
Verification: Industrial Applications
Notes to accompany lectures at 2003

Marktoberdorf Summer School

John Harrison
Intel Corporation, JF1-13

2111 NE 25th Avenue
Hillsboro OR, USA

johnh@ichips.intel.com

3 July 2003

Abstract

These lectures are intended to give a broad overview of the most important for-
mal verification techniques that are currently used in the hardware industry. They
are somewhat biased towards applications of deductive theorem proving (since that
is my special area of interest) and away from temporal logic model checking (since
there are other lectures on that topic). The arrangement of material is roughly in
order of logical complexity, starting with methods for propositional logic and lead-
ing up to general theorem proving, then finishing with an extended case study on
the verification of a floating-point square root algorithm used by Intel.

1. Propositional logic

2. Symbolic simulation

3. Model checking

4. General theorem proving

5. Case study of floating-point verification

The treatment of the various topics is quite superficial, with the aim being over-
all perspective rather than in-depth understanding. The last lecture is somewhat
more detailed and should give a good feel for the realities of formal verification in
this field.

These notes draw on my forthcoming book on automated theorem proving, and
simple-minded example code (written in Objective Caml) illustrating many of the
techniques described can be found on my Web page:

http://www.cl.cam.ac.uk/users/jrh/atp/index.html

1

0 Introduction

As most programmers know to their cost, writing programs that function correctly
in all circumstances — or even saying what that means — is difficult. Most large
programs contain ‘bugs’. In the past, hardware has been substantially simpler than
software, but this difference is eroding, and current leading-edge microprocessors are
also extremely complex and usually contain errors. It has often been noted that mere
testing, even on clever sets of test cases, is usually inadequate to guarantee correctness
on all inputs, since the number of possible inputs and internal states, while finite, is
usually astronomically large. For example [38]:

As I have now said many times and written in many places: program test-
ing can be quite effective for showing the presence of bugs, but is hope-
lessly inadequate for showing their absence.

The main alternative to testing is formal verification, where it is rigorouslyproved
that the system functions correctly on all possible inputs. This involves forming math-
ematical models of the system and its intended behaviour and linking the two:

Actual system

Mathematical model

Mathematical specification

Actual requirements

6

6

6

Hardware versus software

The facts that (i) getting a mathematical proof right is also difficult [37], and (ii) cor-
rectness of formal models does not necessarily imply correctness of the actual system
[41] caused much pointless controversy in the 70s. It is now widely accepted that for-
mal verification, with the proof itself checked by machine, gives a much greater degree
of confidence than traditional techniques.

The main impediment to greater use of formal verification is not these generalist
philosophical objections, but just the fact that it’s rather difficult. Only in a few iso-
lated safety-critical niches of the software industry is any kind of formal verification
widespread, e.g. in avionics. But in the hardware industry, formal verification is widely
practised, and increasingly seen as necessary. We can identify at least three reasons:

• Hardware is designed in a more modular way than most software. Constraints of
interconnect layering and timing means that one cannot really design ‘spaghetti
hardware’.

2

• More proofs in the hardware domain can be largely automated, reducing the need
for intensive interaction by a human expert with the mechanical theorem-proving
system.

• The potential consequences of a hardware error are greater, since such errors
often cannot be patched or worked around, and mayin extremisnecessitate a
hardware replacement.

To emphasize the last point, an error in the FDIV (floating-point division) instruc-
tion of some early Intel Intel Pentium processors resulted in 1994/5 in a charge to
Intel of approximately $500M. Given this salutary lesson, and the size and diversity
of its market, it’s therefore understandable that Intel is particularly interested in formal
verification.

The spectrum of formal verification techniques

There are a number of different formal verification techniques used in the hardware
industry. Roughly speaking, these use different logics to achieve a particular balance
between generality and automation. At one end of the scale, propositional logic has
limited expressiveness, but (amazingly) efficient decision methods are available. At
the other end, higher-order logic is very expressive but no efficient decision methods
are available (in fact, higher-order validity is not even recursively enumerable) and
therefore proofs must be constructed interactively with extensive user guidance. The
lectures that follow are organized on the same basis, with propositional logic first, fol-
lowed by symbolic simulation and temporal logic model checking, and finally general
theorem proving at the end.

The particular method that is most appropriate for a given task may depend on
details of that application. Needless to say, the effective combination of all methods is
attractive, and there has been much interest in this idea [95, 64, 89]. Another ‘hybrid’
application of formal verification is to prove correctness of some of the CAD tools used
to produce hardware designs [1] or even of the abstraction and reduction algorithms
used to model-check large or infinite-state systems [23].

There are at least two books [69, 83] that also aim at a broad overview of formal
verification techniques as applied to hardware and software, and are a useful comple-
ment to the material to follow.

1 Propositional logic

I assume that everyone knows what propositional logic is. The following is mainly
intended to establish notation. Propositional logic deals with basic assertions that may
be either true or false and various ways of combining them into composite propositions,
without analyzing their internal structure. It is very similar to Boole’s original algebra
of logic, and for this reason the field is sometimes calledBoolean algebrainstead. In
fact, the Boolean notation for propositional operators is still widely used by circuit
designers.

3

English Standard Boolean Other
false ⊥ 0 F
true > 1 T
not p ¬p p −p,∼ p
p andq p∧q pq p&q, p·q
p or q p∨q p+q p | q, p or q
p impliesq p⇒ q p≤ q p→ q, p⊃ q
p iff q p⇔ q p = q p≡ q, p∼ q

For example,p∧ q⇒ p∨ q means ‘if p andq are true, thenp or q is true’. We
assume that ‘or’ is interpreted inclusively, i.e.p∨ q means ‘p or q or both’. This
formula is therefore always true, or atautology.

Logic and circuits

At a particular time-step, we can regard each internal or external wire in a (binary)
digital computer as having a Boolean value, ‘false’ for 0 and ‘true’ for 1, and think of
each circuit element as a Boolean function, operating on the values on its input wire(s)
to produce a value at its output wire. The most basic building-blocks of computers
used by digital designers, so-calledlogic gates, correspond closely to the usual logical
connectives. For example an ‘AND gate’ is a circuit element with two inputs and one
output whose output wire will be high (true) precisely if both the input wires are high,
and so it corresponds exactly in behaviour to the ‘and’ (‘∧’) connective. Similarly a
‘NOT gate’ (or inverter) has one input wire and one output wire, which is high when
the input is low and low when the input is high; hence it corresponds to the ‘not’
connective (‘¬’). Thus, there is a close correspondence between digital circuits and
formulas which can be sloganized as follows:

Digital design Propositional Logic
circuit formula
logic gate propositional connective
input wire atom
internal wire subexpression
voltage level truth value

An important issue in circuit design is proving that two circuits have the same
function, i.e. give identical results on all inputs. This arises, for instance, if a designer
makes some special optimizations to a circuit and wants to check that they are “safe”.
Using the above correspondences, we can translate such problems into checking that
a number of propositional formulasPn ⇔ P′n are tautologies. Slightly more elaborate
problems in circuit design (e.g. ignoring certain ‘don’t care’ possibilities) can also
be translated to tautology-checking. Thus, efficient methods for tautology checking
directly yield useful tools for hardware verification.

Tautology checking

Tautology checking is apparently a difficult problem in general: it is co-NP complete,
the dual problem ‘SAT’ of propositional satisfiability being the original NP-complete

4

problem [28]. However, there are a variety of algorithms that often work well on the
kinds of problems arising in circuit design. And not just circuit design. The whole point
of NP completeness is that many other apparently difficult combinatorial problems
can be reduced to tautology/satisfiability checking. Recently it’s become increasingly
clear that this is useful not just as a theoretical reduction but as a practical approach.
Surprisingly, many combinatorial problems are solved better by translating to SAT than
by customized algorithms! This probably reflects the enormous engineering effort that
has gone into SAT solvers.

The simplest method of tautology checking is, given a formula withn primitive
propositional variables, to try all 2n possible combinations and see if the formula al-
ways comes out true. Obviously, this may work for smalln but hardly for the cases of
practical interest. More sophisticated SAT checkers, while still having runtimes expo-
nential inn in the worst case, do very well on practical problems that may even involve
millions of variables. These still usually involve true/false case-splitting of variables,
but in conjunction with more intelligent simplification.

The Davis-Putnam method

Most high-performance SAT checkers are based on the venerable Davis-Putnam algo-
rithm [36], or more accurately on the ‘DPLL’ algorithm, a later improvement [35].

The starting-point is to put the formula to be tested for satisfiability in ‘conjunctive
normal form’. A formula is said to be in conjunctive normal form (CNF) when it is an
‘and of ors’, i.e. of the form:

C1∧C2∧·· ·∧Cn

with eachCi in turn of the form:

l i1∨ l i2∨·· ·∨ l imi

and all thel i j ’s literals, i.e. primitive propositions or their negations. The individual
conjunctsCi of a CNF form are often calledclauses. We usually consider these as sets,
since both conjunction and disjunction are associative, commutative and idempotent, so
it makes sense to talk of⊥ as the empty clause. IfCi consists of one literal, it is called
a unit clause. Dually, disjunctive normal form (DNF) reverses the role of the ‘and’s
and ‘or’s. These special forms are analogous to ‘fully factorized’ and ‘fully expanded’
in ordinary algebra — think of(x+1)(x+2)(x+3) as CNF andx3 +6x2 +11x+6 as
DNF. Again by analogy with algebra, we can always translate a formula into CNF by
repeatedly rewriting with equivalences like:

¬(¬p) ⇔ p

¬(p∧q) ⇔ ¬p∨¬q

¬(p∨q) ⇔ ¬p∧¬q

p∨ (q∧ r) ⇔ (p∨q)∧ (p∨ r)
(p∧q)∨ r ⇔ (p∨ r)∧ (q∨ r)

However, this in itself can cause the formula to blow up exponentially before we
even get to the main algorithm, which is hardly a good start. One can do better by in-
troducing new variables to denote subformulas, and putting the resulting list of equiv-

5

alences into CNF — so-calleddefinitional CNF. It’s not hard to see that this preserves
satisfiability. For example, we start with the formula:

(p∨ (q∧¬r))∧s

introduce new variables for subformulas:

(p1 ⇔ q∧¬r)∧
(p2 ⇔ p∨ p1)∧
(p3 ⇔ p2∧s)∧
p3

then transform to CNF:

(¬p1∨q)∧ (¬p1∨¬r)∧ (p1∨¬q∨ r)∧
(¬p2∨ p∨ p1)∧ (p2∨¬p)∧ (p2∨¬p1)∧
(¬p3∨ p2)∧ (¬p3∨s)∧ (p3∨¬p2∨¬s)∧
p3

The DPLL algorithm is based on the following satisfiability-preserving transforma-
tions:

I The 1-literal rule: if a unit clausep appears, remove¬p from other clauses and
remove all clauses includingp.

