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Legal notice

HOL Light version 1.0, hereinafter referred to as “the software”, is a
computer theorem proving system written by John Harrison, a research
worker at the University of Cambridge Computer Laboratory, New Mu-
seums Site, Pembroke Street, Cambridge, CB2 3QG, England. The soft-
ware is copyright, c©University of Cambridge 1998.

Permission to use, copy, modify, and distribute the software and its
documentation for any purpose and without fee is hereby granted. In the
case of further distribution of the software the present text, including
copyright notice, licence and disclaimer of warranty, must be included
in full and unmodified form in any release. Distribution of derivative
software obtained by modifying the software, or incorporating it into
other software, is permitted, provided the inclusion of the software is
acknowledged and that any changes made to the software are clearly
documented.

John Harrison and the University of Cambridge disclaim all war-
ranties with regard to the software, including all implied warranties of
merchantability and fitness. In no event shall John Harrison or the
University of Cambridge be liable for any special, indirect, incidental
or consequential damages or any damages whatsoever, including, but
not limited to, those arising from computer failure or malfunction, work
stoppage, loss of profit or loss of contracts.
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Preface

HOL Light is a relatively new version of the HOL theorem prover (Gordon and
Melham 1993). The whole implementation, even the axiomatization of the logic,
has been re-engineered and simplified. Compared with other versions of HOL, it is
relatively small and clean, and makes modest demands on the machine it is run on.
The material that follows is not only a tutorial on the use of HOL Light and its
interaction language, but also provides a detailed discussion of the implementation.

HOL Light proves theorems in a system of classical higher order logic based
on polymorphic simple type theory. All proof proceeds by the application of low-
level primitive rules, maintaining a high degree of reliability. However, a suite of
derived rules for proving various useful theorems automatically is provided, as is a
full programming language in which users can implement their own derived rules.
A number of useful mathematical theories, e.g. real analysis, are already available.

To become an expert user of HOL Light, it is necessary to know something
about programming in CAML Light, which is the implementation and interaction
language. However, for readers primarily interested in theorem proving, it’s no
doubt somewhat dispiriting to spend a long time studying functional programming
before even beginning to prove theorems. We have tried to minimize this problem
in the organization that follows.

We begin with a short introductory chapter highlighting the basic features of
CAML and HOL, including the basic mechanism of user interaction and the princi-
ples behind derived inference rules. Features of HOL and CAML are illustrated as
we go, and most readers will be able to pick up the general ideas. This introduction
is followed by the two larger Parts, comprising systematic introductions to CAML
and HOL respectively. While these can be tackled in sequence, the impatient reader
can read them in parallel, or even read the HOL part first and refer back to the
CAML part as needed. (Indeed, there are a number of obvious parallels between
CAML and the HOL logic, with both being an enriched version of lambda calculus,
and both having a similar system of types. Reading these parts in parallel will show
many similar concepts like currying and polymorphism in two different contexts.)
Since HOL Light is aimed particularly at the enthusiast who wants to implement
custom theorem-proving tools, a third Part gives an overview of the implementation,
explaining the basic structure of the system and discussing various design decisions.

We hope that users interested in building custom theorem proving tools, or just
in understanding the architecture of a modern theorem prover, will find something
of interest in HOL Light and the present document. While we are writing primarily
for those interested in theorem proving, the system might be considered interesting
for two other reasons: it is a large application of (impure) functional programming,
and it includes a systematic logical development of nontrivial mathematics from its
very foundations à la Principia Mathematica (Whitehead and Russell 1910).

I do not assume that the reader is familiar with HOL or any similar system.
Some knowledge of programming and of basic logic would be of great benefit, but
not essential. However the present introduction is not comprehensive, and the
serious user will need to spend time browsing through the source code.
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Chapter 1

Introduction

In the following chapter we explain the key ideas behind HOL Light and cover the
basics of interaction with the system. It is intended merely to give a brief taste,
and readers wanting a more systematic introduction should study the subsequent
chapters.

1.1 What is HOL Light?

There are many computer programs, e.g. as used in ordinary pocket calculators,
for dealing with numerical problems like adding 2 and 2. Other programs, such as
the computer algebra systems Maple1 and Mathematica2, can cope not just with
particular numbers, but also with expressions involving variables. For example they
can calculate that the derivative of x2 with respect to x evaluated at the point x is
2x.

These programs are usually thought of as calculating the answers to problems.
But one can also look at them as systems that produce, on demand, mathematical
theorems in a certain class. If we use the symbol ` to indicate that an assertion is
actually a true theorem of mathematics, we might say that these programs produce
the following theorems, when given the appropriate left-hand sides:

` 2 + 2 = 4

or

` d

dx
x2 = 2x

HOL Light is similar: it is a system for producing theorems on demand. Com-
pared with calculators or computer algebra systems (CASs), it has two great ad-
vantages:

• HOL Light can produce theorems covering a wide mathematical range, e.g.
involving infinite sets and so-called quantifiers like ‘there exists some integer
such that . . . ’ or ‘for any set of real numbers . . . ’. By contrast, calculators and
CASs mainly produce unconditional equations with any variables implicitly
regarded as universal.

• The theorems it produces can be relied on to be unambiguous in meaning and
rigorously proven. By contrast, the exact readings of ‘theorems’ produced by

1Maple is a registered trademark of Waterloo Maple Software.
2Mathematica is a registered trademark of Wolfram Research Inc.
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2 CHAPTER 1. INTRODUCTION

calculators and CASs are often open to doubt — even for something as trivial
as explicit calculation involving approximations like sin(0.7) = 0.6442176872.
Moreover, CASs often leave out essential sideconditions such as denominators
of fractions being nonzero.

Needless to say, this greater power and reliability comes at a price.

• Only in limited problem domains can HOL Light produce its theorems com-
pletely automatically. In general, the user needs to describe a suitable math-
ematical proof in reasonable detail — HOL Light merely fills in some of the
simpler gaps and checks that the user doesn’t make mistakes.

• Whereas calculators and CASs are highly efficient and optimized for the typi-
cal problems, HOL Light derives its theorems via a uniform mechanism which
tends to be less efficient in particular cases.

Like good calculators and CASs, HOL Light is programmable. This means that
one can start with the available functions for proving certain theorems automat-
ically, and produce new ones for particular tasks by implementing them in terms
of the original ones. Similarly, a simple scientific calculator might have a built-in
function to approximate sin, but none for evaluating, say, areas under the normal
distribution curve — the user has to program the latter. Once this has been done,
it can itself become a subroutine in more complex operations.

The majority of the HOL Light system is a tower of such functions. Right at the
bottom, a very small set of primitive operations ultimately produce all theorems.
In terms of these, more convenient higher-level functions are defined, these are
themselves used to build up additional layers, and so on. Any user can build up
this tower further. Because theorems are ultimately produced by the primitive rules,
errors in higher-level functions cannot lead to false ‘theorems’ being produced; this
explains the claim that HOL Light is relatively reliable. (A similar claim cannot
be made for ordinary calculators since the answers are often approximate, and it’s
hard to analyze how the inaccuracy builds up.)

This approach to theorem proving, using programmability to build up from a
small and reliable logical core, originated with the Edinburgh LCF project (Gordon,
Milner, and Wadsworth 1979). For the approach to be palatable, the programming
language must be well suited to the task, and as part of the LCF project a completely
new programming language called ML3 was developed. ML has since taken on a life
of its own and is currently being widely touted as a general-purpose language. It
is a higher-order functional programming language, featuring a novel polymorphic
type system (Milner 1978) and a simple but useful exception mechanism as well as
some traditional imperative features.

The version of ML used in HOL Light is CAML Light (Weis and Leroy 1993).
This language and an excellent lightweight interpreter for it have been developed
by a team at INRIA Rocquencourt in Paris. HOL Light has no separate user
interface: the user actually works inside the CAML interpreter with all the HOL
Light infrastructure loaded in.

