rem]. He read the proposition. By 
G—, sayd he (he would now and then 
sweare an emphaticall Oath by way 
of emphasis) this is impossible! So he 
reads the Demonstration of it, which 
referred him back to such a Proposi-
tion; which proposition he read. That 
referred him back to another, which 
he also read. Et sic deinceps [and so 
on] that at last he was demonstratively 
convinced of that trueth. This made 
him in love with Geometry.”1 

The encounter turned Hobbes into 
an enthusiastic amateur geometer 
“wont to draw lines on his thigh and 
on the sheets, abed.” He became no-
torious in later years for bombarding 
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referees, even those with the best of 
intentions, are fallible, and mistakes 
are inevitably made in the peer-review 
process. A book written by Lecat in 
1935 included 130 pages of errors 
made by major mathematicians up to 
1900, and even mathematicians of the 
stature of J.E. Littlewood have pub-
lished faulty proofs: 

“Professor Offord and I recently 
committed ourselves to an odd mistake 
(Annals of Mathematics Annals of Math-
ematics (2) 49, 923, 1.5). In formulating 
a proof a plus sign got omitted, becom-
ing in effect a multiplication sign. The 
resulting false formula got accepted as 
a basis for the ensuing fallacious argu-
ment. (In defence, the final result was 
known to be true.)”14 

Every working mathematician must 
routinely deal with inferential gaps, 
misstatements, missing hypotheses, 
unstated background assumptions, 
imprecise definitions, misapplied re-
sults, and the like. A 2013 article in the 
Notices of the American Mathematical 
Society (Grcar7) on errors in the math-
ematical literature laments the fact 
that corrections are not published as 
often as they should be. Some errors 
are not easily repaired. The first pur-
ported proof of the four-color theorem 
in 1879 stood for a decade before a flaw 
was pointed out. Referees reviewing 
Andrew Wiles’s first proof of Fermat’s 
Last Theorem found a mistake, and it 
took Wiles and a former student, Rich-
ard Taylor, close to a year to find a way 
to circumvent it. Daniel Gorenstein an-
nounced, in 1983, that the classifica-
tion of finite simple groups had been 
completed, unaware there was a gap 
in the treatment of the class of “qua-
sithin” groups. The gap was not filled 
until 2001, and doing so required a 
1,221-page proof by Michael Aschbach-
er and Stephen Smith. 

Even when an argument turns out 
to be correct, judging it to be so can 
take a long time. Grigori Perelman 
posted three papers on arXiv in 2002 
and 2003 presenting a proof of Thur-
ston’s geometrization conjecture. 
This result, in turn, implies the Poin-
caré conjecture, one of the Clay Math-
ematics Institute’s famed Millen-
nium Prize challenges. The proof was 
scrutinized by dozens of researchers, 
but it was not until 2006 that three 
independent groups determined that 

top mathematicians with his error-
ridden ruler-and-compass geometric 
constructions, some of which are now 
known to be impossible in principle. 

But what, exactly, constitutes a 
proof? Who is to say whether a proof is 
correct or not? Maintaining that a proof 
need convince only the person reading 
it gives the notion a subjective charac-
ter. In practice, proofs tend to become 
generally accepted when they persuade 
not just one or two people but a broad 
or particularly influential group of 
mathematicians. Yet as Hobbes him-
self noted, this does not entirely avoid 
the subjective and fallible character of 
the judgment: 

“But no one mans Reason, nor the 
Reason of any one number of men, 
makes the certaintie; no more than 
an account is therefore well cast up, 
because a great many men have unani-
mously approved it.”12 

In the history of mathematics, there 
is no shortage of controversy over the 
validity of mathematical arguments. 
Berkeley’s extended critique of the 
methods of the calculus in The Analyst 
(1734) is one example. Another is the 
“vibrating string controversy” among 
Leonhard Euler, Jean d’Alembert, and 
Daniel Bernoulli, hinging on whether 
an “arbitrary” continuous function on 
a real interval could be represented by 
a trigonometric series. Carl Friedrich 
Gauss is usually credited with provid-
ing the first correct proof of the funda-
mental theorem of algebra, asserting 
that every nonconstant polynomial 
over the complex numbers has a root, 
in his doctoral dissertation of 1799; 
but the history of that theorem is espe-
cially knotty, since it was not initially 
clear what methods could legitimately 
be used to establish the existence of 
the roots in question. Similarly, when 
Gauss presented his proof of the law of 
quadratic reciprocity in his Disquitio-
nes Arithmeticae (1801), he began with 
the observation that Legendre’s al-
leged proof a few years prior contained 
a serious gap. 

