
Fast and Accurate Bessel Function Computation

John Harrison
Intel Corporation, JF1-13

2111 NE 25th Avenue
Hillsboro OR 97124, USA

Email: johnh@ichips.intel.com

Abstract

The Bessel functions are considered relatively difficult to
compute. Although they have a simple power series expan-
sion that is everywhere convergent, they exhibit approxi-
mately periodic behavior which makes the direct use of the
power series impractically slow and numerically unstable.
We describe an alternative method based on systematic
expansion around the zeros, refining existing techniques
based on Hankel expansions, which mostly avoids the use
of multiprecision arithmetic while yielding accurate results.

1. Introduction and overview

Bessel functions are certain canonical solutions to the
differential equations

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

We will consider only the case where n is an integer. The
canonical solutions considered are the Bessel functions of
the first kind, Jn(x), nonsingular at x = 0, and those of
the second kind, Yn(x), which are singular there. In each
case, the integer n is referred to as the order of the Bessel
function. Figure 1 shows a plot of J0(x) and J1(x) near the
origin, while Figure 2 is a similar plot for Y0(x) and Y1(x).

The Bessel functions Jn(x) have power series that are
convergent everywhere, with better convergence than the
familiar series for the exponential or trigonometric functions:

Jn(x) =
∞∑

m=0

(−1)m(x/2)n+2m

m!(n + m)!

However, the direct use of the power series would require
too many terms for large x, and even for moderate x is
likely to be quite numerically unstable close to the zeros. The
difficulty is that the final value Jn(x) can be small for large
x even when the intermediate terms of the power series are
large. The trigonometric functions like sin(x) also have this
property, but they are still quite easy because they are exactly
periodic. The Bessel functions are not quite periodic, though

they do start to look more and more like scaled trigonometric
functions for large x, roughly speaking:1

Jn(x) ≈
√

2
πx

cos(x− [n/2 + 1/4]π)

Yn(x) ≈
√

2
πx

sin(x− [n/2 + 1/4]π)

For extensive detail on the theory of the Bessel functions,
as well as a little history and explanation of how they arise
in physical applications, the reader is referred to Watson’s
monograph [9].

The not-quite periodicity has led to some pessimism
about the prospects of computing the Bessel functions with
the same kind of relative accuracy guarantees as for most
elementary transcendental functions. For example Hart et al.
[3] say:

However, because of the large number of zeros of
these functions, it is impractical to construct min-
imum relative error subroutines, and the relative
error is likely to be unbounded in the neighbor-
hood of the zeros.

However, it is important to remember that this was written
at a time when giving good relative accuracy guarantees
even on the basic trigonometric functions would have been
considered impractical too. We shall see that, at least for spe-
cific order and specific floating-point precisions, producing
results with good relative accuracy is not so very difficult.
In this paper we focus exclusively on the functions J0, J1,
Y0 and Y1 in double-precision (binary64) floating-point
arithmetic. The results should generalize straightforwardly
to other specific Bessel functions of integer order and other
floating-point formats, but the various parameters, polyno-
mial degrees, domain bounds, worst-case results etc. would
need to be computed afresh for each such instance.

Our general approach

The main theme in our proposed approach is to expand
each function about its zeros. More precisely, we want to

1. These are not, properly speaking, asymptotic results ∼, since the zeros
of the two functions do not coincide exactly. The exact relationship will be
made precise below.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

J0(x)
J1(x)

Figure 1. Bessel function of the first kind, J0 and J1

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20

Y0(x)
Y1(x)

Figure 2. Bessel function of the second kind, Y0 and Y1

formulate the algorithms to move the inevitable cancellation
forward in the computation to a point before there are
rounding errors to be magnified. For example, if the input
argument x is close to a zero z, we want to, in effect,
compute x − z accurately at once and use that value in
subsequent stages.

If we can successfully realize this idea, we can expect
accurate results even close to zeros without performing all
the intermediate computations in very high precision. Still,
in order to assess the accuracy required we need a rigorous

examination of the zeros to see how close they may be to
double-precision floating-point numbers, and this will also
form part of the present document. We will consider in turn:

• Evaluation near 0 for the singular Yn

• Evaluation for ‘small’ arguments, roughly |x| < 45, but
away from the singularities of the Yn at zero

• Evaluation for ‘large’ arguments, roughly |x| ≥ 45.