HOL Light is the latest in a line of theorem provers going back to the mid-
eighties, using the LCF approach to implement a theorem prover for classical Higher
Order Logic (hence the name HOL). Previous versions have included HOL88, hol90,
ICL ProofPower, and more recently hol98. HOL Light is intended to be a more
simple and elegant version targeted at users who really want to understand how the

3ML for metalanguage; following Tarski (1936) and Carnap (1937), it has become usual to en-
force a strict separation between the ‘object language’ under consideration and the ‘metalanguage’
used to talk about it. For example in a course in Russian given in English, Russian is the object
language and English the metalanguage.
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system works, or who want to build their own application-specific theorem proving
tools.

1.2 Getting started

After starting up CAML and loading HOL, the user is confronted with CAML
Light’s prompt (‘#’). CAML Light is expecting the user to type something in, and
it will then evaluate it and print the result. CAML will only act after the user
terminates the input with a double semicolon (‘;;’) and newline. For example, one
can use CAML like a pocket calculator:

#2 + 2;;

it : int = 4

The user enters the expression 2 + 2, and CAML evaluates it and prints the
answer, 4. It also prints out the type of the expression, namely int (short for
integer, i.e. whole number). We will explain CAML’s types in more detail later.
CAML also abbreviates the result by ‘it’, to save the user retyping. For example,
one can now do:

#it + 3;;

it : int = 7

Instead of using the default name it, which is overwritten every time a new
expression is evaluated, one can bind an expression to a name by using let. For
example, after the following interaction, x has the value 4, at least until another
‘let x = ...’ overwrites it.

#let x = 2 + 2;;

x : int = 4

The above was only intended as an introduction to interaction with CAML. We
are really interested in manipulating not numbers but logical entities like theorems.
In fact, there are three key logical notions in HOL Light, each with a corresponding
ML type: types (hol type), terms (term) and theorems (thm). HOL Light is, at
its core, a system for manipulating these objects. (Note the object-meta distinction
here: one has an ML (meta) type of data structures representing HOL (object)
types.)

A HOL term represents a mathematical assertion like x + 1 = y or just some
mathematical expression like x+ 1. Every term has a type, indicating what sort of
mathematical entity it is, e.g. a boolean value (true or false), a real number, a set
of real functions etc. For example, x+ 1 has type num indicating that it is a natural
number, while x + 1 = y has type bool indicating that it is either true or false.
A HOL theorem simply asserts that some boolean-typed term is valid, or at least,
follows from a finite list of assumptions.

Terms and types are represented by ML data structures that we describe in
more detail below. However, it is tiresome to describe particular terms and types,
especially large ones, by creating such data structures explicitly. Instead, HOL
has parsers and printers that allow types and terms to be represented in something
closer to familiar mathematical notation, subject to the limitations of ASCII. Terms
are entered rather like strings, enclosed within backquotes:

#‘x + 1‘;;

it : term = ‘x + 1‘

#‘x + y <= z‘;;

it : term = ‘x + y <= z‘
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This however hides quite a lot of processing. Quotations are expanded (by a
front-end filter separate from CAML proper) into a call of a term parser and type
inferencer. This not only analyzes the syntactic structure of the term but works
out types for the term as a whole and all its subterms. For example, it knows that
the constant 1 has type num, and that the left and right arguments of + must have
the same type, which is also the type of the result. Hence it decides that x and
the term as a whole must also have type num. If the user tries to enter a term that
cannot be typed, e.g. ‘(1 <= 2) + 3‘, the typechecker will fail. If, on the other
hand, there is not enough type information to fix the types of all subterms, type
variables are invented and a warning given:

#‘x‘;;

Warning: inventing type variables

it : term = ‘x‘

The use can annotate the term or any subterms with types by writing a colon
followed by a type, e.g.

#‘x:num‘;;

it : term = ‘x‘

The parser does not allow the same variable to have different types in the same
term.4 It is possible to create such terms by hand using the functions described
later, but is apt to look confusing. Note that identically-named variables with
different types are treated as different. Types, rather than terms, can be entered
by simply omitting the term, i.e. starting the quotation with a colon, e.g.

#‘:bool‘;;

it : hol_type = ‘:bool‘

HOL types and terms are not actually ML abstract types (they could easily be
made so by separately compiling the modules), but the user is expected to use the
standard interface functions. These restrict formation to those that are well-formed
and well-typed. So even using the basic constructors, it is impossible to create, for
example, a term that adds a number and a boolean value. Theorems can also only
be created by, at bottom, a small set of basic functions. One of these is the function
REFL which takes a term t as an argument and returns a rather trivial theorem
saying that t is equal to itself:

#REFL ‘x + 1‘;;

it : thm = |- x + 1 = x + 1

HOL prints theorems using an ASCII approximation to the conventional ‘turn-
stile’ symbol `. If a theorem has assumptions, these are printed to the left of the
turnstile. For example, another primitive function ASSUME takes a term p of Boolean
type and returns the theorem (once again rather trivial) that under the assumption
that p holds, p holds:

#ASSUME ‘p:bool‘;;

it : thm = p |- p

#ASSUME ‘1‘;;

Uncaught exception: Failure "ASSUME: not a proposition"

4Or more precisely, in the same scope. Separately bound instances can have different types —
see later.
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While the user can enter any (typeable) term in quotations and have it elevated
to a HOL term, it is not possible to do this with theorems. While there’s a com-
putable procedure for deciding if a term is well-typed, HOL has no way in general of
deciding whether it is possible to construct a theorem from the primitive functions.
However, there are some high-level functions that accept a term of a certain form
and prove it automatically, turning it into a theorem. For example ARITH RULE can
prove many basic facts of natural number arithmetic:

#ARITH_RULE ‘2 * x < 2 * (x + 1)‘;;

it : thm = |- 2 * x < 2 * (x + 1)

Note, however, that the theorem is still created under the surface by a (some-
times quite lengthy) series of applications of the primitive rules, maintaining the
guarantee of reliability.

1.3 Derived rules

In general, an inference rule in HOL is simply any ML function that return a theorem
or theorems (objects with ML type thm). Ones like ARITH RULE that turn claims
into theorems are particularly simple to use, but in general HOL inference rules
may require other theorems as input. For example MK COMB accepts two theorems
as input, one saying that two functions (say f and g) are equal, the other saying
two arguments (say x and y) are equal, and if the types match up correctly so it
makes sense to apply f to x and g to y, MK COMB returns a theorem saying that f(x)
and g(y) are equal.

#let th1 = ASSUME ‘f:num->num = g‘;;

th1 : thm = f = g |- f = g

#let th2 = ASSUME ‘m:num = n‘;;

th2 : thm = m = n |- m = n

#MK_COMB(th1,th2);;

it : thm = f = g, m = n |- f m = g n

HOL rules can be separated into the primitive rules like REFL, ASSUME and
MK COMB, of which there are ten, and all the others, which are called derived rules,
since they are built up from the primitives. A lot of HOL Light’s source code is a
systematic building up of a useful set of higher-level derived rules, and the use of
the rules, primitive and derived, to prove useful mathematical theorems. Here is a
very simple but genuine example, one of HOL Light’s simplest inbuilt derived rules
called AP TERM. It accepts a term representing a function f and a theorem asserting
that x and y are equal, and if the types match up, returns a theorem asserting that
f(x) = f(y):

#let AP_TERM tm th =

MK_COMB(REFL tm,th);;

AP_TERM : term -> thm -> thm = <fun>

#AP_TERM ‘h:num->num‘ (ASSUME ‘m = 1‘);;

it : thm = m = 1 |- h m = h 1

The definition of AP TERM is a simple 2-line ML program, which first derives
the trivial theorem that the function is equal to itself, using REFL, and then calls
MK COMB to get the final result. Note that this just expresses generically the way
one would prove such a theorem given only the primitive rules to work with. A
derived rule doesn’t yield a single theorem, but rather a whole family of theorems
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depending on the input. It corresponds naturally to what a logician would think of
as a ‘derived rule’.

CAML Light, described in the next Part, is a full programming language, so
one can perform essentially any kinds of inference one wants, provided it is reduced
to the existing infrastructure of primitive and derived rules. Derived rules often
have a recursive structure, passing over the input term and transforming it into an
appropriate theorem. They may also do different things depending, for example, on
the logical structure of the input, the names of variables, and so on. All this will
be illustrated in more detail in what follows.