Mathematicians have always been 
reflectively conscious of their meth-
ods, and, as proofs grew more complex 
in the 19th century, mathematicians 
became more explicit in emphasizing 
the role of rigor. This is evident in, for 
example, Carl Jacobi’s praise of Johann 
Peter Gustav Lejune Dirichlet: 

“Dirichlet alone, not I, nor Cauchy, 
nor Gauss knows what a completely 
rigorous mathematical proof is. Rather 
we learn it first from him. When Gauss 
says that he has proved something, it 
is very clear; when Cauchy says it, one 
can wager as much pro as con; when 
Dirichlet says it, it is certain…” (quoted 
by Schubring21). 

Mathematics has, at critical junc-
tures, developed in more speculative 
ways. But these episodes are invariably 
followed by corresponding periods of 
retrenchment, analyzing foundations 
and increasingly adopting a strict de-
ductive style, either to resolve apparent 
problems or just to make the material 
easier to teach convincingly.6 

Reflecting on the history of math-
ematics, we can to some extent dis-
entangle two related concerns. The 
first is whether the methods used in a 
given proof are valid, or appropriate to 
mathematics. This has to do with com-
ing to consensus as to the appropriate 
rules of argumentation. For example, 
is it legitimate to refer to negative 
numbers, complex numbers, and in-
finitesimals, and, if so, what properties 
do they have? Is it legitimate to use the 
axiom of choice or to apply the law of 
the excluded middle to statements in-
volving infinite structures? The second 
concern has to do with whether, given 
a background understanding of what 
is allowed, a particular proof meets 
those standards; that is, whether or not 
the proof is correct. The foundational 
debates of the early 20th century, and 
the set-theoretic language and formal-
ism that emerged, were designed to 
address the question as to what meth-
ods are legitimate, by establishing an 
in-principle consensus as to the infer-
ences that are allowed. Formal verifica-
tion is not designed to help with that; 
just as human referees can strive only 
to establish correctness with respect 
to an implicit conception of what is ac-
ceptable, formal correctness can be as-
sessed only modulo an underlying axi-
omatic framework. But, as will become 
clear in the next section, establishing 
correctness is a nontrivial concern, 
and is where formal methods come 
into play. 

Correctness Concerns 
Mathematical proofs are complex ob-
jects, and becoming more so. Human 
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any gaps in Perelman’s original proof 
were minor, and could be filled using 
the techniques he had developed. 

The increased complexity is exac-
erbated by the fact that some proofs 
rely on extensive calculation. Kenneth 
Appel’s and Wolfgang Hakken’s 1976 
proof of the four-color theorem relied 
on an exhaustive computer enumera-
tion of combinatorial configurations. 
Subsequent proofs, though more effi-
cient, have this same character. Proofs 
that depend on explicit checking of 
cases are nothing new in themselves; 
for example, proofs of Bertrand’s con-
jecture (for n ≥ 1 there is a prime n ≤ p 
≤ 2n) often begin with a comment like 
“Let us assume n ≥ 4,000, since one 
can verify it explicitly for other cases.” 
But this feature took on dramatic pro-
portions with Thomas Hales’s 1998 
proof of the Kepler conjecture, stat-
ing that no packing of spheres in 3D 
space has higher density than the 
natural face-centered cubic packing 
commonly used to stack oranges, 
cannonballs, and such. Hales, work-
ing with Samuel Ferguson, arrived at a 
proof in 1998 consisting of 300 pages 
of mathematics and calculations per-
formed by approximately 40,000 lines 
of computer code. As part of the peer-
review process, a panel of 12 refer-
ees appointed by the Annals of Math-
ematics studied the proof for four 
full years, finally returning with the 
verdict that they were “99% certain” 
of the correctness, but in the words of 
the editor Robert MacPherson: 

“The news from the referees is bad, 
from my perspective. They have not 
been able to certify the correctness of 
the proof, and will not be able to certify 
it in the future, because they have run 
out of energy to devote to the problem. 
This is not what I had hoped for…

“Fejes Tóth thinks that this situa-
tion will occur more and more often 
in mathematics. He says it is similar 
to the situation in experimental sci-
ence—other scientists acting as refer-
ees can’t certify the correctness of an 
experiment, they can only subject the 
paper to consistency checks. He thinks 
that the mathematical community will 
have to get used to this state of affairs.” 

The level of confidence was such 
that the proof was indeed published 
in the Annals, and no significant error 
has been found in it. Nevertheless, the 

verdict is disappointingly lacking in 
clarity and finality. In fact, as a result 
of this experience, the journal changed 
its editorial policy on computer-assist-
ed proof so it will no longer even try 
to check the correctness of computer 
code. Dissatisfied with this state of af-
fairs, Hales turned to formal verifica-
tion, as we will see. 