2. Yn near singularities

The Yn have various singularities at x = 0, including
one of the form log(x), so it doesn’t seem practical to use
polynomial or rational approximations in this neighborhood.
However, if we incorporate the logarithm and perhaps re-
ciprocal powers, tractable approximations are available. For
example we have (see [9] §3.51):

Y0(x) =
2
π

([γ + log(x/2)]J0(x)−∑∞
m=1

(−1)m(x/2)2m

(m!)2 [1 + 1
2 + · · ·+ 1

m])

If we use general floating-point coefficients, we can write
this as follows, using two even power series W0(x) and
Z0(x):

Y0(x) = W0(x) log(x)− Z0(x)

A similar but slightly more complicated expansion also
works for Y1(x), in which case the corresponding power
series W1(x) and Z1(x) are odd:

Y1(x) = W1(x) log(x)− Z1(x)− 2
πx

For the moderate ranges required, minimax economiza-
tions of the Wi(x) and Zi(x) only require about degree
16 with only alternate terms present for double-precision
results.

3. Small arguments

For fairly small arguments, say |x| < 45, we can take
the idea of expanding around zeros at face value. We don’t
need to do any kind of computation of zeros at runtime,
but can just pre-tabulate the zeros z1, z2, . . . zN , since there
aren’t so many in range. Then at runtime, given an input
x we start by reducing the input argument x to r = x −
zk, where zk is approximately the closest zero to x, and
then use an expansion in terms of r. Since even for small
arguments the zeros are spaced fairly regularly at intervals
of about π — see Table 1 — we can quite efficiently find
an appropriate k by a simple division (or more precisely,
reciprocal multiplication) and scaling to an integer. If we
store zk in two pieces and subtract the high part first, we
get an accurate reduced argument

r = (x− zhi
k)− zlo

k

We use double-extended precision for the intermediate re-
sult, which ensures that the first subtraction is exact. (Since
our estimate of the closest zero at the low end can be a
little wayward, it is not immediately clear that we could
rely on Sterbenz’s lemma here if we used double-precision
throughout.)

In fact, we tabulate both zeros and extrema among the
zk. This roughly halves the size of each interval of ap-
proximation to about −π/4 ≤ r ≤ π/4 and so permits

us to use polynomials of lower degree. It also removes
potential concerns over monotonicity near the extrema where
the successive intervals of approximation fit together.

We then use a separate polynomial pk(r) for each k, with
each one precomputed. About most zk, we can achieve accu-
racy adequate for double-precision results using polynomials
pk(r) of degree 14. The exceptions are the small zeros of the
Yn where the nearness of the singularities causes problems.
Even here, provided in the case of the smallest zero we cut
the range off well away from the origin, the polynomials
required have tractable degree. Table 2 summarizes the
degree of polynomials required to achieve relative errors
suitable for the various floating-point precisions for the four
functions J0, J1, Y0 and Y1. We cut off the range for the
first zero of Y0 at r = −0.1.

4. Asymptotic expansions

If we turn to larger arguments with about |x| ≥ 45,
the approach traditionally advocated is based on Hankel’s
asymptotic expansions. The Bessel functions can be ex-
pressed as

Jn(x) =

√
2

πx
(cos(x− [n/2 + 1/4]π) · Pn(x)−

sin(x− [n/2 + 1/4]π) ·Qn(x))

and

Yn(x) =

√
2

πx
(sin(x− [n/2 + 1/4]π) · Pn(x)+

cos(x− [n/2 + 1/4]π) ·Qn(x))

where the auxiliary functions Pn(x) and Qn(x) may, for
example, be expressed as integrals — see [9] §7.2. For
reasonably large values of x these auxiliary functions can
be well approximated by asymptotic expansions:

Pn(x) ∼
∞∑

m=0

(−1)m(n, 2m)
(2x)2m

Qn(x) ∼
∞∑

m=0

(−1)m(n, 2m + 1)
(2x)2m+1

where the notation (n, m) denotes:

(n, m) =
(4n2 − 12)(4n2 − 32) · · · (4n2 − [2m− 1]2)

22mm!
For example, we have

J0(x) =

√
2

πx
[cos(x− π/4)P0(x)− sin(x− π/4)Q0(x)]

where

P0(x) ∼ 1− 9
128x2

+
3675

32768x4
− 2401245

4194304x6
+

13043905875
2147483648x8

−· · ·

and

Q0(x) ∼ − 1
8x

+
75

1024x3
− 59535

262144x5
+

57972915
33554432x7

− · · ·

J0 J1 Y0 Y1

2.404825 0.000000 0.893576 2.197141
5.520078 3.831705 3.957678 5.429681
8.653727 7.015586 7.086051 8.596005

