
Formal Verification Methods
1: Propositional Logic

John Harrison
Intel Corporation

Marktoberdorf 2003

Wed 30th July 2003 (11:25 – 12:10)

0

Summary

• Course overview

• Propositional logic

• A resurgence of interest

• Logic and circuits

• Normal forms

• The Davis-Putnam procedure

• Stålmarck’s method

• Conclusions

1

Overview

We aim to give a broad overview of the current verification methods
employed in the hardware industry.

1. Propositional Logic

2. Symbolic Simulation

3. Model Checking

4. General Theorem Proving

5. Floating Point Verification

We start with the ‘simplest’ logic (propositional logic) and work our
way up to higher order logic.

The last lecture focuses on our own work, verifying floating-point
algorithms using the HOL higher order logic theorem prover.

2

Propositional Logic

We probably all know what propositional logic is.

English Standard Boolean Other

false ⊥ 0 F

true > 1 T

not p ¬p p −p, ∼ p

p and q p ∧ q pq p&q, p · q
p or q p ∨ q p + q p | q, p or q

p implies q p ⇒ q p ≤ q p → q, p ⊃ q

p iff q p ⇔ q p = q p ≡ q, p ∼ q

In the context of circuits, it’s often referred to as ‘Boolean algebra’,
and many designers use the Boolean notation.

3

A resurgence of interest!

Traditionally, propositional logic has been regarded as fairly boring,
and is usually regarded as a stepping-stone on the way to first order
logic (and beyond).

• There are severe limitations to what can be said with
propositional logic.

• Propositional logic is trivially decidable in theory . . .

• . . . but the usual methods aren’t efficient enough for interesting
problems.

However, the last decade has seen a remarkable upsurge of interest
in propositional logic.

In fact, it’s arguably the hottest topic in automated theorem proving!

4

Why?

Why the resurgence?

• There are many interesting problems that can be expressed in
propositional logic

• Efficient algorithms can often decide large, interesting problems

Propositional satisfiability was the original NP-complete problem.

The theory of NP completeness shows that many difficult
combinatorial problems can in principle be reduced to propositional
satisfiability checking.

Recently it has become clear that reducing problems to propositional
logic can often be a good way to solve them in practice!

5

Logic and circuits

The correspondence between digital logic circuits and propositional
logic has been known for a long time.

Digital design Propositional Logic

circuit formula

logic gate propositional connective

input wire atom

internal wire subexpression

voltage level truth value

Many problems in circuit design and verification can be reduced to
propositional tautology or satisfiability checking.

For example optimization correctess: φ ⇔ φ′ is a tautology.

6

Encoding as SAT

Many other apparently difficult combinatorial problems can be
encoded as Boolean satisfiability (SAT), e.g. scheduling, planning,
even factorization.

¬((out0 ⇔ x0 ∧ y0)∧
(out1 ⇔ (x0 ∧ y1 ⇔ ¬(x1 ∧ y0)))∧
(v2

2 ⇔ (x0 ∧ y1) ∧ x1 ∧ y0)∧
(u0

2 ⇔ ((x1 ∧ y1) ⇔ ¬v2
2))∧

(u1
2 ⇔ (x1 ∧ y1) ∧ v2

2)∧
(out2 ⇔ u0

2) ∧ (out3 ⇔ u1
2)∧

¬out0 ∧ out1 ∧ out2 ∧ ¬out3)

Read off the factorization 6 = 2× 3 from a refuting assignment.

7

Efficient methods

The naive truth table method is quite impractical for formulas with
more than a few dozen primitive propositions.

Practical use of propositional logic mostly relies on one of the
following algorithms for deciding tautology or satisfiability:

• Binary decision diagrams (BDDs)

• The Davis-Putnam method (DP, DPLL)

• Stålmarck’s method

BDDs will be discussed in the next lecture. This time we focus on
Davis-Putnam, while also explaining the basic idea of Stålmarck’s
method.

8

DP and DPLL

Actually, the original Davis-Putnam procedure is not much used now.

What is usually called the Davis-Putnam method is actually a later
refinement due to Davis, Loveland and Logemann (hence DPLL).

We formulate it as a test for satisfiability. It has three main
components:

• Transformation to conjunctive normal form (CNF)

• Application of simplification rules

• Splitting

9

Normal forms

In ordinary algebra we can reach a ‘sum of products’ form of an
expression by:

• Eliminating operations other than addition, multiplication and
negation, e.g. x− y 7→ x +−y.

• Pushing negations inwards, e.g. −(−x) 7→ x and
−(x + y) 7→ −x +−y.

• Distributing multiplication over addition, e.g. x(y + z) 7→ xy + xz.