Further reading

The original textbook on Edinburgh LCF by Gordon, Milner, and Wadsworth (1979)
introduces many of the basic ideas in HOL Light; see also the later book by Paul-
son (1987) on a re-engineered version ‘Cambridge LCF’. The general approach to
theorem-proving described above is, as emphasized by Gordon (1982), largely in-
dependent of the particular logic one works with, e.g. the original LCF (logic of
computable functions), higher order logic, or first order set theory. The original
HOL was born when Gordon used the Cambridge LCF system to implement clas-
sical higher order logic. There is a book by Gordon and Melham (1993) describing
an early version of the system ‘HOL88’, while an interesting historical survey of
the development of LCF and HOL is given by Gordon (2000). The original ML is
also described in the early LCF publications. CAML Light has extensive on-line
documentation and a book (in French) by Weis and Leroy (1993) devoted to it.
Another ML version, Standard ML, is described by Paulson (1991).
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Chapter 2

A taste of CAML

CAML Light feels rather different from common programming languages like C or
FORTRAN. The major difference is that it is a functional rather than imperative
language. While it does have imperative features, we won’t make very great use
of them. The following section explains the contrast; readers with no previous
programming experience may choose to skip or just skim this material.

2.1 Imperative vs functional programming

Programs in traditional languages, such as FORTRAN, Algol, C and Modula-3,
rely heavily on modifying the values of a collection of variables, called the state.
Before execution, the state has some initial value σ, representing the inputs to
the program, and when the program has finished, the state has a new value σ′

including the result(s). During execution, each command changes the state, which
has therefore proceeded through some finite sequence of values:

σ = σ0 → σ1 → σ2 → · · · → σn = σ′

For example in a sorting program, the state initially includes an array of values,
and when the program has finished, the state has been modified in such a way that
these values are sorted, while the intermediate states represent progress towards
this goal.

The state is typically modified by assignment commands, often written in the
form v = E or v := E where v is a variable and E some expression. These commands
can be executed in a sequential manner by writing them one after the other in the
program, often separated by a semicolon. By using statements like if and while,
one can execute these commands conditionally, and repeatedly, depending on other
properties of the current state. The program amounts to a set of instructions on
how to perform these state changes, and therefore this style of programming is often
called imperative or procedural. Correspondingly, the traditional languages intended
to support it are known as imperative or procedural languages.

Functional programming represents a radical departure from this model. Essen-
tially, a functional program is simply an expression, and execution means evaluation
of the expression.1 We can see how this might be possible, in general terms, as fol-
lows. Assuming that an imperative program (as a whole) is deterministic, i.e. the
output is completely determined by the input, we can say that the final state, or
whichever fragments of it are of interest, is some function of the initial state, say

1Functional programming is often called ‘applicative programming’ since the basic mechanism
is the application of functions to arguments.

9
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σ′ = f(σ).2 In functional programming this view is emphasized: the program is
actually an expression that corresponds to the mathematical function f . Functional
languages support the construction of such expressions by allowing rather powerful
functional constructs.

Functional programming can be contrasted with imperative programming either
in a negative or a positive sense. Negatively, pure functional programs do not use
variables — there is no state. Consequently, they cannot use assignments, since
there is nothing to assign to. Furthermore the idea of executing commands in se-
quence is meaningless, since the first command can make no difference to the second,
there being no state to mediate between them. Positively however, functional pro-
grams can use functions in much more sophisticated ways. Functions can be treated
in exactly the same way as simpler objects like integers: they can be passed to other
functions as arguments and returned as results, and in general calculated with. In-
stead of sequencing and looping, functional languages use recursive functions, i.e.
functions that are defined in terms of themselves. By contrast, most traditional lan-
guages provide poor facilities in these areas. C allows some limited manipulation of
functions via pointers, but does not allow one to create new functions dynamically.
FORTRAN does not even support recursion at all.

A potential advantage of functional languages is the following. Since the eval-
uation of expressions has no side-effect on any state, separate subexpressions can
be evaluated in any order without affecting each other. This makes programs more
comprehensible and debugging easier, since there is no danger of one part of a
program unexpectedly affecting others. Moreover, functional programs may lend
themselves well to parallel implementation, i.e. the computer can automatically
farm out different subexpressions to different processors. By contrast, imperative
programs often impose a fairly rigid order of execution, and even the limited inter-
leaving of instructions in modern pipelined processors turns out to be complicated
and full of technical problems.

Actually, CAML is not a purely functional programming language; it does have
variables and assignments if required. Most of the time, we will work inside the
purely functional subset. But even when we do use assignments, and lose some of
the preceding benefits, there are advantages in the more flexible use of functions
that languages like CAML allow. Programs can often be expressed in a very con-
cise and elegant style using higher-order functions (functions that operate on other
functions). Code can be made more general, since it can be parametrized even over
other functions. For example, a program to add up a list of numbers and a pro-
gram to multiply a list of numbers can be seen as instances of the same program,
parametrized by the pairwise arithmetic operation and the corresponding identity.
In one case it is given + and 0 and in the other case, ∗ and 1.

2.2 Basic use of CAML

We will use CAML in its interactive and interpretive mode. When it is started it
presents its prompt (‘#’):

> Caml Light version 0.74

#

(In order to exit the system, simply type ctrl/d or quit();; at the prompt.)
When CAML presents you with its prompt, you can type in expressions, terminated

2Compare Naur’s remarks (Raphael 1966) that he can write any program in a single statement
Output = Program(Input).
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by two successive semicolons, and it will evaluate them and print the result. In
computing jargon, the CAML system sits in a read-eval-print loop: it repeatedly
reads an expression, evaluates it, and prints the result. For example, CAML can be
used as a simple calculator:

#10 + 5;;

it : int = 15

The system not only returns the answer, but also the type of the expression,
which it has inferred automatically. (We will have more to say about CAML’s
types in a later section.) It can do this because it knows the type of the built-in
addition operator +. On the other hand, if an expression is not typable, the system
will reject it, and try to give some idea about how the types fail to match up. In
complicated cases, the error messages can be quite tricky to understand.

#1 + true;;

Toplevel input:

>let it = 1 + true;;

> ^^^^

This expression has type bool,

but is used with type int.

Since CAML is a functional language, expressions are allowed to be functions.
Functions can be written in CAML using the syntax fun x -> t[x] for the function
that maps an argument x to t[x], the latter being any expression involving x. Such
an expression involving ‘fun x -> ...’ is said to be a function abstraction. For
example we can define the successor function:

#fun x -> x + 1;;

it : int -> int = <fun>

Again, the type of the expression, this time int -> int, meaning a function
from integers to integers, is inferred and displayed. However the function itself
is not printed; the system merely writes <fun>. This is because, in general, the
internal representations of functions are not very readable.3 In normal mathematical
notation, application of a function f to an argument x is written f(x). In CAML,
the parentheses can be omitted unless they are needed to enforce grouping, e.g.

#(fun x -> x + 1) 1 * 2;;

it : int = 4

#(fun x -> x + 1) (1 * 2);;

it : int = 3

#((fun x -> x + 1) 1) * 2;;

it : int = 4

Every function in CAML takes just a single argument. However there are two
ways of getting the effect of functions of more than one argument. One way is
to have a single argument but of a more complex type, such as pairs (see later)
of integers. The other is to use ‘currying’ (after the logical Haskell Curry), where
the function takes one argument and yields another function that takes the second
argument, and so on. For example, a curried function of two arguments that adds
the arguments together can be written and used as follows:

3CAML does not store them simply as syntax trees, but compiles them into bytecode.
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#fun x -> (fun y -> x + y);;

it : int -> int -> int = <fun>

#(fun x -> (fun y -> x + y)) 1;;

it : int -> int = <fun>

#((fun x -> (fun y -> x + y)) 1) 2;;

it : int = 3

Note that the function has type int -> int -> int, meaning int -> (int ->
int). When applied to one argument, 1, it yields another function, which takes the
second argument and maps it to the corresponding sum. Currying is used a lot in
functional programming, since it allows functions to be used quite flexibly. Some
other syntactic conventions support it; for example, without parentheses to enforce
grouping, function application associates to the left, i.e. f g x means (f g)(x) not
f(g(x)). We can write the above example more succinctly as:

#(fun x y -> x + y) 1 2;;

it : int = 3

2.3 Bindings and declarations

A nontrivial functional program is a very complex expression, and it is of course
not convenient to evaluate it all in one go. Instead, useful subexpressions can be
evaluated and bound to names using let. (In fact, a filter in front of CAML Light,
part of HOL Light, automatically binds the last anonymous expression evaluated
to the special name it, hence its appearance above.) For example:

#let successor = fun x -> x + 1;;

successor : int -> int = <fun>

#successor 5;;

it : int = 6

Declarations can be made local to the evaluation of an expression, so they are
invisible afterwards, using in. For example:

#let suc = fun x -> x + 1 in

suc(suc 1);;

it : int = 3

#suc 1;;

Toplevel input:

>let it = suc 1;;

> ^^^

The value identifier suc is unbound.