II The affirmative-negative rule: ifp occursonlynegated, oronlyunnegated, delete
all clauses involvingp.

III Case-splitting: consider the two separate problems by addingp and¬p as new
unit clauses.

If you get the empty set of clauses, the formula is satisfiable; if you get an empty
clause, it is unsatisfiable. Since the first two rules make the problem simpler, one only
applies the case-splitting rule when no other progress is possible. In the worst case,
many case-splits are necessary and we get exponential behaviour. But in practice it
works quite well.

Industrial-strength SAT checkers

The above simple-minded sketch of the DPLL algorithm leaves plenty of room for im-
provement. The choice of case-splitting variable is often critical, the formulas can be
represented in a way that allows for efficient implementation, and the kind of back-
tracking that arises from case splits can be made more efficient via ‘intelligent back-
jumping’ and ‘conflict clauses’. Two highly efficient DPLL-based theorem provers are
SATO [115] and Chaff [78]. The latter even pays careful attention to low-level issues
like cache layout.

Another interesting technique that is used in the tools from Prover Technology
(www.prover.com), as well as the experimental system Heerhugo [51], is Stålmarck’s
dilemma rule [102]. This involves using case-splits in a non-nested fashion, accumu-
lating common information from both sides of a case split and feeding it back:

6

@
@

@
@R

�
�

�
�	

�
�

�
�	

@
@

@
@R

? ?

∆

∆∪{¬p} ∆∪{p}

∆∪∆0 ∆∪∆1

∆∪ (∆0∩∆1)

R R

In some cases, this works out much better than the usual DPLL algorithm. For a
nice introduction, see [98]. Note that this method is covered by patents [101].

2 Symbolic simulation

As noted, testing is also widely used in hardware design, and until a decade or so ago
was the exclusive way of trying to establish correctness. Usually what is tested is not
the circuit itself but some formal model — the whole idea is to flush out errorsbefore
the expensive step of building the hardware. The usual term for this kind of testing is
simulation. We’ll now consider two refinements of basic simulation, then show how
they can profitably be combined.

Ternary simulation

One important optimization of straightforward simulation isternary simulation[16],
which uses values drawn from 3-element set: as well as ‘1’ (true) and ‘0’ (false) we
have an ‘X’, denoting an ‘unknown’ or ‘undefined’ value. This isnot meant to imply
that a wire in the circuit itself is capable of attaining some third truth-value, but merely
reflects the fact that we don’t know whether it is 0 or 1. The point of ternary simulation
is that many values in the circuit may be irrelevant to some current concern, and we
can abstract them away by setting them to ‘X’ during simulation. (For example, if we
are analyzing a small part of a large circuit, e.g. an adder within a complete micropro-
cessor, then only a few bits outside the present module are likely to have any effect on
its behaviour and we can set others to X without altering the results of simulation.) We
then extend the basic logical operations realized by logic gates to ternary values with
this interpretation in mind. For example, we want 0∧X = 0, since whatever the value
on one input, the output will be low if the other input is. Formally, we can present the
use ofX as an abstraction mapping, for which purpose it’s also convenient to add an
‘overconstrained’ valueT, with the intended interpretation:

7

T = {}
0 = {0}
1 = {1}
X = {0,1}

It’s useful to impose an information ordering to give this quaternary lattice:

X

0 1

T

@
@

@

�
�

�

�
�

�

@
@

@

As expected, the truth tables are monotonic with respect to this ordering:

p q p∧q p∨q p⇒ q p⇔ q
X X X X X X
X 0 0 X X X
X 1 X 1 1 X
0 X 0 X 1 X
0 0 0 0 1 1
0 1 0 1 1 0
1 X X 1 X X
1 0 0 1 0 0
1 1 1 1 1 1

Symbolic simulation

Since we are working in an abstract model, we can easily generalize conventional sim-
ulation, which tests on particular combinations of 1s and 0s, tosymbolic simulation
[21], where variables are used for some or all of the inputs, and the outputs are corre-
spondingly symbolic expressions rather than simple truth-values. Testing equivalence
then becomes testing of the Boolean expressions. Thus, if we use variables for all in-
puts, we essentially get back to combinational equivalence checking as we considered
before. The main differences are:

• We may use a more refined circuit model, rather than a simple Boolean switch
model

8

• We explicitly compute the expressions that are the “values” at the internal wires
and at the outputs as functions of the input variables, rather than just asserting
relations between them.

Instead of using general propositional formulas to represent the signals, we can
use a canonical representation, where equivalent formulas are represented by the same
data structure. Equivalence checking then becomes cheap. The most important such
representation is BDDs (binary decision diagrams). Symbolic simulation often does
work quite well with BDDs and allows many circuits to be verified exhaustively [14].

BDDs

BDDs are essentially a representation of Boolean functions as decision trees. We can
think of them as laying out a truth table but sharing common subcomponents. Consider
the truth table for a propositional formula involving primitive propositionsp1, . . . , pn.
Rather than a 2n-row truth table, we can consider a binary tree indicating how truth
assignments for the successive atoms yield a truth value for the whole expression. For
example, the functionp∧q⇒ q∧ r is represented as follows, where dashed lines indi-
cate the ‘false’ assignment of a variable, and solid lines the ‘true’.

����

���� ����

���� ���� ��������
S

S
S
S

l
l

l
l

l
l
l

L
L
L

J
J

J
J

A
A
A

A
A
A

L
L
L

...

...

...

...

...

...

...

TT T T T T F T

r r r r

qq

p

However, there are many common subtrees here, and we can imagine sharing them
as much as possible to obtain a directed acyclic graph. Although this degree of saving
may be atypical, there is always some potential for sharing, at least in the lowest level
of the tree. There are after all “only” 22k

possible subtrees involvingk variables, in
particular only two possible leaf nodes ‘true’ and ‘false’.

9

����

����

����
�

�
�

�

...

..

..

T F

r

q

p

In general, a representation of a Boolean formula as a binary tree with branch nodes
labelled with the primitive atoms and leaf nodes either ‘false’ or ‘true’ is called abinary
decision tree. If all common subtrees are maximally shared to give a directed acyclic
graph, it is called abinary decision diagram[70, 4]. As part of maximal sharing, we
assume that there are no redundant branches, i.e. none where the ‘true’ and ‘false’
descendents of a given node are the same subgraph — in such a configuration that
subgraph could be replaced by one of its children. If the variable ordering is the same
along all branches, we havereduced ordered binary decision diagrams(ROBDDs)
introduced by Bryant [15]. Nowadays, when people say ‘BDD’ they normally mean
ROBDD, though there have been experiments with non-canonical variants.

Surprisingly many interesting functions have quite a compact BDD representation.
However, there are exceptions such as multipliers [15] and the ‘hidden weighted bit’
function [17]. In these cases it is difficult to apply BDD-based methods directly.

Symbolic trajectory evaluation

A still more refined (and at first sight surprising) approach is tocombineternary and
symbolic simulation, using Boolean variables to parametrize ternary values. Consider
the rather artificial example of verifying that a piece of combinational circuitry with 7
inputs and one output implements a 7-input AND gate. In conventional simulation we
would need to check all 27 = 128 input values. In symbolic simulation we would only
need to check one case, but that case is a symbolic expression that may be quite large.
In ternary simulation, we could verify the circuit only from correct results in 8 explicit
cases:

0 X X X X X X
X 0 X X X X X
X X 0 X X X X
X X X 0 X X X
X X X X 0 X X
X X X X X 0 X
X X X X X X 0
1 1 1 1 1 1 1

10

In a combined approach, we can parametrize these 8 test cases using just 3 Boolean
variables (since 23 ≥ 8), sayp, q andr. For example, we can represent the input wires
as

a0 =

 1 if p∧q∧ r
0 if ¬p∧¬q∧¬r
X otherwise

and

a1 =

 1 if p∧q∧ r
0 if ¬p∧¬q∧ r
X otherwise

and so on until:

a6 =

 1 if p∧q∧ r
0 if p∧q∧¬r
X otherwise

Symbolic trajectory evaluation(STE), introduced in [96], uses this kind of parametriza-
tion of circuit states in terms of Boolean variables, and a special logic for making cor-
rectness assertions, similar to but more restricted than thetemporal logicswe consider
in the next lecture. Recently a more general form of STE known asgeneralized sym-
bolic trajectory evaluation(GSTE) has been developed [113]. This can use STE-like
methods to verify so-calledω-regular properties, optionally subject to fairness con-
straints, and so represents a substantial extension of its scope.

STE turns out to be very useful in partially automating the formal verification of
some circuits. Part of the appeal is that the use of the ternary model gives a relatively
easy way of abstracting out irrelevant detail. STE has been extensively used in formal
verification at Intel. For one example, see [80]. For a good introduction to the theory
behind STE, see [77].

3 Reachability and model checking

We’ve mainly been concerned so far with analyzing combinational circuits, although
symbolic simulation and STE can be used to track signals over any fixed finite number
of clocks. However, it is sometimes of interest to ask questions like ‘can a circuitever
get into a state where . . . ’ or ‘if liner (request) goes high at some point, must linea
(acknowledge) eventually do so too?’. Dealing with queries over an unbounded time
period like this requires the use of some new techniques.

We can abstract and generalize from the particular features of synchronous sequen-
tial digital circuits by considering them as particular cases of afinite state transition
systemor finite state machine(FSM). Such a system consists of a finite ‘state space’
S together with a binary relationR⊆ S×S describing the possible transitions, where
R(a,b) is true iff it is possible for the system to make a transition from statea to state
b in one time-step.1

For example, consider a circuit with three latchesv0, v1 andv2 that is supposed
to implement a modulo-5 counter. The state of the system is described by the values

1Sometimes, one also considers a set of possible ‘initial’ and ‘final’ states to be part of the state transition
system, but we prefer to consider the question of the starting and finishing states separately.

11

of these latches, so we can chooseS= {0,1}× {0,1}× {0,1}. The corresponding
transition relation can be enumerated as follows:

(0,0,0) → (0,0,1)
(0,0,1) → (0,1,0)
(0,1,0) → (0,1,1)
(0,1,1) → (1,0,0)
(1,0,0) → (0,0,0)

The transition systems arising from modelling circuits in this way have the special
feature that the transition relation is deterministic, i.e. for each statea there is at most
one stateb such thatR(a,b). However, it’s useful to consider state transition systems
in general without this restriction, since the same methods can then be applied to a
variety of other practically interesting situations, such as the analysis of parallel or
nondeterministic hardware, programs or protocols. For example, it is often helpful
in analyzing synchronization and mutual exclusion in systems with concurrent and/or
interleaved components.