In November 2005, the Notices of 
the American Mathematical Society pub-
lished an article by Brian Davies called 
“Whither Mathematics?” that raised 
questions about the mounting com-
plexity of mathematical proof and the 
role of computers in mathematics. In 
August 2008, the Notices published an 
opinion piece by Melvyn Nathanson 
that also raised concerns about the sta-
tus of mathematical proof: 

“…many great and important theo-
rems don’t actually have proofs. They 
have sketches of proofs, outlines of ar-
guments, hints and intuitions that were 
obvious to the author (at least, at the 
time of writing) and that, hopefully, are 
understood and believed by some part 
of the mathematical community.”18 

He concluded: 
“How do we recognize mathemati-

cal truth? If a theorem has a short 
complete proof, we can check it. But 
if the proof is deep, difficult, and al-
ready fills 100 journal pages, if no one 
has the time and energy to fill in the 
details, if a ‘complete’ proof would be 
100,000 pages long, then we rely on the 
judgments of the bosses in the field. In 
mathematics, a theorem is true, or it’s 
not a theorem. But even in mathemat-
ics, truth can be political.”18 

Nathanson’s essay did not explicitly 
mention contemporary work in formal 
verification. But a few months later, in 
December 2008, the Notices devoted 
an entire issue to formal proof, focus-
ing on methods intended to alleviate 
Nathanson’s concerns. 

Automating Mathematics 
As noted, for suitable formal proof 
systems, there is a purely mechanical 
process for checking whether an al-
leged proof is in fact a correct proof of 
a certain proposition. So, given a prop-
osition p, we could in principle run a 
search program that examines in some 
suitable sequence (in order of, say, 
length and then alphabetical order) 
every potential proof of p and termi-

Every working 
mathematician 
routinely has 
to deal with 
inferential gaps, 
misstatements, 
missing hypotheses, 
unstated 
background 
assumptions, 
imprecise 
definitions, 
misapplied results, 
and the like. 
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nates with success if it finds one. That 
is, in the terminology of computability 
theory, the set of provable formulas is 
recursively enumerable. 

But this naive program has the fea-
ture that if p is not provable, it will run 
fruitlessly forever, so it is not a yes/no 
decision procedure of the kind Leibniz 
imagined. A fundamental limitative re-
sult due to Church and Turing shows 
this cannot be avoided, because the set 
of provable formulas is not recursive 
(computable). This inherent limita-
tion motivates the more modest goal of 
having the computer merely check the 
correctness of a proof provided (at least 
in outline form) by a person. Another 
reaction to limitative results like this, 
and related ones due to Gödel, Tarski, 
Post, and others, is to seek special cas-
es (such as restricting the logical form 
of the problem) where a full decision 
procedure is possible. 

All three possibilities have been well 
represented in the development of for-
mal proof and automated reasoning: 

˲˲ Complete but potentially nonter-
minating proof search; 

˲˲ Decision procedures for special 
classes of problems; and 

˲˲ Checking of proof hints or sketch-
es given by a person. 

In the category of general proof 
search, there were pioneering experi-
ments in the late 1950s by Gilmore, 
Davis, Putnam, Prawtiz, Wang, and 
others, followed by the more system-
atic development of practically effec-
tive proof procedures, including “tab-
leaux” (Beth, Hintikka), “resolution” 
(Robinson, Maslov), and “model elim-
ination” (Loveland), as well as more 
specialized techniques for “equation-
al” reasoning, including “Knuth-Ben-
dix completion.” Perhaps the most 
famous application of this kind of 
search is the proof of the Robbins con-
jecture, discovered by McCune17 using 
the automated theorem prover EQP in 
1996 that settled a problem that had 
been open since the 1930s. 

In the category of decision proce-
dures, perhaps the first real “automat-
ed theorem prover” was Davis’s proce-
dure for the special case of Presburger 
arithmetic, a generalization of integer 
programming. Implementations of 
many other decision procedures have 
followed, motivating further theoreti-
cal developments. Some procedures 

have been particularly effective in prac-
tice (such as Gröbner basis algorithms 
and Wu’s method, both applicable to 
theorem proving in geometry). 

Although automation is an exciting 
and ambitious goal, there is little realis-
tic hope of automated provers routinely 
proving assertions with real mathemati-
cal depth. Attention has thus focused 
on methods of verification making 
use of substantial interaction between 
mathematician and computer. 

Interactive Theorem Proving 
The idea behind interactive theorem 
proving is to allow users to work with 
a computational “proof assistant” to 
convey just enough information and 
guidance for the system to be able to 
confirm the existence of a formal axi-
omatic proof. Many systems in use to-
day actually construct a formal proof 
object, a complex piece of data that can 
be verified by independent checkers. 

One of the earliest proof systems 
was de Bruijn’s Automath, which ap-
peared in the late 1960s. The compu-
tational assistance it rendered was 
minimal, since the project’s empha-
sis was on developing a compact, ef-
ficient notation for describing math-
ematical proof. An early milestone 
was Jutting’s 1977 Ph.D. thesis in 
which he presented a complete for-
malization of Landau’s book on a 
foundational construction of the real 
numbers as “Dedekind cuts,” deduc-
ing that the reals so constructed are a 
complete ordered field. 