The arguments to functions can be written on the left of the equation, which
most people find more natural:

#let successor x = x + 1;;

successor : int -> int = <fun>

#successor 5;;

it : int = 6

Functions can be recursive, i.e. defined in terms of themselves. To achieve this,
simply include the keyword rec. For example, the factorial n! = 1×2×· · ·×(n−1)×n
can be evaluated as follows: evaluate (n− 1)! recursively, then multiply by n:
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#let rec fact n = if n = 0 then 1

else n * fact(n - 1);;

fact : int -> int = <fun>

#fact 6;;

it : int = 720

By using and, one can make several binding simultaneously, and define mutually
recursive functions. For example, here are two simple, though highly inefficient,
functions to decide whether or not a natural number is odd or even:

#let rec even n = if n = 0 then true else odd (n - 1)

and odd n = if n = 0 then false else even (n - 1);;

even : int -> bool = <fun>

odd : int -> bool = <fun>

#even 12;;

it : bool = true

#odd 14;;

it : bool = false

If declarations do not include the rec keyword, then any instance of the name
currently being bound on the right is taken to be the previous value. For example:

#let successor n = successor(successor n);;

successor : int -> int = <fun>

#successor 2;;

it : int = 4

#successor 5;;

it : int = 7

The old binding is now overwritten. But note that we are not making assign-
ments to variables. Each binding is only done once when the system analyses the
input; it cannot be repeated or modified. It can be overwritten by a new defini-
tion using the same name, but this is not assignment in the usual sense, since the
sequence of events is only connected with the compilation process, not with the
dynamics of program execution. Indeed, apart from the more interactive feedback
from the system, we could equally replace all the double semicolons after the dec-
larations by in and evaluate everything at once. On this view we can see that the
overwriting of a declaration really corresponds to the definition of a new local vari-
able that hides the outer one, according to the scoping rules usual in programming
languages. For example:

#let x = 1;;

x : int = 1

#let y = 2;;

y : int = 2

#let x = 3;;

x : int = 3

#x + y;;

- : int = 5

is the same as:

#let x = 1 in

let y = 2 in

let x = 3 in

x + y;;

- : int = 5
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Note carefully that variable binding is static, i.e. the first binding of x is still
used until an inner binding occurs, and any uses of it until that point are not affected
by the inner binding.4 For example:

#let x = 1;;

x : int = 1

#let f w = w + x;;

f : int -> int = <fun>

#let x = 2;;

x : int = 2

#f 0;;

it : int = 1

2.4 Evaluation rules

In essence, CAML is quite simple to understand, since it just evaluates expressions.
However there are subtle questions over the precise order of evaluation. For example,
consider the following recursive function:

#let rec f x = f(x + 1);;

f : int -> ’a = <fun>

#f 2;;

Interrupted.

Evaluation of f 2 looped indefinitely, until interrupted by ctrl/c. Now suppose
we use f in another expression, but in a way that doesn’t require f to be evaluated
on any arguments:

#(fun x -> 1) (f 2);;

Interrupted.

Even so, an indefinite loop results. The reason is that according to CAML’s
evaluation rules, all arguments to a function are evaluated before being inserted
in the function body. This strategy is called eager, in contrast to cleverer lazy
approaches that try to avoid evaluating subexpressions until they are definitely
needed (and then no more than once).

CAML adopts eager evaluation for two main reasons. Choreographing the reduc-
tions and sharings that occur in lazy evaluation is quite tricky, and implementations
tend to be relatively inefficient and complicated. Unless the programmer is very
careful, memory can fill up with pending unevaluated expressions, and in general
it is hard to understand the space behaviour of programs. In fact many imple-
mentations of lazy evaluation try to optimize it to eager evaluation in cases where
there is no semantic difference. By contrast, in CAML, we always first evaluate the
arguments to functions and only then inserts them in the body — this is simple
and efficient, and is easy to implement using standard compiler technology.

The second reason for preferring eager evaluation is that CAML is not a pure
functional language, but includes imperative features (variables, assignments etc.).
Therefore the order of evaluation of subexpressions can make a big difference. If
lazy evaluation is used, it seems to become difficult for the programmer to visualize,

4The first version of LISP used dynamic binding, where a rebinding of a variable propagated to
earlier uses of the variable. This was in fact originally regarded as a bug, but soon programmers
started to appreciate its convenience. The feature survived for a long time in many LISP dialects,
but eventually the view that static binding is better prevailed. In Common LISP, static binding
is the default, but dynamic binding is available if desired via the keyword special.
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in a nontrivial program, exactly when each subexpression gets evaluated. In the
eager CAML system, one just needs to remember the simple evaluation rules. To
be explicit, they are as follows:

• Constants (e.g. predefined values and functions like 1 and +) evaluate to
themselves.

• Evaluation stops immediately at expressions of the form fun x -> ..., and
does not look inside them. This only happens when such an expression is
applied to an argument.

• When evaluating an application s t, then first both s and t are evaluated.5

Then, assuming that the evaluated form of s is a function fun x -> ..., the
body is evaluated with each instance of x replaced by the evaluated form of
t. If the evaluated form of s is a built-in function like +, the appropriate
evaluation is performed.

• When evaluating if E1 then E2 else E3, first E1 is evaluated, and depend-
ing on whether it yields true or false, either E2 or E3 respectively (and not
the other) is evaluated.

One can regard let x = E1 in E2 as an abbreviation for (fun x -> E2) E1,
and the above evaluation rules then give the right answer: E1 is evaluated, and then
the evaluated form replaces each x in E1, which is then itself evaluated. Let us see
some examples of evaluating expressions:

(fun x -> (fun y -> y + y) x) (2 + 2)
= (fun x -> (fun y -> y + y) x) 4
= (fun y -> y + y) 4
= 4 + 4
= 8

Note that the subterm (fun y -> y + y) x is not reduced, since it is inside the
function abstraction ‘fun x -> ...’. However, terms that are reducible and not so
enclosed in both function and argument get reduced before the function application
itself is evaluated, e.g. the second step in the following:

((fun f x -> f x) (fun y -> y + y)) (2 + 2)
= ((fun f x -> f x) (fun y -> y + y)) 4
= (fun x -> (fun y -> y + y) x) 4
= (fun y -> y + y) 4
= 4 + 4
= 8

The fact that CAML does not evaluate under function abstractions is of crucial
importance to advanced programmers. It gives precise control over the evaluation of
expressions, and can be used to mimic many of the helpful cases of lazy evaluation,
or sometimes to force earlier evaluation of expressions by moving them outside fun
x -> ....

2.5 Types and polymorphism

Some functions do not have a fixed type. For example, the identity function that
returns its argument unchanged doesn’t care whether its argument is an integer, a

5CAML Light actually evaluates t first.
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boolean, or another function. Therefore, it is said to have polymorphic type, and
CAML displays a type involving type variables. These can later be set to some
particular type when it is used, different instances with different types.