11.791534 10.173468 10.222345 11.749154
14.930917 13.323691 13.361097 14.897442
18.071063 16.470630 16.500922 18.043402
21.211636 19.615858 19.641309 21.188068
24.352471 22.760084 22.782028 24.331942
27.493479 25.903672 25.922957 27.475294
30.634606 29.046828 29.064030 30.618286
33.775820 32.189679 32.205204 33.761017
36.917098 35.332307 35.346452 36.903555
40.058425 38.474766 38.487756 40.045944
43.199791 41.617094 41.629104 43.188218
46.341188 44.759318 44.770486 46.330399
49.482609 47.901460 47.911896 49.472505
52.624051 51.043535 51.053328 52.614550
55.765510 54.185553 54.194779 55.756544
58.906983 57.327525 57.336245 58.898496
62.048469 60.469457 60.477725 62.040411
65.189964 63.611356 63.619215 65.182295
68.331469 66.753226 66.760716 68.324152
71.472981 69.895071 69.902224 71.465986
74.614500 73.036895 73.043740 74.607799

Table 1. The approximate values of first zeros of J0, J1, Y0 and Y1

Precision Relative error Typical degree Worst-case degree
Single 2−31 8-9 (all but 3) 12
Double 2−60 14 (all but 6) 23

Extended 2−71 16 (all but 7) 28

Table 2. Degrees of polynomials needed around small zeros and extrema

Although the series Pn(x) and Qn(x) actually diverge for
all x, they are valid asymptotic expansions, meaning that at
whatever point m we truncate the series to give Pm

n (x), we
can make the relative error as small as we wish by making
x sufficiently large:

lim
x→∞

|Pm
n (x)− Pn(x)|
|Pn(x)|

= 1

In fact, it turns out — see [9] §7.32 — that the error in
truncating the series for Pn(x) and Qn(x) at a given term
is no more than the value of the first term neglected and has
the same sign, provided 2p ≥ n − 1/2 where the term in
x−p is the last one included

The Hankel formulas are much more appropriate for large
x because they allow us to exploit periodicity directly.
However they are still numerically unstable near the zeros,
because the two terms cos(· · ·)Pn(x) and sin(· · ·)Qn(x)
may cancel substantially. This means that we need to com-
pute the trigonometric functions in significantly more than
working precision in order to obtain accurate results. In
accordance with our general theme, we will try to modify
the asymptotic expansions to move the cancellation forward.

Modified expansions

The main novelty in our approach to computing the Bessel
functions for large arguments is to expand either Jn(x) or
Yn(x) in terms of a single trigonometric function with a
further perturbation of its input argument as follows:

Jn(x) =

√
2

πx
· βn(x) cos(x− [n/2 + 1/4]π − αn(x))

Yn(x) =

√
2

πx
· βn(x) sin(x− [n/2 + 1/4]π − αn(x))

where αn(x) and βn(x) are chosen appropriately. These
equations serve to define αn(x) and βn(x) in terms of the
Bessel functions by the following, where the ≡ sign indi-
cates congruence modulo π, i.e. ignoring integer multiples
of π. (In some of the plots we eliminate spurious π multiples
by successively applying tan then atan to such expressions.)

αn(x) ≡ x− [n/2 + 1/4]π − atan(Yn(x)/Jn(x))
≡ x− [n/2 + 3/4]π + atan(Jn(x)/Yn(x))

and

βn(x) =
√

πx

2
(Jn(x)2 + Yn(x)2)

We will next obtain asymptotic expansions for the αn(x)
and βn(x) starting from those for Pn(x) and Qn(x). Our
derivations are purely formal, but we believe it should be
possible to prove rigorously that the error on truncating the
expansions is bounded by the first term neglected and has the
same sign — see for example the expansion of the closely
related ‘modulus’ and ‘phase’ functions in §9.2.31 of [1].
Using the addition formula we obtain:

Jn(x) =

√
2

πx
·βn(x)[cos(x− [n/2 + 1/4]π) cos(αn(x))+

sin(x− [n/2 + 1/4]π) sin(αn(x))]

Comparing coefficients, we see

βn(x) cos(αn(x)) = Pn(x)

and
βn(x) sin(αn(x)) = −Qn(x)

These imply that we should choose βn(x) as follows:

βn(x)2 = βn(x)2[cos(αn)2 + sin(αn)2]
= (βn(x) cos(αn))2 + (βn(x) sin(αn))2

= Pn(x)2 + Qn(x)2

If we assume βn(x) is nonzero even at the zeros (and
it will be since Qn(x) ≈ 1 for the large x we are
interested in), we can also immediately obtain tan(αn(x)) =
−Qn(x)/Pn(x). We can carry through the appropriate com-
putations on formal power series — see §15.52 of [9] for
more rigorous proofs of some related results. We have:

tan(α0(x)) = −Q0(x)/P0(x)