Forward and backward reachability

Many interesting questions are then of the form: if we start in a stateσ0 ∈ S0, can we
ever reach a stateσ1 ∈ S1? For example, if we start the counter in state(0,0,0), will it
eventually return to the same state? (Fairly obviously, the answer is yes.) In general,
we call questions like thisreachabilityquestions. In order to answer these questions,
we can simply construct the reflexive-transitive closureR∗ of the transition relationR,
and see if it links any pairs of states of interest. In principle, there is no difficulty, since
the state space is finite.

Suppose that the set of starting states isS0; we will consider this the first in an
infinite sequence(Si) of sets of states whereSi is the set of states reachable fromS0 in
≤ i transitions. Clearly we can computeSi+1 from Si by the following recursion:

Si+1 = S0∪{b | ∃a∈ Si .R(a,b)}
for a state is reachable in≤ i +1 steps if either it is inS0, i.e. reachable in 0 steps, or
it is a possible successor stateb to a statea that is reachable ini steps. It is immediate
from the intuitive interpretation thatSi ⊆ Si+1 for all i ≥ 0. Now, since eachSi ⊆ S,
whereS is finite, the setsSi cannot properly increase forever, so we must eventually
reach a stage whereSi+1 = Si and henceSk = Si for all k≥ i. It is easy to see that this
Si , which we will write S∗, is then precisely the set of states reachable fromS0 in any
finite number of steps.

Thus, we have an algorithm,forward reachability, for deciding whether any states
in some setP ⊆ S are reachable fromS0. We simply computeS∗ and then decide
whetherS∗∩P 6= /0. In the dual approach,backward reachability, we similarly compute
the set of statesP∗ from whicha state inP is reachable, and then ask whetherS0∩P∗ 6=
/0. Once again we can compute the setP∗ by iterating an operation until a fixpoint is
reached. We can start withA0 = P and iterate:

Ai+1 = P∪{a | ∃b∈ Ai .R(a,b)}

12

We can simply characterizeAi as the set of states from which a state inP is reach-
able in≤ i steps. As before, we haveAi ⊆Ai+1 and we must eventually reach a fixpoint
that is the required setP∗. A formally appealing variant is to useA0 = /0 instead, and
the first iteration will giveA1 = P and thereafter we will obtain the same sequence
offset by 1 and the same eventual fixpointP∗. This helps to emphasize that we can
consider this a case of finding the least fixpoint of the monotone mapping on sets of
statesA 7→ P∪{a | ∃b∈ A.R(a,b)} à la Knaster-Tarski [66, 106].

Is there any reason to prefer forward or backward reachability over the other?
Though they will always give the same answer if successfully carried out, one or the
other may be much more efficient, depending on the particular system and properties
concerned [63]. We will follow the most common approach and focus on backward
reachability. This is not because of efficiency concerns, but because, as we will see
shortly, it generalizes nicely to analyzing more complicated ‘future modalities’ than
just reachability.

Symbolic state representation

In practice, the kind of fixed-point computation sketched in the previous section can be
impractical, because the enumeration of cases in the state set or transition relation is
too large. Instead, we can use the techniques we have already established. Instead of
representing sets of states and state transitions by explicit enumeration of cases, we can
do it symbolically, using formulas. Suppose we encode states using Boolean variables
v1, . . . ,vn. Any T ⊆ Scan be identified with a Boolean formulat[v1, . . . ,vn] that holds
precisely when(v1, . . . ,vn) ∈ T. Moreover, by introducingn additional ‘next state’
variablesv′1, . . . ,v

′
n we can represent a binary relationA (such as the transition rela-

tion R) by a formulaa[v1, . . . ,vn,v′1, . . . ,v
′
n] that is true iffA((v1, . . . ,vn),(v′1, . . . ,v

′
n)).

For example, we can represent the transition relation for the modulo-5 counter using
(among other possibilities) the formula:

(v′0 ⇔¬v0∧¬v2)∧
(v′1 ⇔¬(v0 ⇔ v1))∧
(v′2 ⇔ v0∧v1)

Here the parametrization in terms of Boolean variables just uses one variable for
each latch, but this choice, while the most obvious, is not obligatory.

Bounded model checking

One immediate advantage of a symbolic state representation is that we can ask ques-
tions aboutk-step transition sequences without risking a huge blowup in the representa-
tion, as might happen in a canonical BDD representation used in symbolic simulation.
We can simply duplicate the original formulak times withk sets of then variables, and
can ask any question about the relation between the initial and final states expressed as
a Boolean formulap[v1

1, . . . ,v
1
n,v

k
1, . . . ,v

k
n]:

r[v1
1, . . . ,v

1
n,v

2
1, . . . ,v

2
n]∧·· · r[vk−1

1 , . . . ,vk−1
n ,vk

1, . . . ,v
k
n]

⇒ p[v1
1, . . . ,v

1
n,v

k
1, . . . ,v

k
n

This reduces the problem to tautology-checking. Of course, there is no guarantee
that this is feasible in a reasonable amount of time, but experience on many practical

13

problems with leading-edge tautology checkers has often showed impressive results for
this so-calledbounded model checking[9].

BDD-based reachability

In the case of unbounded queries, the fixpoint computation can easily be performed di-
rectly on the symbolic representation. Traditionally, a canonical format such as BDDs
has been used [31, 20, 84]. This can immediately cause problems if the BDD rep-
resentation is infeasibly large, and indeed there have been recent explorations using
non-canonical representations [10, 2]. On the other hand, the fact that BDDs are a
canonical representation means that if we repeat the iterative steps leading through a
sequenceSi , we can immediately recognize when we have reached a fixed point simply
by seeing if the BDD forSi+1 is identical to that forSi , whereas in a non-canonical
representation, we would need to perform a tautology check at each stage.

Most of the operations used to find the fixpoints are, in the symbolic context, sim-
ply logical operations. For example, union (‘∪’) and intersection (‘∩’) are simply
implemented by conjunction (‘∧’) and disjunction (‘∨’). However, we also need the
operation that maps a setP and a transition relationR to the setPreR(P) (or justPre(P)
whenR is understood) of states from which there is a 1-step transition into a state inP:

Pre(P) = {a | ∃b∈ P.R(a,b)}

In the symbolic representation, we can characterize this as follows:

Pre(p) = ∃v′1, . . . ,v
′
n. r[v1, . . . ,vn,v

′
1, . . . ,v

′
n]∧ p[v′1, . . . ,v

′
n]

It is not difficult to implement this procedure on the BDD representation, though it
is often a significant efficiency bottleneck.

Temporal logic model checking

There are still many interesting questions about transition systems that we can’t answer
using just reachability, the request-acknowledge example above being one simple case.
But the material so far admits of generalization.

The backward reachability method answered a question ‘starting in a state satisfy-
ing s, can we reach a state satisfyingp?’ by computing the set of all statesp∗ from
which p is reachable, and then considering whetherp∗ ∧ s = ⊥. If we introduce the
notation:

EF(p)

to mean ‘the statep is reachable’, or ‘there is some state on some path through the re-
lation in whichp holds’, we can considerp∗ as the set of states satisfying the formula
EF(p). We can systematically extend propositional logic in this way with further ‘tem-
poral operators’ to yield a form of so-calledtemporal logic. The most popular logic in
practice isComputation Tree Logic(CTL), introduced and popularized by Clarke and
Emerson [25].

One formal presentation of the semantics of CTL, using separate classes of ‘path
formulas’ and ‘state formulas’ is the following. (We also need some way of assigning
truth-values to primitive propositions based on a stateσ, and we will write[[σ]] for this
mapping applied toσ. In many cases, of course, the properties we are interested in will

14

be stated precisely in terms of the variables used to encode the states, so a formula is
actually its own denotation in the symbolic representation, modulo the transformation
from CTL to pure propositional logic.) The valuation functions for an arbitrary formula
are then defined as follows for state formulas:

sval(R,σ)(⊥) = f alse

sval(R,σ)(>) = true

sval(R,σ)(¬p) = not(sval(R,σ)p)
sval(R,σ)p = [[σ]](p)

· · ·
sval(R,σ)(p⇔ q) = (sval(R,σ)p = sval(R,σ)q)

sval(R,σ)(Ap) = ∀π.Path(R,σ)π⇒ pval(R,π)p

sval(R,σ)(E p) = ∃π.Path(R,σ)π∧ pval(R,π)p

and path formulas:

pval(R,π)(F p) = ∃t.sval(R,π(t))p

pval(R,π)(Gp) = ∀t.sval(R,π(t))p

pval(R,π)(p U q) = ∃t. (∀t ′. t ′ < t ⇒ sval(R,π(t ′))p)∧sval(R,π(t))q
pval(R,π)(X p) = sval(R,(t 7→ π(t +1)))p

Although it was convenient to use path formulas above, the appeal of CTL is ex-
actly that we only really need to consider state formulas, with path formulas just an
intermediate concept. We can eliminate the separate class of path formulas by just
putting together the path quantifiers and temporal operators in combinations like ‘EF’
and ‘AG’. A typical formula in this logic is the request-acknowledge property:

AG(a⇒ EG(r))

The process of testing whether a transition system (defining amodel) satisfies a
temporal formula is calledmodel checking[25, 88]. The process can be implemented
by a very straightforward generalization of the fixpoint methods used in backwards
reachability. The marriage of Clarke and Emerson’s original explicit-state model-
checking algorithms with a BDD-based symbolic representation, due to McMillan [20],
givessymbolic model checking, and which has led to substantially wider practical ap-
plicability. Although at Intel, STE is often more useful, there are situations, e.g. the
analysis of bus and cache protocols, where the greater generality of temporal logic
model checking seems crucial.

For a detailed discussion of temporal logic model checking, see [26]. The topic is
also covered in some books on logic in computer science like [61] and formal verifica-
tion texts like [69]. CTL is just one example of a temporal logic, and there are innumer-
able other varieties such as LTL [85],CTL∗ [39] and the propositionalµ-calculus [68].
LTL stands forlinear temporal logic, indicating that it takes a different point of view in
its semantics, considering all paths and not permitting explicit ‘A’ and ‘E’ operators of
CTL, but allowing temporal properties to be nested directly without intervening path
quantifiers.