Proof checkers soon came to in-
corporate additional computer assis-
tance. Andrzej Trybulec’s Mizar sys-
tem, introduced in 1973 and still in 
use today, uses automated methods 
to check formal proofs written in a 
language designed to approximate in-
formal mathematical vernacular. The 
Boyer-Moore NQTHM theorem prover 
(an ancestor of ACL2), also actively 
used today, was likewise introduced 
in the early 1970s as a fully automatic 
theorem prover; in 1974 the project’s 
efforts shifted to developing methods 
of allowing users to prove facts in-
crementally, then provide the facts as 
“hints” to the automated prover in sub-
sequent proofs. 

Influential systems introduced in 
the 1980s include Robert Constable’s 
Nuprl, Mike Gordon’s HOL, and the 

Although 
automation 
is an exciting 
and ambitious 
goal, there is 
little realistic 
hope of having 
automated provers 
routinely prove 
assertions with 
real mathematical 
depth.  
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Coq system, based on a logic developed 
by Thierry Coquand and Gerard Huet, 
and, in the 1990s, Lawrence Paulson’s 
Isabelle and the Prototype Verification 
System, or PVS, developed by John 
Rushby, Natarjan Shankar, and Sam 
Owre.a By 1994, William Thurston 
could write the following in an article 
in the Bulletin of the American Math-
ematical Society: 

“There are people working hard 
on the project of actually formalizing 
parts of mathematics by computer, 
with actually formally correct formal 
deductions. I think this is a very big but 
very worthwhile project, and I am con-
fident we will learn a lot from it.”23 

Many of these systems are based on 
an architecture developed by Robin 
Milner with his 1972 proof LCF proof 
checker, which implemented Dana 
Scott’s Logic of Computable Functions. 
An LCF-style prover is based on a small, 
trusted core of code used to construct 
theorems by applying basic rules of the 
axiomatic system. Such a system can 
then include more elaborate pieces of 
code built on top of the trusted core, 
to provide more complex proof pro-
cedures that internally decompose to 
(perhaps many) invocations of basic 
rules. Correctness is guaranteed by 
the fact that, ultimately, only the basic 
rules can change the proof state; ev-
erything the system does is mediated 
by the trusted core. (This restriction is 
often enforced by using a functional 
programming language like ML and 
OCaml and implementing the basic in-
ference rules as the only constructors 
of an abstract data type.) 

Many provers support a mode of 
working where the theorem to be proved 
is presented as a “goal” that is trans-
formed by applying “tactics” in a back-
ward fashion; for example, Figure 1 is a 
proof of the fact that every natural num-
ber other than 1 has a prime divisor in 
the Isabelle proof assistant. 

The “lemma” command establishes 
the goal to be proved, and the first in-
struction invokes a form of complete 
induction. The next two statements 
split the proof into two cases, depend-
ing on whether or not n = 0. When n = 0, 

a	 For a more comprehensive list of provers, see 
http://www.cs.ru.nl/˜freek/digimath/index.html; 
for an overview of 17 proof assistants in use 
today, see Wiedijk.26

setting p = 2 witnesses the conclusion; 
the system confirms this automatically 
(using “auto”). Otherwise, the proof 
splits into two cases, depending on 
whether or not n is prime. If n is prime, 
the result is immediate. The case where 
n is not prime is handled by appealing 
to a previously proved fact. 

A user can step through such a “pro-
cedural” proof script within the proof 
assistant itself to see how the goal state 
changes in successive steps. But the 
script is difficult to read in isolation, 
since the reader must simulate, or 
guess, the results of applying each tac-
tic. Ordinary mathematical proofs tend 
to emphasize, in contrast, the interme-
diate statements and goals, often leav-
ing the justification implicit. The Mizar 
proof language was designed to model 
such a “declarative” proof system, and 

such features have been incorporated 
into LCF-style provers. For example, 
Figure 2 is a proof of the same state-
ment, again in Isabelle, but written in a 
more declarative style. 

A number of important theorems 
have been verified in the systems de-
scribed here, including the prime 
number theorem, the four-color theo-
rem, the Jordan curve theorem, the 
Brouwer fixed-point theorem, Gödel’s 
first incompleteness theorem, Dirich-
let’s theorem on primes in an arithme-
tic progression, the Cartan fixed-point 
theorems, and many more.b In the next 
section we describe even more impres-
sive milestones, though even more im-

b	 For a list of “100 great theorems,” including those 
formalized in various systems, see http://www.
cs.ru.nl/˜freek/100/

Figure 1. An LCF tactic-style proof in Isabelle.

lemma prime_factor_nat: “n ~= (1::nat) ==> EX p. prime p & p dvd n”
  apply (induct n rule: nat_less_induct)
  apply (case_tac “n = 0”)
  apply (rule_tac x = 2 in exI)
  apply auto
  apply (case_tac “prime n”)
  apply auto
  apply (subgoal_tac “n > 1”)
  apply (frule (1) not_prime_eq_prod_nat)
  apply (auto intro: dvd_mult dvd_mult2)
done