=
1
8x

− 33
512x3

+
3417

16384x5
− 3427317

2097152x7
+ · · ·

and composing this with the series for the arctangent func-
tion, we obtain

α0(x) =
1
8x
− 25

384x3
+

1073
5120x5

− 375733
229376x7

+
55384775
2359296x9

−· · ·

Similarly, using β0(x) =
√

P0(x)2 + Q0(x)2 we get

β0(x) = 1− 1
16x2

+
53

512x4
− 4447

8192x6
+

3066403
524288x8

−· · · · · ·

In exactly the same way we get:

α1(x) = − 3
8x

+
21

128x3
− 1899

5120x5
+

543483
229376x7

− 8027901
262144x9

+· · ·

and

β1(x) = 1 +
3

16x2
− 99

512x4
+

6597
8192x6

− 4057965
524288x8

+ · · ·

For moderate x, the asymptotic series quickly become
good approximations, as shown in Figures 3 and 4, though
to get the high accuracy we demand, somewhat larger x and
many more terms of the series are necessary, explaining our
chosen cutoff point of |x| ≥ 45. Nevertheless, we can and

do utilize a minimax economization of the expansion, which
considerably reduces the required degree.

Watson [9] presents (around pp. 213–4) a discussion of
some formulas due to Stieltjes for estimating the remain-
ders on truncating the original expansions, and presumably
similar analysis could be applied to the αn(x) and βn(x).

The modified expansions immediately give rise to rela-
tively simple computation patterns by truncating the series
appropriately, e.g.

J0(x) ≈
√

2
πx

(1− 1
16x2

+
53

512x4
) cos(x−π

4
− 1

8x
+

25
384x3

)

Y0(x) ≈
√

2
πx

(1− 1
16x2

+
53

512x4
) sin(x−π

4
− 1

8x
+

25
384x3

)

J1(x) ≈
√

2
πx

(1+
3

16x2
− 99

512x4
) cos(x−3π

4
+

3
8x
− 21

128x3
)

Y1(x) ≈
√

2
πx

(1+
3

16x2
− 99

512x4
) sin(x−3π

4
+

3
8x
− 21

128x3
)

This seems a much more promising approach because
numerical cancellation only needs to be dealt with in the
simple algebraic expression x − αn(x), integrated with
standard trigonometric range reduction. The other compo-
nents of the final answer, a trigonometric function, inverse
square root and βn(x) are all well-behaved. The overall
computational burden is therefore not much worse than with
the trigonometric functions.

We now need to proceed with a careful analysis to show
the range limits of this technique and the points at which we
can afford to truncate the series. Since the value of βn(x) is
approximately 1, the absolute error in it contributes directly
to a relative error in the overall result. In the case of αn(x)
however, a given absolute error may translate into a much
larger relative error if the result is close to zero. In order to
place a bound on how much the error can blow up, we need
to know how close the large zeros may come to floating-
point numbers.

5. Worst-case zeros

The zeros of the Bessel functions are spaced about π from
each other. Assuming that their low-order bits are randomly
distributed, we would expect the closest one of the zeros
would come to a precision-p floating-point number would be
about 2−(p+log2 p), say 2−60 for double precision [6]. Since
at least the work of Kahan (see the nearpi program) it has
been known that this is indeed the case for pure multiples
of π, and we might expect similar results here. While from
a practical point of view it seems safe to make this kind of
naive assumption, and perhaps leave a little margin of safety,
a more satisfactory approach is to verify this fact rigorously.
We will do so for double precision, our main focus.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 1.5 2 2.5 3 3.5 4 4.5 5

α0(x) = atan(tan(x− π/4− atan(Y0(x)/J0(x))))
3 terms of asymptotic expansion

Figure 3. Plot of α0(x) for moderate x versus approximation

0.8

0.85

0.9

0.95

1

1.05

1.1

1 1.5 2 2.5 3 3.5 4 4.5 5

β0(x) =
√

πx
2 (J0(x)2 + Y0(x)2)

3 terms of asymptotic expansion

Figure 4. Plot of β0(x) for moderate x versus approximation

Locating the zeros

We have already accurately computed the small zeros of
the Bessel functions of interest, since these were needed
to produce the various expansions used at the low end.
(All these were computed by straightforward use of the
infinite series, which can be computationally lengthy but is
quite straightforward.) We can therefore simply exhaustively
check the small zeros to see how close they come to double-
precision numbers.