In logic we can do exactly the same, e.g. p ⇒ q 7→ ¬p ∨ q,
¬(p ∧ q) 7→ ¬p ∨ ¬q and p ∧ (q ∨ r) 7→ (p ∧ q) ∨ (p ∧ r).

The first two steps give ‘negation normal form’ (NNF).

Following with the last (distribution) step gives ‘disjunctive normal
form’ (DNF), analogous to a sum-of-products.

10

Conjunctive normal form

Conjunctive normal form (CNF) is the dual of DNF, where we reverse
the roles of ‘and’ and ‘or’ in the distribution step to reach a ‘product of
sums’:

p ∨ (q ∧ r) 7→ (p ∨ q) ∧ (p ∨ r)

(p ∧ q) ∨ r 7→ (p ∨ r) ∧ (q ∨ r)

Reaching such a CNF is the first step of the Davis-Putnam
procedure.

Unfortunately the naive distribution algorithm can cause the size of
the formula to grow exponentially — not a good start. Consider for
example:

(p1 ∧ p2 ∧ · · · ∧ pn) ∨ (q1 ∧ p2 ∧ · · · ∧ qn)

11

Definitional CNF

A cleverer approach is to introduce new variables for subformulas.
Although this isn’t logically equivalent, it does preserve satisfiability.

(p ∨ (q ∧ ¬r)) ∧ s

introduce new variables for subformulas:

(p1 ⇔ q ∧ ¬r) ∧ (p2 ⇔ p ∨ p1) ∧ (p3 ⇔ p2 ∧ s) ∧ p3

then transform to (3-)CNF in the usual way:

(¬p1 ∨ q) ∧ (¬p1 ∨ ¬r) ∧ (p1 ∨ ¬q ∨ r)∧
(¬p2 ∨ p ∨ p1) ∧ (p2 ∨ ¬p) ∧ (p2 ∨ ¬p1)∧
(¬p3 ∨ p2) ∧ (¬p3 ∨ s) ∧ (p3 ∨ ¬p2 ∨ ¬s) ∧ p3

12

Clausal form

It’s convenient to think of the CNF form as a set of sets:

• Each disjunction p1 ∨ · · · ∨ pn is thought of as the set
{p1, . . . , pn}, called a clause.

• The overall formula, a conjunction of clauses C1 ∧ · · · ∧ Cm is
thought of as a set {C1, . . . , Cm}.

Since ‘and’ and ‘or’ are associative, commutative and idempotent,
nothing of logical significance is lost in this interpretation.

Special cases: an empty clause means ⊥ (and is hence
unsatisfiable) and an empty set of clauses means > (and is hence
satisfiable).

13

Simplification rules

At the core of the Davis-Putnam method are two transformations on
the set of clauses:

I The 1-literal rule: if a unit clause p appears, remove ¬p from
other clauses and remove all clauses including p.

II The affirmative-negative rule: if p occurs only negated, or only
unnegated, delete all clauses involving p.

These both preserve satisfiability of the set of clause sets.

14

Splitting

In general, the simplification rules will not lead to a conclusion. We
need to perform case splits.

Given a clause set ∆, simply choose a variable p, and consider the
two new sets ∆ ∪ {p} and ∆ ∪ {¬p}.

@
@

@
@R

�
�

�
�	

? ?

∆

∆ ∪ {¬p} ∆ ∪ {p}

∆0 ∆1

I, II I, II

In general, these case-splits need to be nested.

15

Industrial strength SAT solvers

For big applications, there are several important tweaks to the basic
DPLL algorithm:

• Highly efficient data structures

• Good heuristics for picking ‘split’ variables

• Intelligent non-chronological backtracking / conflict clauses

Some well-known provers are

• GRASP

• SATO

• Chaff

Chaff pays close attention to low-level details like memory hierarchy,
and seems to be the current favourite.

16

Stålmarck’s algorithm

Stålmarck’s ‘dilemma’ rule attempts to avoid nested case splits by
feeding back common information from both branches.

@
@

@
@R

�
�

�
�	

�
�

�
�	

@
@

@
@R

? ?

∆

∆ ∪ {¬p} ∆ ∪ {p}

∆ ∪∆0 ∆ ∪∆1

∆ ∪ (∆0 ∩∆1)

R R

17

Summary

• Propositional logic is no longer a neglected area of theorem
proving

• A wide variety of practical problems can usefully be encoded in
SAT

• There is intense interest in efficient algorithms for SAT

• Many of the most successful systems are still based on minor
refinements of the ancient Davis-Putnam procedure

• Can we invent a better SAT algorithm?

18