Figure 2. A declarative proof in Isabelle.  

lemma prime_factor_nat: “n ~= (1::nat) ==> EX p. prime p & p dvd n”
proof (induct n rule: nat_less_induct)
	 fix n :: nat
	 assume "n ~= 1" and
		  ih: "ALL m < n. m ~= 1 --> (EX p. prime p & p dvd m)"
	 then show "EX p. prime p & p dvd n"
	 proof -
	 { assume "n = 0"
		  hence "prime (2 :: nat) & 2 dvd n"
			   by auto
		  hence ?thesis by blast }
	 moreover
	 { assume "prime n"
		  hence ?thesis by auto }
	 moreover
	 { assume "n ~= 0" and "~prime n"
		  with `n ~= 1` have "n > 1" by auto
		  with `~prime n` and not_prime_eq_prod_nat
		  obtain m k where "n = m * k" and "1 < m" and "m < n" by blast 
		  with ih obtain p where "prime p" and "p dvd m" by blast
		  with `n = m * k` have ?thesis by auto }
	 ultimately show ?thesis by auto
	 qed
qed
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tinct from those in the verification of 
ordinary mathematics, and the details 
would take us too far afield. So, here, 
in this article, we deliberately set aside 
hardware and software verification, 
referring the reader to Donald MacK-
enzie’s book Mechanizing Proof: Com-
puting, Risk and Trust16 for a thoughtful 
exploration of the topic. 

Contemporary Efforts 
Interactive theorem proving reached 
a major landmark on September 20, 
2012, when Georges Gonthier an-
nounced he and a group of research-
ers under his direction had completed 
a verification of the Feit-Thompson 
theorem. The project relied on the 
Coq interactive proof assistant and a 
proof language, SSReflect, Gonthier 
designed. The Feit-Thompson theo-

rem, sometimes called the odd-order 
theorem, says every finite group of odd 
order is solvable; equivalently, that the 
finite simple groups of odd order are 
exactly the cyclic groups of prime or-
der. This theorem was an important 
first step in the classification of finite 
simple groups mentioned earlier. The 
original proof by Walter Feit and John 
Thompson, published in 1963, filled 
255 journal pages. While a proof that 
long would not raise eyebrows today, it 
was unheard of at the time. 

Gonthier launched the project in 
2006 with support from the Micro-
soft Research - Inria Joint Centre in 
Orsay, France. Because Coq is based 
on a constructive logic, Gonthier had 
to reorganize the proof in such a way 
every theorem has a direct computa-

tional interpretation. The resulting 
proof has approximately 150,000 lines 
of “code,” or formal proof scripts, in-
cluding 4,000 definitions and 13,000 
lemmas and theorems. As a basis for 
the formalization, Gonthier and his 
collaborators had to develop substan-
tial libraries of facts about finite group 
theory, linear algebra, Galois theory, 
and representation theory. From 
there, they worked from a presenta-
tion of the Feit-Thompson theorem in 
two texts, one by Helmut Bender and 
George Glauberman describing the 
“local analysis,” the other by Thomas 
Peterfalvi describing a “character-the-
oretic” component. As one might ex-
pect, they had to cope with numerous 
errors and gaps, some not easy to fix, 
though none fatal. 

Hales’s Flyspeck project is another 
ambitious formalization effort. In re-
sponse to the outcome of the referee 
process at the Annals, Hales decided 
to formally verify a proof of the Kepler 
conjecture. (The name “Flyspeck” is a 
contraction of “Formal Proof of the Ke-
pler Conjecture.”) He made it clear he 
viewed the project as a prototype: 

“In truth, my motivations for the 
project are far more complex than 
a simple hope of removing residual 
doubt from the minds of few referees. 
Indeed, I see formal methods as fun-
damental to the long-term growth of 
mathematics.”9 

The proof involves three essential 
uses of computation: enumerating 
a class of combinatorial structures 
called “tame hypermaps”; using linear-
programming methods to establish 
bounds on a large number of systems 
of linear constraints; and using inter-
val methods to verify approximately 
1,000 nonlinear inequalities that arise 
in the proof. All this is in addition to 
the textual “paper” proof, which in 
and of itself is quite long and involves 
Euclidean measure theory, geometric 
properties of polyhedral, and various 
combinatorial structures. Partly as a 
result of the formalization effort, both 
the “paper” and “machine” parts of 
proof have been streamlined and re-
organized.8 The combination of non-
trivial paper proofs and substantial 
time-consuming computational com-
ponents make it a particularly difficult 
formalization challenge, yet after a 
substantial effort by a large, geograph-

portant are the bodies of mathemati-
cal theory that have been formalized, 
often on the way to proving such “big 
name” theorems. Substantial libraries 
have been developed for elementary 
number theory, real and complex anal-
ysis, measure theory and measure-
theoretic probability, linear algebra, 
finite group theory, and Galois theory. 
Formalizations are now routinely de-
scribed in journals, including the Jour-
nal of Automated Reasoning, Journal of 
Formalised Reasoning, and Journal of 
Formalized Mathematics. The annual 
Interactive Theorem Proving confer-
ence includes reports on formaliza-
tion efforts and advances in interactive 
theorem proving technology. 