15

4 General theorem proving

It was noted that one of the reasons for the greater success of formal verification in
the hardware domain is the fact that more of the verification task can be automated.
However, for some more elaborate systems, we cannot rely on tools like equivalence
checkers, symbolic simulators or model checkers. One potential obstacle — almost
invariably encountered on large industrial designs — is that the system is too large
to be verified in a feasible time using such methods. A more fundamental limitation
is that some more sophisticated properties cannot be expressed at all in the simple
Boolean world. For example, a floating-pointsin function can hardly have its intended
behaviour spelled out in terms of Boolean formulas on the component bits. Instead, we
need a more expressive logical system where more or less any mathematical concepts,
including real numbers and infinite sets, can be analyzed. This is usually formulated
in first-order or higher-order logic, which, as well as allowing propositions to have
internal structure, introduces the universal and existential quantifiers:

• The formula∀x. p, wherex is an (object) variables andp any formula, means
intuitively ‘ p is true forall values ofx’.

• The analogous formula∃x. p means intuitively ‘p is true forsomevalue(s) ofx’,
or in other words ‘there exists anx such thatp’.

I will assume that the basic syntax and definitions of first order logic are known.

Automated theorem proving based on Herbrand’s theorem

In contrast to propositional logic, many interesting questions about first order and
higher order logic are undecidable even in principle, let alone in practice. Church
[24] and Turing [109] showed that even pure logical validity in first order logic is un-
decidable, introducing in the process many of the basic ideas of computability theory.
On the other hand, it is not too hard to see that logical validity issemidecidable— this
is certainly a direct consequence of completeness theorems for proof systems in first
order logic [44], and was arguably implicit in work by Skolem [100]. This means that
we can at least program a computer to enumerate all valid first order formulas. One
simple approach is based on the following logical principle, due to Skolem and Gödel
but usually mis-named “Herbrand’s theorem”:

Let ∀x1, . . . ,xn. P[x1, . . . ,xn] be a first order formula with only the indi-
cated universal quantifiers (i.e. the bodyP[x1, . . . ,xn] is quantifier-free).
Then the formula is satisfiable iff the infinite set of ‘ground instances’
p[t i

1, . . . , t
i
n] that arise by replacing the variables by arbitrary variable-free

terms made up from functions and constants in the original formula is
propositionallysatisfiable.

We can get the original formula into the special form required by some simple nor-
mal form transformations, introducing Skolem functions to replace existentially quanti-
fied variables. And by compactness for propositional logic, we know that if the infinite
set of instances is unsatisfiable, then so will be some finite subset. In principle we can
enumerateall possible sets, one by one, until we find one that is not propositionally
satisfiable. (If the formula is satisfiable, we will never discover it by this means. By
undecidability, we know this is unavoidable.) A precise description of this procedure is

16

tedious, but a simple example may help. Suppose we want to prove that the following
is valid. This is often referred to as the ‘drinker’s principle’, because you can think of
it as asserting that there is some persomx such that ifx drinks, so does everyone.

∃x.∀y.D(x)⇒ D(y)

We start by negating the formula. To prove that the original is valid, we need to
prove that this is unsatisfiable:

¬(∃x.∀y.D(x)⇒ D(y))

We then make some transformations to a logical equivalent so that it is in ‘prenex
form’ with all quantifiers at the front.

∀x.∃y.D(x)∧¬D(y)

We then introduce a Skolem functionf for the existentially quantified variabley:

∀x.D(x)∧¬D(f (x))

We now consider theHerbranduniverse, the set of all terms built up from con-
stants and functions in the original formula. Since here we have no nullary con-
stants, we need to add onec to get started (this effectively builds in the assumption
that all models have a non-empty domain). The Herbrand universe then becomes
{c, f (c), f (f (c)), f (f (f (c))), . . .}. By Herbrand’s theorem, we need to test all sets of
ground instances for propositional satisfiability. Let us enumerate them in increasing
size. The first one is:

D(c)∧¬D(f (c))

This is not propositionally unsatisfiable, so we consider the next:

(D(c)∧¬D(f (c)))∧ (D(f (c))∧¬D(f (f (c)))

Now this is propositionally unsatisfiable, so we terminate with success.

Unification-based methods

The above idea [90] led directly some early computer implementations, e.g. by Gilmore
[43]. Gilmore tested for propositional satisfiability by transforming the successively
larger sets to disjunctive normal form. A more efficient approach is to use the Davis-
Putnam algorithm — it was in this context that it was originally introduced [36]. How-
ever, as Davis [34] admits in retrospect:

. . . effectively eliminating the truth-functional satisfiability obstacle only
uncovered the deeper problem of the combinatorial explosion inherent in
unstructured search through the Herbrand universe . . .

The next major step forward in theorem proving was a more intelligent means of
choosing substitution instances, to pick out the small set of relevant instances instead
of blindly trying all possibilities. The first hint of this idea appears in [86], and it was
systematically developed by Robinson [92], who gave an effective syntactic procedure
calledunification for deciding on appropriate instantiations to make terms match up
correctly.

17

There are many unification-based theorem proving algorithms. Probably the best-
known isresolution, in which context Robinson [92] introduced full unification to au-
tomated theorem proving. Another important method quite close to resolution and
developed independently at about the same time is the inverse method [76, 71]. Other
popular algorithms include tableaux [86], model elimination [72, 73] and the connec-
tion method [67, 8, 5]. Crudely speaking:

• Tableaux = Gilmore procedure + unification

• Resolution = Davis-Putnam procedure + unification

Tableaux and resolution can be considered as classic representatives of ‘top-down’
and ‘bottom-up’ methods respectively. Roughly speaking, in top-down methods one
starts from a goal and works backwards, while in bottom-up methods one starts from
the assumptions and works forwards. This has significant implications for the very
nature of unifiable variables, since in bottom-up methods they are local (implicitly
universally quantified) whereas in top-down methods they are global, correlated in dif-
ferent portions of the proof tree. This is probably the most useful way of classifying
the various first-order search procedures and has a significant impact on the problems
where they perform well.

Decidable problems

Although first order validity is undecidable in general, there are special classes of for-
mulas for which it is decidable, e.g.

• AE formulas, which involve no function symbols and when placed in prenex
form have all the universal quantifiers before the existential ones.

• Monadic formulas, involving no function symbols and only monadic (unary)
predicate symbols.

The decidability of AE formulas is quite easy to see, because no function symbols
are there to start with, and because of the special quantifier nesting, none are introduced
in Skolemization. Therefore the Herbrand universe is finite and the enumeration of
ground instances cannot go on forever. The decidability of the monadic class can be
proved in various ways, e.g. by transforming into AE form by pushing quantifiers
inwards (‘miniscoping’). Although neither of these classes is particularly useful in
practice, it’s worth noting that the monadic formulas subsume traditional Aristotelian
syllogisms. For example

If all M areP, and allSareM, then allSareP

can be expressed using monadic predicates as follows:

(∀x.M(x)⇒ P(x))∧ (∀x.S(x)⇒M(x))⇒ (∀x.S(x)⇒ P(x))

More interesting in practice are situations where, rather than absolute logical va-
lidity, we are interested in whether statements follow from some well-accepted set of
mathematical axioms, or are true in some particular model like the real numbersR. In
particular, first order formulas built up from equations and inequalities and interpreted
over common number systems are often decidable. In the case of the real numbers, one

18

can use addition and multiplication arbitrarily and it is decidable whether the formula
holds inR. This result is originally due to Tarski [105]; for a simpler decision method
see [60, 11, 42]. A simple (valid) example is a case of the Cauchy-Schwartz inequality:

∀x1 x2 y1 y2. (x1 ·y1 +x2 ·y2)2 ≤ (x2
1 +x2

2) · (y2
1 +y2

2)

Similar results hold for the complex numbers (where of course there is no notion
of inequality). In the special case of universally quantified formulas, we can use highly
efficient methods like Gr̈obner bases [18, 32]. If interpreted instead overN or Z how-
ever, validity of such formulas is not even a semidecidable problem, as a consequence
of Gödel’s incompleteness theorem [45], and the same applies toQ [91]. If we restrict
ourselves to using just addition (or multiplication by constants, which can be rewritten
in terms of addition, e.g. 3·x = x+x+x), decidability is regained. This result is due
to Presburger [87]; a more efficient decision method is given by Cooper [29]. Surpris-
ingly, onecanadd the exponential functionE(x) = 2x, to Presburger arithmetic without
losing decidability [97].

Interactive theorem proving

Even though first order validity is semi-decidable, it is seldom practical to solve inter-
esting problems using unification-based approaches to pure logic. Nor is it the case
that practical problems often fit conveniently into one of the standard decidable sub-
sets. The best we can hope for in most cases is that the human will have to guide the
proof process, but the machine may be able to relieve the tedium by filling in gaps,
while always ensuring that no mistakes are made. This kind of application was already
envisaged by Wang [110]

[...] the writer believes that perhaps machines may more quickly become
of practical use in mathematical research, not by proving new theorems,
but by formalizing and checking outlines of proofs, say, from textbooks to
detailed formalizations more rigorous thanPrincipia [Mathematica], from
technical papers to textbooks, or from abstracts to technical papers.

The first notable interactive provers were the SAM (semi-automated mathematics)
series. In 1966, the fifth in the series, SAM V, was used to construct a proof of a
hitherto unproven conjecture in lattice theory [19]. This was indubitably a success for
the semi-automated approach because the computer automatically proved a result now
called “SAM’s Lemma” and the mathematician recognized that it easily yielded a proof
of Bumcrot’s conjecture.

Not long after the SAM project, the AUTOMATH [12, 13] and Mizar [107, 108]
proof checking systems appeared, and each of them in its way has been profoundly
influential. Although we will refer to these systems as ‘interactive’, we use this merely
as an antonym of ‘automatic’. In fact, both AUTOMATH and Mizar were oriented
around batch usage. However, the files that they process consist of aproof, or a proof
sketch, which theycheckthe correctness of, rather than a statement for which they
attempt to find a proof automatically.

Mizar has been used to proof-check a very large body of mathematics, spanning
pure set theory, algebra, analysis, topology, category theory and various unusual ap-
plications like mathematical puzzles and computer models. The body of mathematics
formally built up in Mizar, known as the ‘Mizar Mathematical Library’ (MML), seems
unrivalled in any other theorem proving system. The ‘articles’ (proof texts) submitted

19

to the MML are automatically abstracted into human-readable form and published in
theJournal of Formalized Mathematics, which is devoted entirely to Mizar formaliza-
tions.2

LCF — a programmable proof checker

The ideal proof checker should beprogrammable, i.e. users should be able to extend
the built-in automation as much as desired. There’s no particular difficulty in allowing
this. Provided the basic mechanisms of the theorem prover are straightforward and
well-documented and the source code is made available, there’s no reason why a user
shouldn’t extend or modify it. However, the difficulty comes if we want to restrict the
user to extensions that are logically sound — as presumably we might well wish to,
since unsoundness renders questionable the whole idea of machine-checking of sup-
posedly more fallible human proofs. Even fairly simple automated theorem proving
programs are often subtler than they appear, and the difficulties of integrating a large
body of special proof methods into a powerful interactive system without compromis-
ing soundness is not trivial.

