
Formal Verification Methods
2: Symbolic Simulation

John Harrison
Intel Corporation

Marktoberdorf 2003

Thu 31st July 2003 (11:25 – 12:10)

0



Summary

• Simulation

• Symbolic and ternary simulation

• BDDs

• Quaternary lattice

• Symbolic trajectory evaluation

1



Simulation

The traditional method for testing and debugging hardware designs
is simulation.

This is just testing, done on a formal circuit model.

0
1
1
0
1
0
0

0
7-input

AND gate

Feed sets of arguments in as inputs, and check whether the output is
as expected.

2



Generalizations of Simulation

We can generalize basic simulation in two different ways:

• Ternary simulation, where as well as 0 and 1 we have a “don’t
care” value X.

• Symbolic simulation, where inputs may be parametrized by
Boolean variables, and outputs are functions of those variables.

Rather surprisingly, it’s especially useful to do both at the same time,
and have ternary values parametrized by Boolean variables.

This leads on to symbolic trajectory evaluation (STE) and its
generalizations.

3



Example of symbolic simulation

We might use Boolean variables for all inputs:

a0

a1

a2

a3

a4

a5

a6

a0 ∧ · · · ∧ a6

7-input
AND gate

or just some of them:

1
1
1
x
1
1
1

x
7-input

AND gate

4



Example of ternary simulation

If some inputs are undefined, the output often is too:

X
X
1
X
1
X
X

X
7-input

AND gate

but not always:

X
X
0
X
X
X
X

0
7-input

AND gate

5



Economies

Consider the 7-input AND gate. To verify it exhaustively:

• In conventional simulation, we would need 128 test cases,
0000000, 0000001, . . . , 1111111.

• In symbolic simulation, we only need 1 symbolic test case,
a0a1a2a3a4a5a6, but need to manipulate expressions, not just
constants.

• In ternary simulation, we need 8 test cases, XXXXXX0,
XXXXX0X, . . . , 0XXXXXX and 1111111.

If we combine symbolic and ternary simulation, we can parametrize
the 8 test cases by just 3 Boolean variables.

This makes the manipulation of expressions much more economical.

6



Representing Boolean expressions

We could just represent Boolean expressions as formulas in the
usual way.

• Need to check equivalence of ouput expression and expectation

• Essentially the same approach as in previous lecture

Main alternative is to use a canonical representation for Boolean
formulas.

• Testing equivalence is trivial (are the expressions the same?)

• There is more work in composing the operations internally

The most popular canonical representation is (reduced ordered)
binary decision diagrams (BDDs).

7



BDDs

(Reduced Ordered) Binary decision diagrams represent Boolean
functions as decision trees, but share common subtrees to give a
directed acyclic graph structure.

A canonical variable ordering is imposed, so variables occur in the
same order along all paths.

This makes BDDs a canonical representation, so comparison of
Boolean functions is constant time.

Moreover, Boolean operations are polynomial time, and they are
often surprisingly compact for functions of interest.

Some functions such as multipliers have no efficient representation.

The variable ordering can make a big difference!

8



BDD example

a

b

c

d

e

f

0 1

a

c c

e e e e

b b b b

d d

f

0 1

9



Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .

We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}

X = {0, 1}

This is essentially a simple case of an abstraction mapping.

10



Quaternary lattice

We consider the quaternary values laid out in an information
ordering:

X

0 1

T

@
@

@

�
�

�

�
�

�

@
@

@

The lattice ordering indicates that one value has ‘more information’
than another.

11



Extended truth tables

The truth-tables for basic gates are extended:

p q p ∧ q p ∨ q p⇒ q p⇔ q

X X X X X X

X 0 0 X X X

X 1 X 1 1 X

0 X 0 X 1 X

0 0 0 0 1 1

0 1 0 1 1 0

1 X X 1 X X

1 0 0 1 0 0

1 1 1 1 1 1

Composing gates in this simple way, we may lose information.

12



Parametrizing quaternary values

Parametrize sets of quaternary values using Boolean variables:

a0 =


1 if p ∧ q ∧ r

0 if ¬p ∧ ¬q ∧ ¬r

X otherwise

. . .

a6 =


1 if p ∧ q ∧ r

0 if p ∧ q ∧ ¬r

X otherwise

We can represent quaternary values as a pair of Boolean values
during simulation, and thus use the standard BDD representation in
terms of the parameters.

13



Symbolic trajectory evaluation

Symbolic trajectory evaluation (STE) is a further development of
ternary symbolic simulation.

The user can write specifications in a restricted temporal logic,
specifying the behaviour over bounded-length trajectories
(sequences of circuit states).

A typical specification would be: if the current state satisfies a
property P , then after n time steps, the state will satisfy the property
Q.

The circuit can then be checked against this specification by
symbolic quaternary simulation.

STE is used extensively at Intel.

14



Summary

• Simulation is the standard technique for testing and debugging
circuit designs

• The two generalizations to ternary and symbolic simulation are
independently valuable.

• A canonical representation of Boolean functions using BDDs
often works well

• We can generalize simulation to quaternary simulation,
considering it as an abstraction mapping

• STE arises by combining symbolic and ternary simulation, and
using it to check properties expressed in a simple temporal logic.

15