Also worth noting is that interactive 
proof systems are also commonly used 
to verify hardware and software sys-

tems. In principle, this is no different 
from verifying mathematical claims; 
for the purposes of formal verification, 
hardware and software systems must 
be described in mathematical terms, 
and the statement that such a system 
meets a certain specification is a theo-
rem to be proved. Most of the systems 
described here are thus designed to 
serve both goals. The connections run 
deeper; hardware and software specifi-
cations often make sense only against 
background mathematical theory 
of, say, the integers or real numbers; 
and, conversely, methods of verify-
ing software apply to the verification 
of code that is supposed to carry out 
specifically mathematical computa-
tions. However, hardware and software 
verification raises concerns largely dis-
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ically distributed team, the project is 
nearing completion. 

Another significant formal verifica-
tion effort is the Univalent Foundations 
project introduced by Fields Medalist 
Vladimir Voevodsky.24 Around 2005, 
Voevodsky, and independently Steve 
Awodey and Michael Warren, realized 
that constructive dependent type theo-
ry, the axiomatic basis for Coq, has an 
unexpected homotopy-theoretic inter-
pretation. Algebraic topologists rou-
tinely study abstract spaces and paths 
between elements of those spaces; 
continuous deformations, or “higher-
order” paths, between the paths; and 
deformations between the paths; and 
so on. What Voevodsky, Awodey, and 
Warren realized is that one can view 
dependent type theory as a calculus 
of topological spaces and continuous 
maps between them, wherein the as-
sertion x = y is interpreted as the exis-
tence of a path between x and y. 

More specifically, Voevodsky 
showed there is a model of construc-
tive type theory in the category of “sim-
plicial sets,” a mathematical structure 
well known to algebraic topologists. 
Moreover, this interpretation validates 
a surprising fact Voevodsky called the 
“univalence axiom,” asserting, rough-
ly, that any two types that are isomor-
phic are identical. The axiom jibes 
with informal mathematical practice, 
wherein two structures that are isomor-
phic are viewed as being essentially the 
same. However, it is notably false in the 
universe of sets; for example, there is a 
bijection between the sets {1, 2} and 
{3, 4}, but the first set contains the ele-
ment 1 while the second does not. Vo-
evodsky has suggested that dependent 
type theory with the univalence axiom 
can provide a new foundation for 
mathematics that validates structural 
intuitions. There is also hope among 
computer scientists that univalence 
can provide a new foundation for com-
putation where code can be designed 
to work uniformly on “isomorphic” 
data structures (such as lists and ar-
rays) implemented in different ways. 

In an excerpt from a grant proposal 
posted on his Web page, Voevodsky de-
scribed his motivations for the project 
as follows: 

“While working on the completion 
of the proof of the Block-Kato conjec-
ture I have thought a lot about what to 

do next. Eventually I became convinced 
that the most interesting and important 
directions in current mathematics are 
the ones related to the transition into a 
new era which will be characterized by 
the widespread use of automated tools 
for proof construction and verification.” 

During the 2012–2013 academic 
year, the Institute for Advanced Study 
in Princeton, NJ, held a program on 
Univalent Foundations, drawing an in-
terdisciplinary gathering of mathema-
ticians, logicians, and computer scien-
tists from all over the world. 

Rigor and Understanding 
We have distinguished between two 
types of concern that can attend a math-
ematical proof: whether the methods it 
uses are appropriate to mathematics 
and whether the proof itself represents 
a correct use of those methods. How-
ever, there is yet a third concern that is 
often raised—whether a proof delivers 
an appropriate understanding of the 
mathematics in question. It is in this 
respect that formal methods are often 
taken to task; a formal, symbolic proof 
is for the most part humanly incompre-
hensible and so does nothing to aug-
ment our understanding. Thurston’s 
article23 mentioned earlier added the 
following caveat: 

“…we should recognize that the hu-
manly understandable and humanly 
checkable proofs that we actually do 
are what is most important to us, and 
that they are quite different from for-
mal proofs.” 

The article was in fact a reply to an 
article by Jaffe and Quinn13 in the Bulle-
tin of the American Mathematical Society 
that proposed a distinction between 
“theoretical” mathematics, which has 
a speculative, exploratory character, 
and fully rigorous mathematics. The 
Jaffe-Quinn article drew passionate, 
heated responses from some of the 
most notable figures in mathematics, 
some rising to defend the role of rigor 
in mathematics, some choosing to 
emphasize the importance of a broad 
conceptual understanding. Given that 
both are clearly important to math-
ematics, the Jaffe-Quinn debate may 
come across as much ado about noth-
ing, but the episode makes clear that 
many mathematicians are wary that ex-
cessive concern for rigor can displace 
mathematical understanding. 