One influential solution to this difficulty was introduced in the Edinburgh LCF
project led by Robin Milner [50]. Although this was for an obscure ‘logic of com-
putable functions’ (hence the name LCF), the key idea, as Gordon [48] emphasizes,
is equally applicable to more orthodox logics supporting conventional mathematics,
and subsequently many programmable proof checkers were designed using the same
principles, such as Coq,3 HOL [49], Isabelle [82] and Nuprl [27].

The key LCF idea is to use a special type (saythm) of proven theorems in the im-
plementation language, so that anything of typethm must by construction have been
provedrather than simply asserted. (In practice, the implementation language is usually
a version of ML, which was specially designed for this purpose in the LCF project.)
This is enforced by makingthm anabstract typewhose only constructors correspond
to approved inference rules. But the user is given full access to the implementation
language and can put the primitive rules together in more complicated ways using arbi-
trary programming. Because of the abstract type, any result of typethm, however it was
arrived at, must ultimately have been produced by correct application of the primitive
rules. Yet the means for arriving at it may be complex. Most obviously, we can use ML
as a kind of ‘macro language’ to automate common patterns of inference. But much
more sophisticated derived rules can be written that, for example, prove formulas of
Presburger arithmetic while automatically decomposing to logical primitives. In many
theorem-proving tasks, more ‘ad hoc’ manipulation code can be replaced by code per-
forming inference without significant structural change. In other cases we can use an
automated proof procedure, or even an external system like a computer algebra system
[58], as an oracle to find a proof that is later checked inside the system. Thus, LCF
gives a combination of programmability and logical security that would probably be
difficult to assure by other means.

Proof style

One feature of the LCF style is that proofs (being programs) tend to be highlyproce-
dural, in contrast to the more declarative proofs supported by Mizar — for more on

2Available on the Web viahttp://www.mizar.org/JFM.
3See the Coq Web pagehttp://pauillac.inria.fr/coq.

20

the contrast see [54]. This can have important disadvantages in terms of readability
and maintainability. In particular, it is difficult to understand the formal proof scripts in
isolation; they need to be run in the theorem prover to understand what the intermediate
states are. Nevertheless as pointed out in [53] it is possible to implement more declar-
ative styles of proof on top of LCF cores. For more recent experiments with Mizar-like
declarative proof styles see [104, 111, 114, 112]. Other lectures in this summer school
will give an extensive discussion of this topic.

Theorem proving in industry

Theorem provers that have been used in real industrial applications include ACL2 [65],
HOL Light [49, 52] and PVS [81]. We noted earlier that formal verification meth-
ods can be categorized according to their logical expressiveness and automation. The
same kind of balance can be drawn within the general theorem proving section. Al-
though these theorem provers all have undecidable decision problems, it is still pos-
sible to provide quite effective partial automation by using a more restricted logic.
ACL2 follows this philosophy: it uses a quantifier-free logic analogous to PRA (Prim-
itive Recursive Arithmetic) [47]. HOL and PVS use richer logics with higher-order
quantification; PVS’s type system is particularly expressive. Nevertheless they attempt
to provide some useful automation, and HOL in particular uses the LCF approach to
ensure soundness and programmability. This will be emphasized in the application
considered below.

5 Floating-point verification

In the present section we describe some work applying HOL Light, an LCF-style
prover in the HOL family written by the present author,4 to some problems in industrial
floating-point verification, namely correctness of square root algorithms for the Intel
Itanium architecture.

Square root algorithms based onfma

The centrepiece of the Intel Itanium floating-point architecture is thefma (floating-
point multiply-add or fused multiply-accumulate) family of instructions. Given three
floating-point numbersx, y andz, these can computex · y± z as an atomic operation,
with the final result rounded as usual according to the IEEE Standard 754 for Binary
Floating-Point Arithmetic [62], but without intermediate rounding of the productx ·y.
Of course, one can always obtain the usual addition and multiplication operations as
the special casesx ·1+y andx ·y+0.

Thefma has many applications in typical floating-point codes, where it can often
improve accuracy and/or performance. In particular [75] correctly rounded quotients
and square roots can be computed by fairly short sequences offmas, obviating the need
for dedicated instructions. Besides enabling compilers and assembly language pro-
grammers to make special optimizations, deferring these operations to software often
yields much higher throughput than with typical hardware implementations. Moreover,
the floating-point unit becomes simpler and easier to optimize because minimal hard-
ware need be dedicated to these relatively infrequent operations, and scheduling does
not have to cope with their exceptionally high latency.

4Seehttp://www.cl.cam.ac.uk/users/jrh/hol-light/index.html.

21

Itanium architecture compilers for high-level languages will typically translate
division or square root operations into appropriate sequences of machine instructions.
Which sequence is used depends (i) on the required precision and (ii) whether one
wishes to minimize latency or maximize throughput. For concreteness, we will focus
on a particular algorithm for calculating square roots in double-extended precision (64-
bit precision and 15-bit exponent field):

1. y0 = frsqrta(a)
2. H0 = 1

2y0 S0 = ay0

3. d0 = 1
2−S0H0

4. H1 = H0 +d0H0 S1 = S0 +d0S0

5. d1 = 1
2−S1H1

6. H2 = H1 +d1H1 S2 = S1 +d1S1

7. d2 = 1
2−S2H2 e2 = a−S2S2

8. H3 = H2 +d2H2 S3 = S2 +e2H2

9. e3 = a−S3S3

10. S= S3 +e3H3

All operations but the last are done using the register floating-point format with
rounding to nearest and with all exceptions disabled. (This format provides the same
64-bit precision as the target format but has a greater exponent range, allowing us
to avoid intermediate overflow or underflow.) The final operation is done in double-
extended precision using whatever rounding mode is currently selected by the user.

This algorithm is a non-trivial example in two senses. Since it is designed for the
maximum precision supported in hardware (64 bits), greater precision cannot be ex-
ploited in intermediate calculations and so a very careful analysis is necessary to ensure
correct rounding. Moreover, it is hardly feasible to test such an algorithm exhaustively,
even if an accurate and fast reference were available, since there are about 280 possible
inputs. (By contrast, one could certainly verify single-precision and conceivably verify
double precision by exhaustive or quasi-exhaustive methods.)

Algorithm verification

It’s useful to divide the algorithm into three parts, and our discussion of the correctness
proof will follow this separation:

1 Form5 an initial approximationy0 = 1√
a(1+ ε) with |ε| ≤ 2−8.8.

2–8 Convert this to approximationsH0 ≈ 1
2
√

a andS0 ≈
√

a, then successively refine
these to much better approximationsH3 andS3 using Goldschmidt iteration [46]
(a Newton-Raphson variant).

9–10 Use these accurate approximations to produce the square rootScorrectly rounded
according to the current rounding mode, setting IEEE flags or triggering excep-
tions as appropriate.

5Usingfrsqrta, the only Itanium instruction specially intended to support square root. In the present
discussion we abstract somewhat from the actual machine instruction, and ignore exceptional cases likea= 0
where it takes special action.

22

Initial approximation

Thefrsrta instruction makes a number of initial checks for special cases that are dealt
with separately, and if necessary normalizes the input number. It then uses a simple ta-
ble lookup to provide the approximation. The algorithm and table used are precisely
specified in the Itanium instruction set architecture. The formal verification is es-
sentially some routine algebraic manipulations for exponent scaling, then a 256-way
case split followed by numerical calculation. The following HOL theorem concerns
the correctness of the core table lookup:

|- normal a ∧ &0 <= Val a

⇒ abs(Val(frsqrta a) / inv(sqrt(Val a)) - &1)

< &303 / &138050

Refinement

Eachfma operation will incur a rounding error, but we can easily find a mathematically
convenient (though by no means optimally sharp) bound for the relative error induced
by rounding. The key principle is the ‘1+ e’ property, which states that the rounded
result involves only a small relative perturbation to the exact result. In HOL the formal
statement is as follows:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)

⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧
(round fmt rc x = x * (&1 + e))

The bound onedepends on the precision of the floating-point format and the round-
ing mode; for round-to-nearest mode,mu rc is 1/2. The theorem has two side condi-
tions, one being a nontriviality hypothesis, and the other an assertion that the valuex
does notlose precision. We will not show the formal definition [55] here, since it is
rather complicated. However, a simple and usually adequate sufficient condition is that
the exact result lies in the normal range (or is zero).

Actually applying this theorem, and then bounding the various error terms, would
be quite tedious if done by hand. We have programmed some special derived rules in
HOL to help us. First, these automatically bound absolute magnitudes of quantities,
essentially by using the triangle rule|x+y| ≤ |x|+ |y|. This usually allows us to show
that no overflow occurs. However, to apply the 1+e theorem, we also need to exclude
underflow, and so must establishminimum(nonzero) absolute magnitudes. This is
also largely done automatically by HOL, repeatedly using theorems for the minimum
nonzero magnitude that can result from an individual operation. For example, if 2e≤
|a|, then eithera+b ·c is exactly zero or 2e−2p ≤ |a+b ·c| wherep is the precision of
the floating-point format containinga, b andc.

It’s now quite easy with a combination of automatic error bounding and some man-
ual algebraic rearrangement to obtain quite good relative error bounds for the main
computed quantities. In fact, in the early iterations, the rounding errors incurred are
insignificant in comparison with the approximation errors in theHi andSi . Thus, the
relative errors in these quantities are roughly in step. If we write

Hi ≈
1

2
√

a
(1+ εi) Si ≈

√
a(1+ εi)

then

23

di ≈
1
2
−SiHi =

1
2
− 1

2
(1+ εi)2 =−(εi + ε2

i /2)

Consequently, correcting the current approximations in the manner indicated will
approximately square the relative error, e.g.

Si+1 ≈ Si +diSi = Si(1+di)≈
√

a(1+ εi)(1− εi − ε2
i /2) =

√
a(1− 3

2
ε2

i)

Towards the end, the rounding errors inSi andHi become more significantly de-
coupled and for the penultimate iteration we use a slightly different refinement forS3.

e2 ≈ a−S2S2 = a− (
√

a(1+ ε2)2)≈−2aε2

and so:

S2 +e2H2 ≈
√

a(1+ ε2)− (2aε2)(
1

2
√

a
(1+ ε′2))≈

√
a(1− ε2ε′2)

Thus,S2 + e2H2 will be quite an accurate square root approximation. In fact the
HOL proof yieldsS2 +e2H2 =

√
a(1+ ε) with |ε| ≤ 5579/279≈ 2−66.5.