For larger values of x we use a technique originally

due to Stokes — see §15.52 of [9]. We can start with our
functions αn(x) (which were considered by Stokes in this
context, though not as part of a computational method) and
perform some further power series manipulations to obtain
expansions for the various roots. For example, since

J0(x) =

√
2

πx
· β0(x) cos(x− π/4− α0(x))

we seek values for which the cosine term here is zero, i.e.

where for some integer m we have

x− π/4− α0(x) = (m− 1/2)π

or if we write p = (m− 1/4)π:

x− α0(x) = p

Using the asymptotic expansion we can write:

x− 1
8x

+
25

384x3
− 1073

5120x5
+

375733
229376x7

− · · · = p

or

x

(
1− 1

8x2
+

25
384x4

− 1073
5120x6

+
375733

229376x8
− · · ·

)
= p

Multiplying both sides by the inverse of the series 1 −
1

8x2 + 25
384x4 − · · · we get:

x = p

(
1 +

1
8x2

− 19
384x4

+
2999

15360x6
− 16352423

10321920x8
+ · · ·

)
and therefore:
1
p

=
1
x

+
1

8x3
− 19

384x5
+

2999
15360x7

− 16352423
10321920x9

+ · · ·

By reversion of the power series we obtain:

1
x

=
1
p
− 1

8p3
+

37
384p5

− 1373
5120p7

+
19575433

10321920p9
− · · ·

so
p

x
= 1− 1

8p2
+

37
384p4

− 1373
5120p6

+
19575433

10321920p8
− · · ·

Inverting the series again we get

x

p
= 1 +

1
8p2

− 31
384p4

+
3779

15360p6
− 6277237

3440640p8
+ · · ·

and so we finally obtain x in terms of p = (m− 1/4)π:

x = p +
1
8p

− 31
384p3

+
3779

15360p5
− 6277237

3440640p7
+ · · ·

These power series computations are quite tedious by
hand but can be handled automatically in some computer
algebra systems. We used our own implementation of power
series in the OCaml language via higher-order functions [5],
and with this we can obtain any reasonable truncation of
these series automatically in an acceptable time. Needless to
say, our results are consistent with the hand computations in
[9], though often we need more terms than are given there.
Zeros of the other Bessel functions are obtained in the same
way. For Y0(x) the expansion is the same except that we
use p = (m + 1/4)π, and we have the following expansion
for the zeros of J1(x) and Y1(x):

x = p− 3
8p

+
3

128p3
− 1179

5120p5
+

1951209
1146880p7

−223791831
9175040p9

+· · ·

where p = (m + 1/4)π for J1(x) and p = (m− 1/4)π for
Y1(x).

For moderate m, say up to a few thousand, million,
or even billion, we can examine the zeros exhaustively
using a suitable truncation of this formula to approximate
them. And for m > 270 or so, all terms but the first are
sufficiently small in magnitude that we can reduce matters
to the well-known linear case, which has already been
analyzed for trigonometric range reduction. In the middle
range, we have applied the Lefèvre-Muller technique [4] to
the Stokes expansions. The idea of this technique is to cover
the range with a large (but quite feasible) number of linear
approximations that are accurate enough for us to be able to
read off local results from. We then find ‘worst cases’ for the
linear approximations in a straightforward manner by scaling
the function so its gradient is approximated by a suitable
rational approximation a/b, then solving congruences mod
b.

Results

Table 3 shows all the double-precision floating-point
numbers in the range 0 ≤ x ≤ 290 that are within 2−55

of a zero of one of our four basic functions J0(x), J1(x),
Y0(x) and Y1(x). As noted above, there are no surprises
beyond 290, since the zeros are so close to (n− 1/4)π that
we know roughly what to expect from previous studies on
the trigonometric functions — see e.g. [8] and [6]. (Note that
if we have results for double-precision numbers close to nπ,
the results for multiples nπ/4 and a fortiori (n−1/4)π can
be at worst 1/4 as large.) Indeed, the larger zeros of J0 and
Y1, and those of J1 and Y0, are already becoming very close
near the top of our range. Still, for completeness, Table 4
lists the closest zeros of the functions to double-precision
numbers over the whole range. The overall lesson is that
the results are in line with naive statistical expectations.