However, few researchers working 
in formal verification would claim that 
checking every last detail of a math-
ematical proof is the most interesting 
or important part of mathematics. For-
mal verification is not supposed to re-
place human understanding or the de-
velopment of powerful mathematical 
theories and concepts. Nor are formal 
proof scripts meant to replace ordinary 
mathematical exposition. Rather, they 
are intended to supplement the math-
ematics we do with precise formula-
tions of our definitions and theorems 
and assurances that our theorems are 
correct. One need only recognize, as we 
say here, that verifying correctness is 
an important part of mathematics. The 
mathematical community today in-
vests a good deal of time and resources 
in the refereeing process in order to 
gain such assurances, and surely any 
computational tools that can help in 
that regard should be valued. 

The Quest for Certainty 
In discussions of formally verified 
mathematics, the following question 
often arises: Proof assistants are com-
plex pieces of software, and software 
invariably has bugs, so why should we 
trust such a program when it certifies a 
proof to be correct? 

Proof assistants are typically de-
signed with an eye toward minimizing 
such concerns, relying on a small, trust-
ed core to construct and verify a proof. 
This design approach focuses concern 
on the trusted core, which consists of, 
for example, approximately 400 lines in 
Harrison’s HOL light system. Users can 
obtain a higher level of confidence by 
asking the system to output a descrip-
tion of the axiomatic proof that can be 
checked by independent verifiers; even 
if each particular verifier is buggy, the 
odds that a faulty inference in a formal 
proof can make it past multiple verifi-
ers shrinks dramatically. It is even pos-
sible to use formal methods to verify 
the trusted core itself. There have been 
experiments in “self-verifications” of 
simplified versions of Coq by Bruno 
Barras and HOL light by Harrison,10 as 
well as Jared Davis’s work on Milawa, a 
kind of bootstrapping sequence of in-
creasingly powerful approximations to 
the ACL2 prover. 

To researchers in formal verifica-
tion, however, these concerns seem 
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ful to the function described in axiom-
atic terms and the compiler respects 
the appropriate semantics. However, 
compared to using unverified code, 
this method provides a high degree of 
confidence as well. 

Similar considerations bear on the 
use of automated methods and search 
procedures to support the formaliza-
tion process; for example, one can rede-
sign conventional automated reason-
ing procedures so they generate formal 
proofs as they proceed or invoke an 
“off-the-shelf” reasoning tool and try 
to reconstruct a formal proof from the 
output. With respect to both reasoning 
and computation, an observation that 
often proves useful is that many proof 
procedures can naturally be decom-
posed into two steps: a “search” for 
some kind of certificate and a “check-
ing” phase where this certificate is veri-
fied.2 When implementing these steps 
in a foundational theorem prover, the 
“finding” (often the difficult part) can 
be done in any way at all, even through 
an external tool (such as a computer al-
gebra system11), provided the checking 
part is done in terms of the logical ker-
nel; for example, linear programming 
methods can provide easily checked 
certificates that witness the fact that 
a linear bound is optimal. Similarly, 
semi-definite programming packages 
can be used to obtain certificates that 
can be used to verify nonlinear inequal-
ities.20 Along these lines, the Flyspeck 
project uses optimized, unverified code 
to find informative certificates witness-
ing linear and nonlinear bounds, then 
uses the certificates to construct fully 
formal justifications.22 Such practices 
raise interesting theoretical questions 
about which symbolic procedures can 
in principle provide efficiently check-
able certificates, as well as the prag-
matic question of how detailed the cer-
tificates should be to allow convenient 
verification without adversely affecting 
the process of finding them. 

Prospects 
We have not touched on many impor-
tant uses of computers in mathematics 
(such as in the discovery of new theo-
rems, exploration of mathematical phe-
nomena, and search for relevant infor-
mation in databases of mathematical 
facts). Correctness is only one impor-
tant part of mathematics, as we have 

misplaced. When it comes to informal 
proof, mistakes arise from gaps in the 
reasoning, appeal to faulty intuitions, 
imprecise definitions, misapplied 
background facts, and fiddly special 
cases or side conditions the author 
failed to check. When verifying a the-
orem interactively, users cannot get 
away with any of this; the proof checker 
keeps the formalizer honest, requiring 
every step to be spelled out in complete 
detail. The very process of rendering 
a proof suitable for machine verifica-
tion requires strong discipline; even if 
there are lingering doubts about the 
trustworthiness of the proof checker, 
formal verification delivers a very high 
degree of confidence—much higher 
than any human referee can offer with-
out machine assistance. 