The above sketch elides what in the HOL proofs is a detailed bound on the rounding
error. However this only really becomes significant whenS3 is rounded; this may in
itself contribute a relative error of order 2−64, significantly more than the error before
rounding. Nevertheless it is important to note that if

√
a happens to be an exact floating-

point number (e.g.
√

1.5625= 1.25),S3 will be that number. This is a consequence of
the fact that the error inS2 + e2H2 is less than half the distance between surrounding
floating-point numbers.

Correct rounding

The final two steps of the algorithm simply repeat the previous iteration forS3 and
the basic error analysis is the same. The difficulty is in passing from a relative error
before rounding to correct rounding afterwards. Again we consider the final rounding
separately, soS is the result of rounding the exact valueS∗ = S3 + e3H3. The error
analysis indicates thatS∗ =

√
a(1+ε) for some|ε| ≤ 25219/2140≈ 2−125.37. The final

resultSwill, by the basic property of thefma operation, be the result of roundingS∗ in
whatever the chosen rounding mode may be. Thedesiredresult would be the result of
rounding exactly

√
a in the same way. How can we be sure these are the same?

First we can dispose of some special cases. We noted earlier that if
√

a is already
exactly a floating-point number, thenS3 will already be that number. In this case we
will have e3 = 0 and soS∗ = S3. Whatever the rounding mode, rounding a number
already in the format concerned will give that number itself:

|- a IN iformat fmt ⇒ (round fmt rc a = a)

so the result will be correct. Moreover, the earlier observation extends to show that
if
√

a is fairly close (in a precise sense) to a floating-point number, thenS3 will be
that number. It is then quite straightforward to see that the overall algorithm will be
accurate without great subtlety: we just need the fact thate3 has the right sign and
roughly the correct magnitude, soS∗ will never misround in directed rounding modes.

24

Thus, we can also deal immediately with what would otherwise be difficult cases for
the directed rounding modes, and concentrate our efforts on rounding to nearest.

On general grounds we note that
√

a cannotbe exactly the mid-point between two
floating-point numbers. This is not hard to see, since the square root of a number in
a given format cannot denormalize in that format, and a non-denormal midpoint has
p+1 significant digits, so its square must have more thanp.6

|- &0 <= a ∧ a IN iformat fmt ∧ b IN midpoints fmt

⇒ ¬(sqrt a = b)

This is a useful observation. We’ll never be in the tricky case where there are
two equally close floating-point numbers (resolved by the ‘round to even’ rule.) So in
round-to-nearest,S∗ and

√
a could only round in different ways if there were a midpoint

between them, for only then could the closest floating-point numbers to them differ. For
example in the following diagram where large lines indicate floating-point numbers and
smaller ones represent midpoints,

√
a would round ‘down’ whileS∗ would round ‘up’:7

-
66√

a S∗

Although analyzing this condition combinatorially would be complicated, there is
a much simpler sufficient condition. One can easily see that it would suffice to show
that for any midpointm:

|
√

a−S∗|< |
√

a−m|

In that case
√

a and S∗ couldn’t lie on opposite sides ofm. Here is the formal
theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt ⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x = round fmt Nearest y)

One can arrive at an ‘exclusion zone’ theorem giving the minimum possible|
√

a−
m|. However, this can be quite small, about 2−(2p+3) relative to

√
a, wherep is the

precision. For example, in our context withp= 64, consider the square root of the next
floating-point number below 1, whose mantissa consists entirely of 1s. Its square root
is about 2−131 from a midpoint:√

1−2−64≈ (1−265)−2−131

Therefore, our relative error inS∗ of about 2−125.37 is far from adequate to justify
perfect rounding based on the simple ‘exclusion zone’ theorem, for which we need
something of order 2−131. However, our relative error bounds are far from sharp, and
it seems quite plausible that the algorithm does nevertheless work correctly. What can
we do?

6An analogous result holds for quotients but here the denormal case must be dealt with specially. For
example 2Emin×0.111· · ·111/2 is exactly a midpoint.

7Similarly, in the other rounding modes, misrounding could only occur if
√

a andS∗ are separated by a
floating-point number. However as we have noted one can deal with those cases more directly.

25

One solution is to utilize more refined theorems [74], but this is complicated and
may still fail to justify several algorithms that are intuitively believed to work correctly.
An ingenious alternative developed by Cornea [30] is to observe that there are relatively
few cases like 0.111· · ·1111 whose square roots come close enough to render the ex-
clusion zone theorem inapplicable, and these can be isolated by fairly straightforward
number-theoretic methods. We can therefore:

• Isolate the special casesa1, . . . ,an that have square roots within the critical dis-
tance of a midpoint.

• Conclude from the simple exclusion zone theorem that the algorithm will give
correct results except possibly fora1, . . . ,an.

• Explicitly show that the algorithm is correct for thea1, . . . ,an, (effectively by
running it on those inputs).

This two-part approach is perhaps a little unusual, but not unknown even in pure
mathematics.8 For example, consider “Bertrand’s Conjecture” (first proved by Cheby-
shev), stating that for any positive integern there is a primep with n≤ p≤ 2n. The
most popular proof [40], involves assumingn> 4000 for the main proof and separately
checking the assertion forn≤ 4000.9

By some straightforward mathematics described in [30] and formalized in HOL
without difficulty, one can show that the difficult cases for square roots have mantissas
m, considered asp-bit integers, such that one of the following diophantine equations
has a solutionk for some integer|d| ≤ D, whereD is roughly the factor by which the
guaranteed relative error is excessive:

2p+2m= k2 +d 2p+1m= k2 +d

We consider the equations separately for each chosen|d| ≤ D. For example, we
might be interested in whether 2p+1m = k2− 7 has a solution. If so, the possible
value(s) ofm are added to the set of difficult cases. It’s quite easy to program HOL
to enumerate all the solutions of such diophantine equations, returning a disjunctive
theorem of the form:

` (2p+1m= k2 +d)⇒ (m= n1)∨ . . .∨ (m= ni)

The procedure simply uses even-odd reasoning and recursion on the power of two
(effectively so-called ‘Hensel lifting’). For example, if

225m= k2−7

then we knowk must be odd; we can writek = 2k′+1 and deduce:

224m= 2k′2 +2k′−3

By more even/odd reasoning, this has no solutions. In general, we recurse down
to an equation that is trivially unsatisfiable, as here, or immediately solvable. One
equation can split into two, but never more. For example, we have a formally proved

8A more extreme case is the 4-color theorem, whose proof relies on extensive (computer-assisted) check-
ing of special cases [6].

9An ‘optimized’ way of checking, referred to in [3] as “Landau’s trick”, is to verify that 3, 5, 7, 13, 23,
43, 83, 163, 317, 631, 1259, 2503 and 4001 are all prime and each is less than twice its predecessor.

26

HOL theorem asserting that for any double-extended numbera,10 rounding
√

a and√
a(1+ ε) to double-extended precision using any of the four IEEE rounding modes

will give the same results provided|ε|< 31/2131, with the possible exceptions of 22em
for:

m∈ { 10074057467468575321,10376293541461622781,
10376293541461622787,11307741603771905196,
13812780109330227882,14928119304823191698,
16640932189858196938,18446744073709551611,
18446744073709551612,18446744073709551613,
18446744073709551614,18446744073709551615}

and 22e+1m for

m∈ { 9223372036854775809,9223372036854775811,
11168682418930654643}

Note that while some of these numbers are obvious special cases like 264−1, the
“pattern” in others is only apparent from the kind of mathematical analysis we have
undertaken here. They aren’t likely to be exercised by random testing, or testing of
plausible special cases.11

Checking formally that the algorithm works on the special cases can also be auto-
mated, by applying theorems on the uniqueness of rounding to the concrete numbers
computed. (For a formal proof, it is not sufficient to separately test the implemented
algorithm, since such a result has no formal status.) In order to avoid trying all possible
even or odd exponents for the various significands, we exploit some results on invari-
ance of the rounding and arithmetic involved in the algorithm under systematic scaling
by 22k, doing a simple form of symbolic simulation by formal proof.

Flag settings

Correctness according to the IEEE Standard 754 not only requires the correctly rounded
result, but the correct setting of flags or triggering of exceptions for conditions like
overflow, underflow and inexactness. Actually, almost all these properties follow di-
rectly from the arguments leading to perfect rounding. For example, the mere fact that
two real numbers round equivalentlyin all rounding modesimplies that one is exact iff
the other is:

|- ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

⇒ ∀rc. (round fmt rc x = x) = (round fmt rc y = y)

The correctness of other flag settings follows in the same sort of way, with under-
flow only slightly more complicated [55].

10Note that there is more subtlety required when using such a result in a mixed-precision environment.
For example, to obtain a single-precision result for a double-precision input, an algorithm that suffices for
single-precision inputs may not be adequate even though the final precision is the same.

11On the other hand, we can well consider the mathematical analysis as asourceof good test cases.

27

Conclusions and related work

What do we gain from developing these proofs formally in a theorem prover, compared
with a detailed hand proof? We see two main benefits: reliability and re-usability.

Proofs of this nature, large parts of which involve intricate but routine error bound-
ing and the exhaustive solution of Diophantine equations, are very tedious and error-
prone to do by hand. In practice, one would do better to usesomekind of machine
assistance, such asad hocprograms to solve the Diophantine equations and check the
special cases so derived. Although this can be helpful, it can also create new dangers of
incorrectly implemented helper programs and transcription errors when passing results
between ‘hand’ and ‘machine’ portions of the proof. By contrast, we perform all steps
of the proof in a painstakingly foundational system, and can be quite confident that no
errors have been introduced. The proof proceeds according to strict logical deduction,
all the way from the underlying pure mathematics up to the symbolic “execution” of
the algorithm in special cases.

Although we have only discussed one particular example, many algorithms with
a similar format have been developed for use in systems based on the Itanium ar-
chitecture. One of the benefits of implementing division and square root in software
is that different algorithms can be substituted depending on the detailed accuracy and
performance requirements of the application. Not only are different (faster) algorithms
provided for IEEE single and double precision operations, but algorithms often have
two versions, one optimized for minimum latency and one for maximal throughput.
These algorithms are all quite similar in structure and large parts of the correctness
proofs use the same ideas. By performing these proofs in a programmable theorem
prover like HOL, we are able to achieve high re-use of results, just tweaking a few
details each time. Often, we can produce a complete formal proof of a new algorithm
in just a day. For a even more rigidly stereotyped class of algorithms, one could quite
practically implement a totally automatic verification rule in HOL.