#let I = fun x -> x;;

I : ’a -> ’a = <fun>

CAML prints type variables as ’a, ’b etc.; these are supposed to be ASCII
representations of α, β and so on. We can now use the polymorphic function
several times with different types:

#I true;;

- : bool = true

#I 1;;

- : int = 1

#I I I I 12;;

- : int = 12

Each instance of I in the last expression has a different type, and intuitively
corresponds to a different function. CAML always assigns the most general type
possible for an expression, without specializing it unnecessarily, using an algorithm
due to Milner (1978). For example, the following is a more complex definition of an
identity function; the reader may wish to study it to see why CAML gives all these
expressions the types it does,6 and why I’ acts as an identity function. Note that
in contrast to most programming languages, CAML allows the prime character in
variable names, reflecting its background in logic and mathematics where variables
like x′ are common.

#let K x y = x;;

K : ’a -> ’b -> ’a = <fun>

#let S f g x = (f x) (g x);;

S : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c = <fun>

#let I’ = S K K;;

I’ : ’_a -> ’_a = <fun>

#I’ 2;;

it : int = 2

In the above examples of polymorphic functions, the system very quickly infers a
most general type for each expression, and the type it infers is simple. This usually
happens in practice, but there are pathological cases, e.g. the following example due
to Mairson (1990). The type of this expression takes about 10 seconds to calculate,
and occupies over 4000 lines on an 80-column terminal.

let pair x y = fun z -> z x y in

let x1 = fun y -> pair y y in

let x2 = fun y -> x1(x1 y) in

let x3 = fun y -> x2(x2 y) in

let x4 = fun y -> x3(x3 y) in

let x5 = fun y -> x4(x4 y) in

x5(fun z -> z);;

Because of CAML’s automatic type inference, the programmer need never enter
a type. At least, CAML will already allocate as general a type as possible to an

6Ignore the underscores for now. This is connected with the typing of imperative features, and
we will discuss it later.
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expression. However it may sometimes be convenient to restrict the generality of
a type. This cannot make code work that didn’t work before, but it may serve as
documentation regarding the intended purpose of the code; it is also possible to
use shorter synonyms for complicated types. Type restriction can be achieved in
CAML by adding type annotations after some expression(s). These type annotations
consist of a colon followed by a type. It usually doesn’t matter exactly where
these annotations are added, provided they enforce the appropriate constraints.
For example, here are some alternative ways of constraining the identity function
to type int -> int:

#let I (x:int) = x;;

I : int -> int = <fun>

#let I x = (x:int);;

I : int -> int = <fun>

#let (I:int->int) = fun x -> x;;

I : int -> int = <fun>

#let I = fun (x:int) -> x;;

I : int -> int = <fun>

#let I = ((fun x -> x):int->int);;

I : int -> int = <fun>

2.6 Equality of functions

Instead of comparing the actions of I and I ′ on particular arguments like 3, it
would seem that we can settle the matter definitively by comparing the functions
themselves. However this doesn’t work:

#I’ = I;;

Uncaught exception: Invalid_argument "equal: functional value"

It is in general forbidden to compare functions for equality, though a few special
instances, where the functions are obviously the same, yield true:

#let f x = x + 1;;

f : int -> int = <fun>

#let g x = x + 1;;

g : int -> int = <fun>

#f = f;;

it : bool = true

#f = g;;

Uncaught exception: Invalid_argument "equal: functional value"

#let h = g;;

h : int -> int = <fun>

#h = f;;

Uncaught exception: Invalid_argument "equal: functional value"

#h = g;;

it : bool = true

Why these restrictions? Aren’t functions supposed to be first-class objects in
CAML? Yes, but unfortunately, (extensional) function equality is not computable.
This follows from a number of classic theorems in recursion theory, such as the
unsolvability of the halting problem and Rice’s theorem.7 Let us give a concrete

7Rice’s theorem is an extremely strong undecidability result which asserts that any nontrivial
property of the function corresponding to a program is uncomputable from its text. An excellent
computation theory textbook is Davis, Sigal, and Weyuker (1994).
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illustration of why this might be so. It is still an open problem whether the following
function terminates for all arguments, the assertion that it does being known as the
Collatz conjecture:8

#let rec collatz n =

if n <= 1 then 0

else if even(n) then collatz(n / 2)

else collatz(3 * n + 1);;

collatz : int -> int = <fun>

What is clear, though, is that if it does halt it returns 0. Now consider the
following trivial function:

#let f (x:int) = 0;;

f : int -> int = <fun>

By deciding the equation collatz = f, the computer would settle the Collatz
conjecture. It is easy to concoct other examples for open mathematical problems.

It is possible to trap out applications of the equality operator to functions and
datatypes built up from them as part of typechecking, rather than at runtime. This
is the approach taken by Standard ML. Types that do not involve functions in
these ways are known as equality types, since it is always valid to test objects of
such types for equality. On the negative side, this makes the type system much
more complicated. However one might argue that static typechecking should be
extended as far as feasibility allows.

Further reading

Numerous textbooks on ‘functional programming’ include a general introduction
to the field and a contrast with imperative programming — browse through a few
and find one that you like. A detailed and polemical advocacy of the functional
style is given by Backus (1978), the main inventor of FORTRAN. A good elementary
introduction to CAML Light and functional programming is Mauny (1995). Paulson
(1991) is another good textbook, though based on Standard ML.

8A good survey of this problem, and attempts to solve it, is given by Lagarias (1985). Strictly,
we should use unlimited precision integers rather than machine arithmetic. We will see later how
to do this.



Chapter 3

Further CAML

In this chapter, we consolidate the previous examples by specifying the basic facil-
ities of CAML and the syntax of phrases more precisely, and then go on to treat
some additional features such as recursive types. We might start by saying more
about interaction with the system.

So far, we have just been typing phrases into CAML’s toplevel read-eval-print
loop and observing the result. However this is not a good method for writing
nontrivial programs. Typically, you should write the expressions and declarations
in a file. To try things out as you go, they can be inserted in the CAML window
using ‘cut and paste’. This operation can be performed using X-windows and similar
systems, or in an editor like Emacs with multiple buffers. However, this becomes
laborious and time-consuming for large programs. Instead, you can use CAML’s
include function to read in the file directly. For example, if the file myprog.ml
contains:

let pythag x y z =

x * x + y * y = z * z;;

pythag 3 4 5;;

pythag 5 12 13;;

pythag 1 2 3;;

then the toplevel phrase include "myprog.ml";; results in:

#include "myprog.ml";;

pythag : int -> int -> int -> bool = <fun>

- : bool = true

- : bool = true

- : bool = false

- : unit = ()

That is, the CAML system responds just as if the phrases had been entered at
the top level. The final line is the result of evaluating the include expression itself.
HOL Light runs a filter in front of CAML to expand backquotes into calls of term
and type parser and typechecker. In order to make this happen when loading a file,
use loadt instead of include.

In large programs, it is often helpful to include comments. In CAML, these are
written between the symbols (* and *), e.g.

19
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(* ------------------------------------------------------ *)

(* This function tests if (x,y,z) is a Pythagorean triple *)

(* ------------------------------------------------------ *)

let pythag x y z =

x * x + y * y = z * z;;

(*comments*) pythag (*can*) 3 (*go*) 4 (*almost*) 5 (*anywhere*)

(* and (* can (* be (* nested *) quite *) arbitrarily *) *);;

3.1 Basic datatypes and operations

CAML features several built-in primitive types. From these, composite types may
be built using various type constructors. For the moment, we will only use the
function space constructor -> and the Cartesian product constructor *, but we will
see in due course which others are provided, and how to define new types and type
constructors. The primitive types that concern us now are:

• The type unit. This is a 1-element type, whose only element is written ().
Obviously, something of type unit conveys no information, so it is commonly
used as the return type of imperatively written ‘functions’ that perform a
side-effect, such as include above. It is also a convenient argument where
the only use of a function type is to delay evaluation.

• The type bool. This is a 2-element type of booleans (truth-values) whose
elements are written true and false.

• The type int. This contains some finite subset of the positive and negative
integers. Typically the permitted range is from −230 (−1073741824) up to
230− 1 (1073741823).1 The numerals are written in the usual way, optionally
with a negation sign, e.g. 0, 32, -25.

• The type string contains strings (i.e. finite sequences) of characters. They
are written and printed between double quotes, e.g. "hello". In order to
encode include special characters in strings, C-like escape sequences are used.
For example, \" is the double quote itself, and \n is the newline character.