Mathematical results obtained 
through extensive computation pose 
additional challenges. There are at 
least three strategies that can be used 
verify such results. First, a user can re-
write the code that carries out the cal-
culations so it simultaneously uses the 
trusted core to chain together the axi-
oms and rules that justify the results of 
the computation. This approach pro-
vides, perhaps, the highest form of ver-
ification, since it produces formal axi-
omatic proofs of each result obtained 
by calculation. This is the method be-
ing used to verify the linear and non-
linear inequalities in the Flyspeck proj-
ect.22 The second strategy is to describe 
the algorithm in mathematical terms, 
prove the algorithm correct, then rely 
on the trusted core to carry out the 
steps of the computation. This was the 
method used by Gonthier in the veri-
fication5 of the four-color theorem in 
Coq; because it is based on a construc-
tive logic, Coq’s “trusted computing 
base” is able to normalize terms and 
thereby carry out a computation. The 
third strategy is to describe the algo-
rithm within the language of the proof 
checker, then extract the code and run 
it independently. This method was 
used by Tobias Nipkow, Gertrud Bau-
er, and Paula Schultz19 to carry out the 
enumeration of finite tame hypermaps 
in the Flyspeck project; ML code was ex-
tracted from formal definitions auto-
matically and compiled. This approach 
to verifying the results of computation 
invokes additional layers of trust, that, 
for example, the extracted code is faith-
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emphasized, and the process of verifica-
tion should interact continuously with 
other uses of formal methods. But even 
with this restriction, the issues we have 
considered touch on important aspects 
of artificial intelligence, knowledge 
representation, symbolic computation, 
hardware and software verification, and 
programming-language design. Math-
ematical verification raises its own chal-
lenges, but mathematics is a quintes-
sentially important type of knowledge, 
and understanding how to manage it is 
central to understanding computation-
al systems and what they can do. 

The developments we have dis-
cussed make it clear that it is pragmati-
cally possible to obtain fully verified 
axiomatic proofs of substantial math-
ematical theorems. Despite recent ad-
vances, however, the technology is not 
quite ready for prime time. There is a 
steep learning curve to the use of formal 
methods, and verifying even straight-
forward and intuitively clear inferences 
can be time consuming and difficult. It 
is also difficult to quantify the effort 
involved. For example, 15 researchers 
contributed to the formalization of the 
Feit-Thompson theorem over a six-year 
period, and Hales suspects the Flyspeck 
project has already exceeded his initial 
estimate of 20 person-years to comple-
tion. However, it is ultimately difficult 
to distinguish time spent verifying a 
theorem from time spent developing 
the interactive proof system and its li-
braries, time spent learning to use the 
system, and time spent working on the 
mathematics proper. 

One way to quantify the difficulty of 
a formalization is to compare its length 
to the length of the original proof, 
a ratio known as the “de Bruijn fac-
tor.” Freek Wiedijk carried out a short 
study25 and, in the three examples 
considered, the ratio hovers around a 
factor of four, whether comparing the 
number of symbols in plain-text pre-
sentations or applying a compression 
algorithm first to obtain a better mea-
sure of the true information content. 

A better measure of difficulty is the 
amount of time it takes to formalize 
a page of mathematics, though that 
can vary dramatically depending on 
the skill and expertise of the person 
carrying out the formalization, den-
sity of the material, quality and depth 
of the supporting library, and formal-

izer’s familiarity with that library. 
In the most ideal circumstances, an 
expert can handle approximately a 
half page to a page of a substantial 
mathematical text in a long, uninter-
rupted day of formalizing. But most 
circumstances are far less than ideal; 
an inauspicious choice of definitions 
can lead to hours of fruitless struggle 
with a proof assistant, and a formal-
izer often finds elementary gaps in 
the supporting libraries that require 
extra time and effort to fill. 

We should not expect interactive the-
orem proving to be attractive to math-
ematicians until the time it takes to 
verify a mathematical result formally is 
roughly commensurate with the time it 
takes to write it up for publication or the 
time it takes a referee to check it care-
fully by hand. Within the next few years, 
the technology is likely to be most use-
ful for verifying proofs involving long 
and delicate calculations, whether ini-
tially carried out by hand or with com-
puter assistance. But the technology is 
improving, and the work of researchers 
like Hales and Voevodsky makes it clear 
that at least some mathematicians are 
interested in using the new methods to 
further mathematical knowledge. 

In the long run, formal verification 
efforts need better libraries of back-
ground mathematics, better means of 
sharing knowledge between the vari-
ous proof systems, better automated 
support, better means of incorporat-
ing and verifying computation, bet-
ter means of storing and searching 
for background facts, and better in-
terfaces, allowing users to describe 
mathematical objects and their in-
tended uses, and otherwise convey 
their mathematical expertise. But ver-
ification need not be an all-or-nothing 
proposition, and it may not be all that 
long before mathematicians routinely 
find it useful to apply an interactive 
proof system to verify a key lemma or 
certify a computation that is central 
to a proof. We expect within a couple 
of decades seeing important pieces of 
mathematics verified will be common-
place and by the middle of the century 
may even become the new standard 
for rigorous mathematics. 	
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