Underlying these advantages are three essential theorem prover features: sound-
ness, programmability and executability. HOL scores highly on these points. It is
implemented in a highly foundational style and does not rely on the correctness of very
complex code. It is freely programmable, since it is embedded in a full programming
language. In particular, one can program it to perform various kinds of computation
and symbolic execution by proof. The main disadvantage is that proofs can sometimes
take a long time to run, precisely because theyalwaysdecompose to low-level prim-
itives. This applies with particular force to some kinds of symbolic execution, where
instead of simply accepting an equivalence like 294+3= 13·19·681943·7941336391·
14807473717 based, say, on the results of a multiprecision arithmetic package, a de-
tailed formal proof is constructed under the surface. To some extent, this sacrifice of
efficiency is a conscious choice when we decide to adopt a highly foundational system,
but it might be worth weakening this ideology at least to include concrete arithmetic as
an efficient primitive operation.

This is by no means the only work in this area. On the contrary, floating-point
verification is regarded as one of the success stories of formal verification. For related
work on square root algorithms in commercial systems see [93, 80, 94]. For similar
verifications of division algorithms and transcendental functions by the present author,
see [57, 56], while [79] and [74] give a detailed discussion of some relevant floating-
point algorithms. When verifying transcendental functions, one needs a fair amount of
pure mathematics formalized just to get started. So, in a common intellectual pattern, it
is entirely possible that Mizar-like formalizations of mathematics undertaken for purely

28

intellectual reasons might in the end turn out to be useful in practical applications.

References

[1] M. Aagaard and M. Leeser. Verifying a logic synthesis tool in Nuprl: A case
study in software verification. In G. v. Bochmann and D. K. Probst, editors,
Computer Aided Verification: Proceedings of the Fourth International Work-
shop, CAV’92, volume 663 ofLecture Notes in Computer Science, pages 69–81,
Montreal, Canada, 1994. Springer Verlag.

[2] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT-solvers. In S. Graf and M. Schwartzbach, editors,Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’00), volume 1785 ofLecture
Notes in Computer Science. Springer-Verlag, 2000.

[3] M. Aigner and G. M. Ziegler. Proofs from The Book. Springer-Verlag, 2nd
edition, 2001.

[4] S. B. Akers. Binary decision diagrams.ACM Transactions on Computers, C-
27:509–516, 1978.

[5] P. B. Andrews. Theorem proving by matings.IEEE transactions on computers,
25:801–807, 1976.

[6] K. Appel and W. Haken. Every planar map is four colorable.Bulletin of the
American Mathematical Society, 82:711–712, 1976.

[7] Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors.Theorem
Proving in Higher Order Logics: 12th International Conference, TPHOLs’99,
volume 1690 ofLecture Notes in Computer Science, Nice, France, 1999.
Springer-Verlag.

[8] W. Bibel and J. Schreiber. Proof search in a Gentzen-like system of first order
logic. In E. Gelenbe and D. Potier, editors,Proceedings of the International
Computing Symposium, pages 205–212. North-Holland, 1975.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. InProceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, volume 1579 ofLecture
Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

[10] P. Bjesse. Symbolic model checking with sets of states represented as formulas.
Technical Report SC-1999-100, Department of Computer Science, Chalmers
University of Technology, 1999.

[11] J. Bochnak, M. Coste, and M.-F. Roy.Real Algebraic Geometry, volume 36 of
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1998.

[12] N. G. d. Bruijn. The mathematical language AUTOMATH, its usage and some
of its extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger,
editors,Symposium on Automatic Demonstration, volume 125 ofLecture Notes
in Mathematics, pages 29–61. Springer-Verlag, 1970.

29

[13] N. G. d. Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors,To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 589–606. Academic Press, 1980.

[14] R. E. Bryant. Symbolic verification of MOS circuits. In H. Fuchs, editor,Pro-
ceedings of the 1985 Chapel Hill Conference on VLSI, pages 419–438. Com-
puter Science Press, 1985.

[15] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE
Transactions on Computers, C-35:677–691, 1986.

[16] R. E. Bryant. A method for hardware verification based on logic simulation.
Journal of the ACM, 38:299–328, 1991.

[17] R. E. Bryant. On the complexity of VLSI implementations and graph represen-
tations of Boolean functions with application to integer multiplication.IEEE
Transactions on Computers, C-40:205–213, 1991.

[18] B. Buchberger.Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Mathe-
matisches Institut der Universität Innsbruck, 1965.

[19] R. Bumcrot. On lattice complements.Proceedings of the Glasgow Mathematical
Association, 7:22–23, 1965.

[20] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond.Information and Computation,
98:142–170, 1992.

[21] W. C. Carter, W. H. Joyner, and D. Brand. Symbolic simulation for correct
machine design. InProceedings of the 16th ACM/IEEE Design Automation
Conference, pages 280–286. IEEE Computer Society Press, 1979.

[22] B. F. Caviness and J. R. Johnson, editors.Quantifier Elimination and Cylindri-
cal Algebraic Decomposition, Texts and monographs in symbolic computation.
Springer-Verlag, 1998.

[23] C.-T. Chou and D. Peled. Formal verification of a partial-order reduction tech-
nique for model checking.Journal of Automated Reasoning, 23:265–298, 1999.

[24] A. Church. An unsolvable problem of elementary number-theory.American
Journal of Mathematics, 58:345–363, 1936.

[25] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In D. Kozen, editor,Logics of Pro-
grams, volume 131 ofLecture Notes in Computer Science, pages 52–71, York-
town Heights, 1981. Springer-Verlag.

[26] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[27] R. Constable.Implementing Mathematics with The Nuprl Proof Development
System. Prentice-Hall, 1986.

[28] S. A. Cook. The complexity of theorem-proving procedures. InProceedings of
the 3rd ACM Symposium on the Theory of Computing, pages 151–158, 1971.

30

[29] D. C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Melzer and D. Michie, editors,Machine Intelligence 7, pages 91–99. El-
sevier, 1972.

[30] M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-
point square root, divide and remainder algorithms. Intel Tech-
nology Journal, 1998-Q2:1–11, 1998. Available on the Web as
http://developer.intel.com/technology/itj/q21998/articles/art 3.htm.

[31] O. Coudert, C. Berthet, and J.-C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor,Automatic Verifica-
tion Methods for Finite State Systems, volume 407 ofLecture Notes in Computer
Science, pages 365–373. Springer-Verlag, 1989.

[32] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties, and Algorithms. Springer-
Verlag, 1992.

[33] M. Davis, editor.The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Raven Press, NY, 1965.

[34] M. Davis. The prehistory and early history of automated deduction. In Siekmann
and Wrightson [99], pages 1–28.

[35] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[36] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[37] R. DeMillo, R. Lipton, and A. Perlis. Social processes and proofs of theorems
and programs.Communications of the ACM, 22:271–280, 1979.

[38] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

[39] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on
branching time versus linear time temporal logic.Journal of the ACM, 33:151–
178, 1986.

[40] P. Erd̈os. Beweis eines Satzes von Tschebyshev.Acta Scientiarum Mathemati-
carum (Szeged), 5:194–198, 1930.

[41] J. H. Fetzer. Program verification: The very idea.Communications of the ACM,
31:1048–1063, 1988.

[42] L. Gårding.Some Points of Analysis and Their History, volume 11 ofUniversity
Lecture Series. American Mathematical Society / Higher Education Press, 1997.

[43] P. C. Gilmore. A proof method for quantification theory: Its justification and
realization.IBM Journal of research and development, 4:28–35, 1960.

[44] K. Gödel. Die Vollsẗandigkeit der Axiome des logischen Funktionenkalküls.
Monatshefte f̈ur Mathematik und Physik, 37:349–360, 1930. English translation
‘The completeness of the axioms of the functional calculus of logic’ in [59], pp.
582–591.

31

[45] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I.Monatshefte f̈ur Mathematik und Physik, 38:173–198,
1931. English translation, ‘On Formally Undecidable Propositions of Principia
Mathematica and Related Systems, I’, in [59], pp. 592–618 or [33], pp. 4–38.

[46] R. E. Goldschmidt. Applications of division by convergence. Master’s thesis,
Dept. of Electrical Engineering, MIT, Cambridge, Mass., 1964.

[47] R. L. Goodstein.Recursive Number Theory. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, 1957.

[48] M. J. C. Gordon. Representing a logic in the LCF metalanguage. In D. Néel,
editor,Tools and notions for program construction: an advanced course, pages
163–185. Cambridge University Press, 1982.

[49] M. J. C. Gordon and T. F. Melham.Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[50] M. J. C. Gordon, R. Milner, and C. P. Wadsworth.Edinburgh LCF: A Mecha-
nised Logic of Computation, volume 78 ofLecture Notes in Computer Science.
Springer-Verlag, 1979.

[51] J. F. Groote. The propositional formula checker Heerhugo.Journal of Auto-
mated Reasoning, 24:101–125, 2000.

[52] J. Harrison. HOL Light: A tutorial introduction. In M. Srivas and A. Camilleri,
editors,Proceedings of the First International Conference on Formal Methods in
Computer-Aided Design (FMCAD’96), volume 1166 ofLecture Notes in Com-
puter Science, pages 265–269. Springer-Verlag, 1996.

[53] J. Harrison. A Mizar mode for HOL. In J. v. Wright, J. Grundy, and J. Harrison,
editors,Theorem Proving in Higher Order Logics: 9th International Confer-
ence, TPHOLs’96, volume 1125 ofLecture Notes in Computer Science, pages
203–220, Turku, Finland, 1996. Springer-Verlag.

[54] J. Harrison. Proof style. In E. Giḿenez and C. Paulin-Mohring, editors,Types
for Proofs and Programs: International Workshop TYPES’96, volume 1512 of
Lecture Notes in Computer Science, pages 154–172, Aussois, France, 1996.
Springer-Verlag.

[55] J. Harrison. A machine-checked theory of floating point arithmetic. In Bertot
et al. [7], pages 113–130.

[56] J. Harrison. Formal verification of floating point trigonometric functions. In
W. A. Hunt and S. D. Johnson, editors,Formal Methods in Computer-Aided
Design: Third International Conference FMCAD 2000, volume 1954 ofLecture
Notes in Computer Science, pages 217–233. Springer-Verlag, 2000.