The above values like (), false, 7 and "caml" are all to be regarded as fixed
constants. There are other constants corresponding to operations on the basic types.
Some of these may be written as infix operators, for the sake of familiarity. These
have a notion of precedence so that expressions are grouped together as one would
expect. For example, we write x + y rather than + x y and x < 2 * y + z rather
than < x (+ (* 2 y) z). The logical operator not also has a special parsing
status, in that the usual left-associativity rule is reversed for it: not not p means
not (not p). User-defined functions may be granted infix status via the #infix
directive. For example, here is a definition of a function performing composition of
functions:

1We will see later how to use an alternative type of integers with unlimited precision.
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#let successor x = x + 1;;

successor : int -> int = <fun>

#let o f g = fun x -> f(g x);;

o : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

#let add3 = o successor (o successor successor);;

add3 : int -> int = <fun>

#add3 0;;

it : int = 3

##infix "o";;

#let add3’ = successor o successor o successor;;

add3’ : int -> int = <fun>

#add3’ 0;;

it : int = 3

It is not possible to specify the precedence of user-defined infixes, nor to make
user-defined non-infix functions right-associative. Note that the implicit opera-
tion of ‘function application’ has a higher precedence than any binary operator,
so successor 1 * 2 parses as (successor 1) * 2. If it is desired to use a func-
tion with special status as an ordinary constant, simply precede it by prefix. For
example:

#o successor successor;;

Toplevel input:

>o successor successor;;

>^

Syntax error.

#prefix o successor successor;;

it : int -> int = <fun>

#(prefix o) successor successor;;

it : int -> int = <fun>

With these questions of concrete syntax out of the way, let us present a system-
atic list of the operators on the basic types above. The unary operators are:

Operator Type Meaning
- int -> int Numeric negation
not bool -> bool Logical negation

and the binary operators, in approximately decreasing order of precedence, are:

Operator Type Meaning
mod int -> int -> int Modulus (remainder)
* int -> int -> int Multiplication
/ int -> int -> int Truncating division
+ int -> int -> int Addition
- int -> int -> int Subtraction
^ string -> string -> string String concatenation
= ’a -> ’a -> bool Equality
<> ’a -> ’a -> bool Inequality
< ’a -> ’a -> bool Less than
<= ’a -> ’a -> bool Less than or equal
> ’a -> ’a -> bool Greater than
>= ’a -> ’a -> bool Greater than or equal
& bool -> bool -> bool Boolean ‘and’
or bool -> bool -> bool Boolean ‘or’
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For example, x > 0 & x < 1 is parsed as & (> x 0) (< x 1). Note that all the
comparisons, not just the equality relation, are polymorphic. They not only order
integers in the expected way, and strings alphabetically, but all other primitive
types and composite types in a fairly natural way. Once again, however, they are
not in general allowed to be used on functions.

The two boolean operations & and or have their own special evaluation strategy,
like the conditional expression. In fact, they can be regarded as synonyms for
conditional expressions:

p & q
4
= if p then q else false

p or q
4
= if p then true else q

Thus, the ‘and’ operation evaluates its first argument, and only if it is true,
evaluates its second. Conversely, the ‘or’ operation evaluates its first argument,
and only if it is false evaluates its second.

3.2 Syntax of CAML phrases

Expressions in CAML can be built up from constants and variables; any identifier
that is not currently bound is treated as a variable. Declarations bind names to
values of expressions, and declarations can occur locally inside expressions. Thus,
the syntax classes of expressions and declarations are mutually recursive. We can
represent this by the following BNF grammar.2

expression ::= variable

| constant

| expression expression

| expression infix expression

| not expression
| if expression then expression else expression
| fun pattern -> expression

| (expression)
| declaration in expression

declaration ::= let let bindings
| let rec let bindings

let bindings ::= let binding

| let binding and let bindings
let binding ::= pattern = expression

pattern ::= variables

variables ::= variable

| variable variables

The syntax class pattern will be expanded and explained more thoroughly later
on. For the moment, all the cases we are concerned with are either just variable
or variable variable · · · variable. In the first case we simply bind an expression to

2We neglect many constructs that we won’t be concerned with. A few will be introduced later.
See the CAML manual for full details.
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a name, while the second uses the special syntactic sugar for function declarations,
where the arguments are written after the function name to the left of the equals
sign. For example, the following is a valid declaration of a function add4, which can
be used to add 4 to its argument:

#let add4 x =

let y = successor x in

let z = let w = successor y in

successor w in

successor z;;

add4 : int -> int = <fun>

#add4 1;;

it : int = 5

It is instructive to unravel this declaration according to the above grammar. A
toplevel phrase, terminated by two successive semicolons, may be either an expres-
sion or a declaration.

3.3 Further examples

It is easy to define by recursion a function that takes a positive integer n and a
function f and returns fn, i.e. f ◦ · · · ◦ f (n times):

#let rec funpow n f x =

if n = 0 then x

else funpow (n - 1) f (f x);;

funpow : int -> (’a -> ’a) -> ’a -> ’a = <fun>

We can apply funpow just to the first argument, and this encodes a natural
number as a function that takes a function as an argument then iterates it the
appropriate number of times, a so-called Church numeral.3 Since functions aren’t
printed, we can’t actually look at the expression representing a Church numeral:

#funpow 6;;

it : (’_a -> ’_a) -> ’_a -> ’_a = <fun>

However it is straightforward to define an inverse function to funpow that takes
a Church numeral back to a machine integer:

#let defrock n = n (fun x -> x + 1) 0;;

defrock : ((int -> int) -> int -> ’a) -> ’a = <fun>

#defrock(funpow 32);;

it : int = 32

We can define some of the arithmetic operations on Church numerals. Under-
standing these definitions thoroughly is a good exercise.

3The basic idea was used earlier by Wittgenstein (1922), 6.021.
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#let add m n f x = m f (n f x);;

add : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c = <fun>

#let mul m n f x = m (n f) x;;

mul : (’a -> ’b -> ’c) -> (’d -> ’a) -> ’d -> ’b -> ’c = <fun>

#let exp m n f x = n m f x;;

exp : ’a -> (’a -> ’b -> ’c -> ’d) -> ’b -> ’c -> ’d = <fun>

#let test bop x y = defrock (bop (funpow x) (funpow y));;

test :

(((’a -> ’a) -> ’a -> ’a) ->

((’b -> ’b) -> ’b -> ’b) -> (int -> int) -> int -> ’c) ->

int -> int -> ’c = <fun>

#test add 2 10;;

it : int = 12

#test mul 2 10;;

it : int = 20

#test exp 2 10;;

it : int = 1024

The above is not a very efficient way of performing arithmetic operations. CAML
does not have a built-in function for exponentiation, but it is easy to define one by
recursion:

#let rec exp x n =

if n = 0 then 1

else x * exp x (n - 1);;

exp : int -> int -> int = <fun>

However this performs n multiplications to calculate xn. A more efficient way
is to exploit the facts that x2n = (xn)2 and x2n+1 = (xn)2x as follows:

#let square x = x * x;;

square : int -> int = <fun>

#let rec exp x n =

if n = 0 then 1

else if n mod 2 = 0 then square(exp x (n / 2))

else x * square(exp x (n / 2));;

exp : int -> int -> int = <fun>

#infix "exp";;

#2 exp 10;;

it : int = 1024

#2 exp 20;;

it : int = 1048576

Another classic operation on natural numbers is to find their greatest common
divisor (highest common factor) using Euclid’s algorithm:

#let rec gcd x y =

if y = 0 then x else gcd y (x mod y);;

gcd : int -> int -> int = <fun>

#gcd 100 52;;

it : int = 4

#gcd 7 159;;

it : int = 1

#gcd 24 60;;

it : int = 12
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Rather than using the rec keyword every time we declare a recursive function,
eccentrics might prefer to define a recursion operator Rec, and thereafter use that,
e.g.