6. A reference implementation

To realize the ideas set out above, we have programmed
a reference implementation of the double-precision Bessel
functions J0, J1, Y0 and Y1 designed for the Intel
Itanium architecture. This architecture allows us to use
double-extended precision for internal calculations, so most
of the computation can be done ‘naively’ with good final
error bounds. The sole exception is the accurate computation
of αn(x) and its integration with trigonometric range reduc-
tion. Here we make good use of the fma (fused multiply-
add) that this architecture offers.

The higher-order part of the αn(x) series, consisting of
terms that are still below about 2−60 in size, can also be
calculated naively. But for the low-order part of the series
we want to compute the summation in two double-extended
pieces to ensure absolute accuracy of order 2−120. One
reasonable way of doing this is to make repeated use of

Exact value of double Approximate decimal value Distance from zero Function
214 × 6617649673795284 1.08423572255× 1020 2−58.438199858 Y1

237 × 6311013172270677 8.67379045745× 1026 2−58.4361612221 Y1

237 × 6311013172270677 8.67379045745× 1026 2−58.4361612218 J0

214 × 6617649673795284 1.08423572255× 1020 2−58.4356039989 J0

2−14 × 4643410941512688 283411312348.0 2−57.4750503229 J0

223 × 7209129755475690 6.04745635398× 1022 2−57.2168697228 J1

223 × 7209129755475690 6.04745635398× 1022 2−57.216867725 Y0

228 × 8451279557623493 2.26862308183× 1024 2−57.1898493381 Y1

228 × 8451279557623493 2.26862308183× 1024 2−57.1898492858 J0

2−26 × 8368094255856943 124694321.392 2−56.9469283257 Y0

216 × 4963237255346463 3.25270716766× 1020 2−56.8515062657 J1

216 × 4963237255346463 3.25270716766× 1020 2−56.8512179523 Y0

232 × 8754199225116346 3.75989993745× 1025 2−56.8148254699 Y1

232 × 8754199225116346 3.75989993745× 1025 2−56.8148254675 J0

2−18 × 7757980709970194 29594347801.1 2−56.6251590484 Y0

2−42 × 5944707359537560 1351.66996177 2−56.5865796184 J1

2−22 × 5798262669118148 1382413546.83 2−56.3577856958 J0

2−30 × 4670568619103095 4349805.99126 2−56.1575895598 J1

216 × 8272062092244105 5.42117861277× 1020 2−56.1144022739 Y1

216 × 8272062092244105 5.42117861277× 1020 2−56.1142984844 J0

20 × 6027843377079719 6.02784337708× 1015 2−55.9891793419 J0

2−10 × 5256649930600386 5.13344719785× 1012 2−55.7177747539 J0

2−16 × 6535297120514194 99720720222.7 2−55.7166597393 Y0

2−35 × 6458928246558283 187979.55262 2−55.5787196547 Y1

2−26 × 5245948062070016 78170717.6875 2−55.509211239 Y0

2−20 × 7547179409128835 7197551163.8 2−55.4766161411 Y1

2−26 × 8441237061651159 125784234.131 2−55.4755750981 Y0

2−45 × 7046625970325583 200.277155793 2−55.4323204082 J0

2−40 × 8936924570334870 8128.08554686 2−55.3841525656 J1

2−29 × 8114890393276829 15115161.2276 2−55.1139949895 J1

2−53 × 8048625784723434 0.893576966279 2−55.0615557705 Y0

Table 3. Doubles in range [0, 290] within 2−55 of Bessel zero

a special 2-part Horner step, which takes an existing 2-
part value (h, l) and produces a new one (h′, l′) using 2-
part coefficients (cH , cL) and dividing by a 2-part variable
xH + xL. (In our application we have xH + xL = x2 and
the (cH , cL) are 2-part floating-point approximations to the
αn series coefficients.) That is, we get to good accuracy:

(h′ + l′) = (cH + cL) +
1

xH + xL
(h + l)

In a preamble, which only needs to be executed once for
a given xH +xL, we compute an approximate inverse y and
correction e:

y = 1/xH

e1 = 1− xH · y
e2 = e1 − xL · y
e = y · e2

Each Horner step then consists of the following compu-
tation. One can show that provided the terms decrease in
size (as they do in our application), this maintains a relative

error of about twice the working precision.

h′ = cH + y · h t = cL + e · h
r1 = h′ − cH

r = y · h− r1

s = t + r
l′ = s + y · l

The latency may seem like 5 fmas, but note that we get
h′ from h in just one latency and only use l to obtain l′

on the last step. Thus we can in fact pipeline a number of
successive applications separated only by one fma latency.