[57] J. Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard
and J. Harrison, editors,Theorem Proving in Higher Order Logics: 13th Interna-
tional Conference, TPHOLs 2000, volume 1869 ofLecture Notes in Computer
Science, pages 234–251. Springer-Verlag, 2000.

[58] J. Harrison and L. Th́ery. A sceptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279–294, 1998.

32

[59] J. v. Heijenoort, editor.From Frege to G̈odel: A Source Book in Mathematical
Logic 1879–1931. Harvard University Press, 1967.

[60] L. Hörmander. The Analysis of Linear Partial Differential Operators II, vol-
ume 257 ofGrundlehren der mathematischen Wissenschaften. Springer-Verlag,
1983.

[61] M. Huth and M. Ryan.Logic in Computer Science: Modelling and reasoning
about systems. Cambridge University Press, 1999.

[62] IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-
1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

[63] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on for-
ward state traversal. InProceedings of tte IEEE/ACM conference on Computer
Aided Design (ICCAD ’96), pages 82–87. Association for Computing Machin-
ery, 1996.

[64] J. J. Joyce and C. Seger. The HOL-Voss system: Model-checking inside a
general-purpose theorem-prover. In J. J. Joyce and C. Seger, editors,Proceed-
ings of the 1993 International Workshop on the HOL theorem proving system
and its applications, volume 780 ofLecture Notes in Computer Science, pages
185–198, UBC, Vancouver, Canada, 1993. Springer-Verlag.

[65] M. Kaufmann, P. Manolios, and J. S. Moore.Computer-Aided Reasoning: An
Approach. Kluwer, 2000.

[66] B. Knaster. Un th́eor̀eme sur les fonctions d’ensembles.Annales de la Sociét́e
Polonaise de Math́ematique, 6:133–134, 1927. Volume published in 1928.

[67] R. Kowalski. A proof procedure using connection graphs.Journal of the ACM,
22:572–595, 1975.

[68] D. Kozen. Results on the propositionalµ-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[69] T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag, 1999.

[70] C. Y. Lee. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal, 38:985–999, 1959.

[71] V. Lifschitz. Mechanical Theorem Proving in the USSR: the Leningrad School.
Monograph Series on Soviet Union. Delphic Associates, 7700 Leesburg Pike,
#250, Falls Church, VA 22043. Phone: (703) 556-0278, 1986. See also ‘What is
the inverse method?’ in the Journal of Automated Reasoning, vol. 5, pp. 1–23,
1989.

[72] D. W. Loveland. Mechanical theorem-proving by model elimination.Journal of
the ACM, 15:236–251, 1968.

[73] D. W. Loveland.Automated theorem proving: a logical basis. North-Holland,
1978.

33

[74] P. Markstein.IA-64 and Elementary Functions: Speed and Precision. Prentice-
Hall, 2000.

[75] P. W. Markstein. Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor.IBM Journal of Research and Development, 34:111–119,
1990.

[76] S. J. Maslov. An inverse method of establishing deducibility in classical predi-
cate calculus.Doklady Akademii Nauk, 159:17–20, 1964.

[77] T. Melham and A. Darbari. Symbolic trajectory evaluation in a nutshell. 2002.

[78] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. InProceedings of the 38th Design Automation
Conference (DAC 2001), pages 530–535. ACM Press, 2001.

[79] J.-M. Muller. Elementary functions: Algorithms and Implementation.
Birkhäuser, 1997.

[80] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally ver-
ifying IEEE compliance of floating-point hardware. Intel Tech-
nology Journal, 1999-Q1:1–14, 1999. Available on the Web as
http://developer.intel.com/technology/itj/q11999/articles/art 5.htm.

[81] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In D. Kapur, editor,11th International Conference on Automated Deduction,
volume 607 ofLecture Notes in Computer Science, pages 748–752, Saratoga,
NY, 1992. Springer-Verlag.

[82] L. C. Paulson.Isabelle: a generic theorem prover, volume 828 ofLecture Notes
in Computer Science. Springer-Verlag, 1994. With contributions by Tobias
Nipkow.

[83] D. A. Peled.Software Reliability Methods. Springer-Verlag, 2001.

[84] C. Pixley. A computational theory and implementation of sequential hardware
equivalence. InProceedings of the DIMACS workshop on Computer Aided Ver-
ification, pages 293–320. DIMACS (technical report 90-31), 1990.

[85] A. Pnueli. The temporal logic of programs. InProceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–67, 1977.

[86] D. Prawitz, H. Prawitz, and N. Voghera. A mechanical proof procedure and its
realization in an electronic computer.Journal of the ACM, 7:102–128, 1960.

[87] M. Presburger.̈Uber die Vollsẗandigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Sprawozdanie z I Kongresu metematyków slowiánskich, Warszawa 1929, pages
92–101, 395. Warsaw, 1930. Annotated English version by [103].

[88] J. P. Queille and J. Sifakis. Specification and verification of concurrent pro-
grams in CESAR. InProceedings of the 5th International Symposium on Pro-
gramming, volume 137 ofLecture Notes in Computer Science, pages 195–220.
Springer-Verlag, 1982.

34

[89] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model-checking
with automated proof-checking. In P. Wolper, editor,Computer-Aided Verifica-
tion: CAV ’95, volume 939 ofLecture Notes in Computer Science, pages 84–97,
Liege, Belgium, 1995. Springer-Verlag.

[90] A. Robinson. Proving a theorem (as done by man, logician, or machine). In
Summaries of Talks Presented at the Summer Institute for Symbolic Logic, 1957.
Second edition published by the Institute for Defense Analysis, 1960. Reprinted
in [99], pp. 74–76.

[91] J. Robinson. Definability and decision problems in arithmetic.Journal of Sym-
bolic Logic, 14:98–114, 1949. Author’s PhD thesis.

[92] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23–41, 1965.

[93] D. Rusinoff. A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multipli-
cation, division, and square root instructions.LMS Journal of Compu-
tation and Mathematics, 1:148–200, 1998. Available on the Web via
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

[94] J. Sawada and R. Gamboa. Mechanical verification of a square root algorithms
using taylor’s theorem. In M. Aagaard and J. O’Leary, editors,Formal Meth-
ods in Computer-Aided Design: Fourth International Conference FMCAD 2002,
volume 2517 ofLecture Notes in Computer Science. Springer-Verlag, 2002.

[95] C. Seger and J. J. Joyce. A two-level formal verification methodology using
HOL and COSMOS. Technical Report 91-10, Department of Computer Sci-
ence, University of British Columbia, 2366 Main Mall, University of British
Columbia, Vancouver, B.C, Canada V6T 1Z4, 1991.

[96] C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation
of partially-ordered trajectories.Formal Methods in System Design, 6:147–189,
1995.

[97] A. L. Sem̈enov. Logical theories of one-place functions on the set of natural
numbers.Mathematics of the USSR Izvestiya, 22:587–618, 1984.

[98] M. Sheeran and G. Stålmarck. A tutorial on St̊almarck’s proof procedure for
propositional logic. In G. Gopalakrishnan and P. J. Windley, editors,Proceed-
ings of the Second International Conference on Formal Methods in Computer-
Aided Design (FMCAD’98), volume 1522 ofLecture Notes in Computer Sci-
ence, pages 82–99. Springer-Verlag, 1998.

[99] J. Siekmann and G. Wrightson, editors.Automation of Reasoning — Classical
Papers on Computational Logic, Vol. I (1957-1966). Springer-Verlag, 1983.

[100] T. Skolem. Einige Bemerkungen zur axiomatischen Begründung der Mengen-
lehre. In Matematikerkongress i Helsingfors den 4–7 Juli 1922, Den femte
skandinaviska matematikerkongressen, Redogörelse. Akademiska Bokhandeln,
Helsinki, 1922. English translation “Some remarks on axiomatized set theory”
in [59], pp. 290–301.

35

[101] G. St̊almarck. System for determining propositional logic theorems by applying
values and rules to triplets that are generated from Boolean formula. United
States Patent number 5,276,897; see also Swedish Patent 467 076, 1994.

[102] G. St̊almarck and M. S̈aflund. Modeling and verifying systems and software
in propositional logic. In B. K. Daniels, editor,Safety of Computer Control
Systems, 1990 (SAFECOMP ’90), pages 31–36, Gatwick, UK, 1990. Pergamon
Press.

[103] R. Stansifer. Presburger’s article on integer arithmetic: Remarks and transla-
tion. Technical Report CORNELLCS:TR84-639, Cornell University Computer
Science Department, 1984.

[104] D. Syme. DECLARE: A prototype declarative proof system for higher order
logic. Technical Report 416, University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK, 1997.

[105] A. Tarski.A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1951. Previous version published as a technical report by
the RAND Corporation, 1948; prepared for publication by J. C. C. McKinsey.
Reprinted in [22], pp. 24–84.

[106] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific
Journal of Mathematics, 5:285–309, 1955.

[107] A. Trybulec. The Mizar-QC/6000 logic information language.ALLC Bulletin
(Association for Literary and Linguistic Computing), 6:136–140, 1978.

[108] A. Trybulec and H. A. Blair. Computer aided reasoning. In R. Parikh, editor,
Logics of Programs, volume 193 ofLecture Notes in Computer Science, pages
406–412, Brooklyn, 1985. Springer-Verlag.

[109] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem.Proceedings of the London Mathematical Society (2), 42:230–
265, 1936.

[110] H. Wang. Toward mechanical mathematics.IBM Journal of research and devel-
opment, 4:2–22, 1960.

[111] M. Wenzel. Isar - a generic intepretive approach to readable formal proof docu-
ments. In Bertot et al. [7], pages 167–183.

[112] F. Wiedijk. Mizar light for HOL Light. In R. J. Boulton and P. B.
Jackson, editors,14th International Conference on Theorem Proving in
Higher Order Logics: TPHOLs 2001, volume 2152 of Lecture Notes
in Computer Science, pages 378–394. Springer-Verlag, 2001. Online at
http://link.springer.de/link/service/series/0558/tocs/t2152.htm.

[113] J. Yang. A theory for generalized symbolic trajectory evaluation. InProceed-
ings of the 2000 Symposium on Symbolic Trajectory Evaluation, Chicago, 2000.
Available viahttp://www.intel.com/research/scl/stesympsite.htm.

[114] V. Zammit. On the implementation of an extensible declarative proof language.
In Bertot et al. [7], pages 185–202.

36

[115] H. Zhang. SATO: an efficient propositional prover. In W. McCune, editor,
Automated Deduction — CADE-14, volume 1249 ofLecture Notes in Computer
Science, pages 272–275, Townsville, Australia, 1997. Springer-Verlag.

37