#let rec Rec f = f(fun x -> Rec f x);;

Rec : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>

#let fact = Rec (fun f n -> if n = 0 then 1 else n * f(n - 1));;

fact : int -> int = <fun>

#fact 3;;

it : int = 6

Note, however, that the function abstraction ‘fun x -> ...’ in the definition
was essential, otherwise the expression Rec f goes into an infinite recursion when
evaluated, before it is even applied to its argument:

#let rec Rec f = f(Rec f);;

Rec : (’a -> ’a) -> ’a = <fun>

#let fact = Rec (fun f n -> if n = 0 then 1 else n * f(n - 1));;

Uncaught exception: Out_of_memory

3.4 Type definitions

CAML has facilities for declaring new type constructors, so that composite types can
be built up out of existing ones. In fact, CAML goes further and allows a composite
type to be built up not only out of preexisting types but also from the composite
type itself. Such types, naturally enough, are said to be recursive, even if they don’t
avail themselves of the chance to use the type being defined in the definition. They
are declared using the type keyword followed by an equation indicating how the
new type is built up from existing ones and itself. We will illustrate this by a few
examples. The first one is the definition of a sum type, intended to correspond to
the disjoint union of two existing types.

#type (’a,’b)sum = inl of ’a | inr of ’b;;

Type sum defined.

Roughly, an object of type (’a,’b)sum is either something of type ’a or some-
thing of type ’b. More formally, however, all these things have different types.
The type declaration also declares the so-called constructors inl and inr. These
are functions that take objects of the component types and inject them into the
new type. Indeed, we can see their types in the CAML system and apply them to
objects:

#inl;;

it : ’a -> (’a, ’b) sum = <fun>

#inr;;

it : ’a -> (’b, ’a) sum = <fun>

#inl 5;;

it : (int, ’a) sum = inl 5

#inr false;;

it : (’a, bool) sum = inr false

We can visualize the situation via the following diagram. Given two existing
types α and β, the type (α, β)sum is composed precisely of separate copies of α
and β, and the two constructors map onto the respective copies:
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This is similar to a union in C, but in CAML the copies of the component types
are kept apart and one always knows which of these an element of the union belongs
to. By contrast, in C the component types are overlapped, and the programmer is
responsible for this book-keeping.

3.4.1 Pattern matching

The constructors in such a definition have three very important properties:

• They are exhaustive, i.e. every element of the new type is obtainable either
by inl x for some x or inr y for some y. That is, the new type contains
nothing besides copies of the component types.

• They are injective, i.e. an equality test inl x = inl y is true if and only if
x = y, and similarly for inr. That is, the new type contains a faithful copy
of each component type without identifying any elements.

• They are distinct, i.e. their ranges are disjoint. More concretely this means in
the above example that inl x = inr y is false whatever x and y might be.
That is, the copy of each component type is kept apart in the new type.

The second and third properties of constructors justify our using pattern match-
ing. This is done by using more general varstructs as the arguments in a function
expression, e.g.

#fun (inl n) -> n > 6

| (inr b) -> b;;

it : (int, bool) sum -> bool = <fun>

This function has the property, naturally enough, that when applied to inl n it
returns n > 6 and when applied to inr b it returns b. It is precisely because of
the second and third properties of the constructors that we know this does give
a welldefined function. Because the constructors are injective, we can uniquely
recover n from inl n and b from inr b. Because the constructors are distinct,
we know that the two clauses cannot be mutually inconsistent, since no value can
correspond to both patterns.

In addition, because the constructors are exhaustive, we know that each value
will fall under one pattern or the other, so the function is defined everywhere.
Actually, it is permissible to relax this last property by omitting certain patterns,
though the CAML system then issues a warning:
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#fun (inr b) -> b;;

Toplevel input:

>fun (inr b) -> b;;

>^^^^^^^^^^^^^^^^

Warning: this matching is not exhaustive.

it : (’a, ’b) sum -> ’b = <fun>

If this function is applied to something of the form inl x, then it will not work:

#let f = fun (inr b) -> b;;

Toplevel input:

>let f = fun (inr b) -> b;;

> ^^^^^^^^^^^^^^^^

Warning: this matching is not exhaustive.

f : (’a, ’b) sum -> ’b = <fun>

#f (inl 3);;

Uncaught exception: Match_failure ("", 452, 468)

Though booleans are built into CAML, they are effectively defined by a rather
trivial instance of a recursive type, often called an enumerated type, where the
constructors take no arguments:

#type bool = false | true;;

Indeed, it is perfectly permissible to define things by matching over the truth
values. The following two phrases are completely equivalent:

#if 4 < 3 then 1 else 0;;

it : int = 0

#(fun true -> 1 | false -> 0) (4 < 3);;

it : int = 0

Pattern matching is, however, not limited to casewise definitions over elements
of recursive types, though it is particularly convenient there. For example, we can
define a function that tells us whether an integer is zero as follows:

#fun 0 -> true | n -> false;;

it : int -> bool = <fun>

#(fun 0 -> true | n -> false) 0;;

it : bool = true

#(fun 0 -> true | n -> false) 1;;

it : bool = false

In this case we no longer have mutual exclusivity of patterns, since 0 matches
either pattern. The patterns are examined in order, one by one, and the first
matching one is used. Note carefully that unless the matches are mutually exclusive,
there is no guarantee that each clause holds as a mathematical equation. For
example in the above, the function does not return false for any n, so the second
clause is not universally valid.

Note that only constructors may be used in the above special way as components
of patterns. Ordinary constants will be treated as new variables bound inside the
pattern. For example, consider the following:
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#let true_1 = true;;

true_1 : bool = true

#let false_1 = false;;

false_1 : bool = false

#(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;

Toplevel input:

>(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;

> ^^^^^^^

Warning: this matching case is unused.

it : int = 1

In general, the unit element (), the truth values, the integer numerals, the string
constants and the pairing operation (infix comma) have constructor status, as well
as other constructors from predefined recursive types. When they occur in a pattern
the target value must correspond. All other identifiers match any expression and in
the process become bound.

As well as the varstructs in function expressions, there are other ways of per-
forming pattern matching. Instead of creating a function via pattern matching and
applying it to an expression, one can perform pattern-matching over the expression
directly using the following construction:

match expression with pattern1->E1 | · · · | patternn->En

The simplest alternative of all is to use

let pattern = expression

but in this case only a single pattern is allowed.

3.4.2 Recursive types

The previous examples have all been recursive only vacuously, in that we have not
defined a type in terms of itself. For a more interesting example, we will declare a
type of lists (finite ordered sequences) of elements of type ’a.

#type (’a)list = Nil | Cons of ’a * (’a)list;;

Type list defined.

Let us examine the types of the constructors:

#Nil;;

it : ’a list = Nil

#Cons;;

it : ’a * ’a list -> ’a list = <fun>

The constructor Nil, which takes no arguments, simply creates some object of
type (’a)list which is to be thought of as the empty list. The other constructor
Cons takes an element of type ’a and an element of the new type (’a)list and
gives another, which we think of as arising from the old list by adding one element
to the front of it. For example, we can consider the following:
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#Nil;;

it : ’a list = Nil

#Cons(1,Nil);;

it : int list = Cons (1, Nil)

#Cons(1,Cons(2,Nil));;

it : int list = Cons (1, Cons (2, Nil))

#Cons(1,Cons(2,Cons(3,Nil)));;

it : int list = Cons (1, Cons (2, Cons (3, Nil)))

Because the constructors are distinct and injective, it is easy to see that all
these values, which we think of as lists [], [1], [1; 2] and [1; 2; 3], are distinct. Indeed,
purely from these properties of the constructors, it follows that arbitrarily long lists
of elements may be encoded in the new type. Actually, CAML already has a type
list just like this one defined. The only difference is syntactic: the empty list is
written [] and the recursive constructor ::, has infix status. Thus, the above lists
are actually written:

#[];;

it : ’a list = []

#1::[];;

it : int list = [1]

#1::2::[];;

it : int list = [1; 2]

#1::2::3::[];;

it : int list = [1; 2; 3]

The lists are printed in an even more natural notation, and this is also allowed for
input. Nevertheless, when the exact expression in terms of constructors is needed,
it must be remembered that this is only a surface syntax. For example, we can
define functions to take the head and tail of a list, using pattern matching.