If we have a 2-part result (r, c) from argument reduction
and (h, l) is a 2-part α

(1)
n +α

(3)
n /x2 +α

(5)
n /x4 + · · · then we

can make the final combination using the same step with
only a 1-part x needed (this is just our input number x,
whereas earlier we were dividing by x2 at each stage):

(h′ + l′) = (r + c) +
1
x

(h + l)

and then perform a conventional floating-point addition
h′ + l′ to obtain the final result r as a double-extended
number. Since this is bounded by approximately |r| ≤ π/4
and the sine and cosine functions are well-conditioned in this
area, we can just evaluate sin(r) or cos(r) straightforwardly.

Exact value of double Approximate decimal value Distance from zero Function
2796 × 6381956970095103 2.65968632416× 10255 2−61.8879179362 Y0

2796 × 6381956970095103 2.65968632416× 10255 2−61.8879179362 J1

278 × 5916243447979695 1.78807486485× 1039 2−59.9300883695 Y1

278 × 5916243447979695 1.78807486485× 1039 2−59.9300883695 J0

2938 × 8444920710073313 1.96214685729× 10298 2−59.7839697826 Y0

2938 × 8444920710073313 1.96214685729× 10298 2−59.7839697826 J1

2524 × 5850965514341686 3.21325554979× 10173 2−59.4812472194 Y1

2524 × 5850965514341686 3.21325554979× 10173 2−59.4812472194 J0

2807 × 8160885118204141 6.96536316842× 10258 2−59.1402789847 Y1

2807 × 8160885118204141 6.96536316842× 10258 2−59.1402789847 J0

2627 × 8360820580228475 4.65646330711× 10204 2−59.0913203893 Y0

2627 × 8360820580228475 4.65646330711× 10204 2−59.0913203893 J1

2144 × 8583082635084172 1.91409138863× 1059 2−59.0538090794 Y1

2144 × 8583082635084172 1.91409138863× 1059 2−59.0538090794 J0

2242 × 7958046405119485 5.6242603729× 1088 2−58.9935827902 Y0

2242 × 7958046405119485 5.6242603729× 1088 2−58.9935827902 J1

2561 × 6808218460873451 5.13879213026× 10184 2−58.9110422712 Y0

2561 × 6808218460873451 5.13879213026× 10184 2−58.9110422712 J1

2200 × 7636753411044619 1.22717895908× 1076 2−58.8981116632 Y1

2200 × 7636753411044619 1.22717895908× 1076 2−58.8981116632 J0

2193 × 6366906923947931 7.99314450027× 1073 2−58.5326981594 Y1

2193 × 6366906923947931 7.99314450027× 1073 2−58.5326981594 J0

214 × 6617649673795284 1.08423572255× 1020 2−58.438199858 Y1

237 × 6311013172270677 8.67379045745× 1026 2−58.4361612221 Y1

237 × 6311013172270677 8.67379045745× 1026 2−58.4361612218 J0

214 × 6617649673795284 1.08423572255× 1020 2−58.4356039989 J0

2886 × 5648695676206402 2.91423343144× 10282 2−58.152019003 Y0

2886 × 5648695676206402 2.91423343144× 10282 2−58.152019003 J1

2968 × 6221301883130153 1.55209063452× 10307 2−58.1018949515 Y1

2968 × 6221301883130153 1.55209063452× 10307 2−58.1018949515 J0

2502 × 6951690029616219 9.10223874078× 10166 2−58.0556510652 Y0

2502 × 6951690029616219 9.10223874078× 10166 2−58.0556510652 J1

2525 × 8776448271512529 9.63976664937× 10173 2−57.8962847187 Y0

2525 × 8776448271512529 9.63976664937× 10173 2−57.8962847187 J1

290 × 6101578227064009 7.55338799011× 1042 2−57.8318447312 Y0

290 × 6101578227064009 7.55338799011× 1042 2−57.8318447312 J1

2636 × 8438258240500718 2.40619075865× 10207 2−57.7878018343 Y0

2636 × 8438258240500718 2.40619075865× 10207 2−57.7878018343 J1

2129 × 4595526034082901 3.12755295225× 1054 2−57.7272223193 Y1

2129 × 4595526034082901 3.12755295225× 1054 2−57.7272223193 J0

2434 × 7750232865711478 3.43821372626× 10146 2−57.7099830586 Y1

2434 × 7750232865711478 3.43821372626× 10146 2−57.7099830586 J0

Table 4. Doubles closest to Bessel zero

But in the interest of speed we use our own custom imple-
mentation of these trigonometric functions that bypasses the
usual range reduction step, because this range reduction has
already been performed, as described next.

One may be able to use an off-the-shelf argument reduc-
tion routine by reducing modulo π/4 and then modifying the
result, provided that enough information about the quotient
as well as the remainder is provided. Note that one can
always adapt an argument reduction for 2aπ for 2bπ by
multiplying the input and dividing the output(s) by 2a−b.
Instead, we programmed our own variant of the standard
scheme [7], which optimizes for speed and simplicity at the
cost of much greater storage. For an input x = 2am with
m ∈ Z we observe that

(x/π) mod 1 = (2am/π) mod 1 = (m · 2a/π) mod 1

We may apply the modulus twice within the calculation
without changing the result, since m is an integer:

(2am/π) mod 1 = (m · [(2a/π) mod 1]) mod 1

In IEEE double precision there are only about 2048
possibilities for a, so we can simply precompute and tabulate
the values:

Pa = ((2a/π) mod 1)/2a

so we just need to calculate at runtime (Pa · x) mod 1.
Each Pa is stored in three parts using floating-point num-
bers, so Pa = Phi

a + Pmed
a + P lo

a . The final computation
uses some straightforward fma-based techniques to ensure
accuracy in the computations, also adding and subtracting
a ‘shifter’ S = 262 + 261 to fix the binary point and force
integer truncation. The final result x2 is an accurate reduced

argument (x/π) mod 1, though it may be a little greater
than 1/2 in magnitude, which can then be postmultiplied by
π.

NS = S + x · Phi
a

N = S −NS

x0 = N + x · Phi
a

x1 = x0 + x · Pmed
a

x2 = x1 + x · P lo
a

The complete code (written in C) runs in about 160 cycles
for all arguments, and with more aggressive scheduling and
optimization, we believe it could be brought below 100
cycles.

7. Further work

Our αn series were designed to achieve better than 2−120

absolute accuracy over the whole range. However, this very
high degree of accuracy is only required in the neighborhood
of the zeros. It would be interesting to investigate computing
a minimax economization using a more refined weight
function to take this into account; it may be that a significant
further reduction in the degree is possible. At least we
could explore more sophisticated methods of arriving at
minimax approximations, taking into account the fact that
the coefficients are machine numbers [2].

In general the above techniques should generalize straight-
forwardly to Jn and Yn for fixed, moderate n, yielding
algorithms that are fast and accurate at the cost of relatively
large tables. The problem of implementing generic functions
when n is another parameter is potentially more difficult, and
has not yet been considered. Another more ambitious goal
still would be to strive for perfect rounding, but for this we
would need more comprehensive ‘worst case’ data for the
functions in general, not merely for their zeros.

Our current code is just a simple prototype, and makes use
of the somewhat uncommon combination, found on the In-
tel Itanium architecture, of the double-extended floating-
point type and the fused multiply-add. It should not be too
difficult to produce a portable C implementation that would
run on any reasonable platform supporting IEEE floating-
point, though the performance figures would probably not
be quite as good as those reported here. This could be of
fairly wide interest, since we are not aware of any other
double-precision Bessel function implementations offering
the combination of accuracy and speed we attain here.

Acknowledgements

The author is grateful to Peter Tang, both for suggesting
the Bessel functions as an interesting line of research and

for his explanation of the established theory. Thanks also
to the anonymous reviewers for ARITH, whose comments
were of great help in improving the paper.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables,
volume 55 of Applied Mathematics Series. US National Bureau
of Standards, 1964.

[2] N. Brisebarre, J.-M. Muller, and A. Tisserand. Computing
machine-efficient polynomial approximations. ACM Transac-
tions on Mathematical Software, 32:236–256, 2006.

[3] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly,
C. K. Mesztenyi, J. R. Rice, H. G. Thatcher, and C. Witzgall.
Computer Approximations. Robert E. Krieger, 1978.

[4] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding
of the elementary functions in double precision. Research
Report 4044, INRIA, 2000.

[5] M. D. McIlroy. Squinting at power series. Software — Practice
and Experience, 20:661–683, 1990.

[6] J.-M. Muller. Elementary functions: Algorithms and Imple-
mentation. Birkhäuser, 2nd edition, 2006.

[7] M. Payne and R. Hanek. Radian reduction for trigonometric
functions. SIGNUM Newsletter, 18(1):19–24, 1983.

[8] R. A. Smith. A continued fraction analysis of trigonometric ar-
gument reduction. IEEE Transactions on Computers, 44:1348–
1351, 1995.

[9] G. N. Watson. A treatise on the theory of Bessel functions.
Cambridge University Press, 1922.