#let hd (h::t) = h;;

Toplevel input:

>let hd (h::t) = h;;

> ^^^^^^^^^^^^^

Warning: this matching is not exhaustive.

hd : ’a list -> ’a = <fun>

#let tl (h::t) = t;;

Toplevel input:

>let tl (h::t) = t;;

> ^^^^^^^^^^^^^

Warning: this matching is not exhaustive.

tl : ’a list -> ’a list = <fun>

The compiler warns us that these both fail when applied to the empty list, since
there is no pattern to cover it (remember that the constructors are distinct). Let
us see them in action:

#hd [1;2;3];;

it : int = 1

#tl [1;2;3];;

it : int list = [2; 3]

#hd [];;

Uncaught exception: Match_failure
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Note that the following is not a correct definition of hd. In fact, it constrains
the input list to have exactly two elements for matching to succeed, as can be seen
by thinking of the version in terms of the constructors:

#let hd [x;y] = x;;

Toplevel input:

>let hd [x;y] = x;;

> ^^^^^^^^^^^^

Warning: this matching is not exhaustive.

hd : ’a list -> ’a = <fun>

#hd [5;6];;

it : int = 5

#hd [5;6;7];;

Uncaught exception: Match_failure

Pattern matching can be combined with recursion. For example, here is a func-
tion to return the length of a list:

#let rec length =

fun [] -> 0

| (h::t) -> 1 + length t;;

length : ’a list -> int = <fun>

#length [];;

it : int = 0

#length [5;3;1];;

it : int = 3

Alternatively, this can be written in terms of our earlier ‘destructor’ functions
hd and tl:

#let rec length l =

if l = [] then 0

else 1 + length(tl l);;

This latter style of function definition is more usual in many languages, notably
LISP, but the direct use of pattern matching is often more elegant.

Some other classic list functions are appending (joining together) two lists, map-
ping a function over a list (i.e. applying it to each element) and reversing a list.
We can define all these by recursion:
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#let rec append l1 l2 =

match l1 with

[] -> l2

| (h::t) -> h::(append t l2);;

append : ’a list -> ’a list -> ’a list = <fun>

#append [1;2;3] [4;5];;

it : int list = [1; 2; 3; 4; 5]

#let rec map f =

fun [] -> []

| (h::t) -> (f h)::(map f t);;

map : (’a -> ’b) -> ’a list -> ’b list = <fun>

#map (fun x -> 2 * x) [1;2;3];;

it : int list = [2; 4; 6]

#let rec rev =

fun [] -> []

| (h::t) -> append (rev t) [h];;

#rev [1;2;3;4];;

it : int list = [4; 3; 2; 1]

3.4.3 Tree structures

It is often helpful to visualize the elements of recursive types as tree structures,
with the recursive constructors at the branch nodes and the other datatypes at the
leaves. The recursiveness merely says that plugging subtrees together gives another
tree. In the case of lists the ‘trees’ are all rather spindly and one-sided, with the
list [1;2;3;4] being represented as:
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It is not difficult to define recursive types which allow more balanced trees, e.g.

#type (’a)btree = Leaf of ’a

| Branch of (’a)btree * (’a)btree;;

In general, there can be several different recursive constructors, each with a
different number of descendants. This gives a very natural way of representing the
syntax trees of programming (and other formal) languages. For example, here is a
type to represent arithmetical expressions built up from integers by addition and
multiplication:

#type expression = Integer of int

| Sum of expression * expression

| Product of expression * expression;;
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and here is a recursive function to evaluate such expressions:

#let rec eval =

fun (Integer i) -> i

| (Sum(e1,e2)) -> eval e1 + eval e2

| (Product(e1,e2)) -> eval e1 * eval e2;;

eval : expression -> int = <fun>

#eval (Product(Sum(Integer 1,Integer 2),Integer 5));;

it : int = 15

Such abstract syntax trees are a useful representation which allows all sorts of
manipulations. Often the first step programming language compilers and related
tools take is to translate the input text into an ‘abstract syntax tree’ according to
the parsing rules. Note that conventions such as precedences and bracketings are
not needed once we have reached the level of abstract syntax; the tree structure
makes these explicit. Recursive types similar to these are used in HOL Light to
define logical entities like terms.

3.4.4 The subtlety of recursive types

A recursive type may contain nested instances of other type constructors, including
the function space constructor. For example, consider the following:

#type (’a)embedding = K of (’a)embedding->’a;;

Type embedding defined.

If we stop to think about the underlying semantics, this looks disquieting. Con-
sider for example the special case when ’a is bool. We then have an injective
function K:((bool)embedding->bool)->(bool)embedding. This directly contra-
dicts Cantor’s theorem that the set of all subsets of X cannot be injected into X.4

Hence we need to be more careful with the semantics of types. In fact α → β
cannot be interpreted as the full function space, or recursive type constructions
like the above are inconsistent. However, since all functions we can actually create
are computable, it is reasonable to restrict ourselves to computable functions only.
With that restriction, a consistent semantics is possible, although the details are
complicated.

The above definition also has interesting consequences for the type system. For
example, we can now define a recursion operator without any explicit use of recur-
sion, by using K as a kind of type cast.5 The use of let is only used for the sake of
efficiency, but we do need the extra argument z in order to prevent looping under
CAML’s evaluation strategy.

#let Y h =

let g (K x) z = h (x (K x)) z in

g (K g);;

Y : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>

#let fact = Y (fun f n -> if n = 0 then 1 else n * f(n - 1));;

fact : int -> int = <fun>

#fact 6;;

it : int = 720

4Proof: consider C = {i(s) | s ∈ ℘(X) and i(s) 6∈ s}. If i : ℘(X) → X is injective, we have
i(C) ∈ C ≡ i(C) 6∈ C, a contradiction. This is similar to the Russell paradox, and in fact probably
inspired it. The analogy is even closer if we consider the equivalent form that there is no surjection
j : X → ℘(X), and prove it by considering {s | s 6∈ j(s)}.

5Readers familiar with untyped λ-calculus may note that if the Ks are deleted, this is essentially
the usual definition of the Y combinator.
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Thus, recursive types are a powerful addition to the language.
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Chapter 4

Effective CAML

In this chapter, we discuss some of the techniques and tricks that CAML program-
mers can use to make programs more elegant and more efficient. We then go on
to discuss some additional imperative features that can be used when the purely
functional style seems inappropriate.

4.1 Useful combinators

The flexibility of higher order functions often means that one can write some very
useful little functions that can be re-used for a variety of related tasks. These are
often called combinators. It often turns out that these functions are so flexible that
practically anything can be implemented by plugging them together, rather than,
say, explicitly making a recursive definition. For example, a very useful combinator
for list operations, often called ‘itlist’ or ‘fold’, performs the following operation:

itlist f [x1; x2; . . . ;xn] b = f x1 (f x2 (f x3 (· · · (f xn b))))

A straightforward definition in CAML is:

#let rec itlist f =

fun [] b -> b

| (h::t) b -> f h (itlist f t b);;

itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

Quite commonly, when defining a recursive function over lists, all one is doing
is repeatedly applying some operator in this manner. By using itlist with the
appropriate argument, one can implement such functions very easily without explicit
use of recursion. A typical use is a function to add all the elements of a list of
numbers:

#let sum l = itlist (fun x sum -> x + sum) l 0;;

sum : int list -> int = <fun>

#sum [1;2;3;4;5];;

it : int = 15

#sum [];;

it : int = 0

#sum [1;1;1;1];;

it : int = 4

Those especially keen on brevity might prefer to code sum as:

35
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#let sum l = itlist (prefix +) l 0;;

It is easy to modify this function to form a product rather than a sum:

#let prod l = itlist (prefix *) l 1;;

Many useful list operations can be implemented in this way. For example here
is a function to filter out only those elements of a list satisfying a predicate:

#let filter p l = itlist (fun x s -> if p x then x::s else s) l [];;

filter : (’a -> bool) -> ’a list -> ’a list = <fun>

#filter (fun x -> x mod 2 = 0) [1;6;4;9;5;7;3;2];;

it : int list = [6; 4; 2]

Here are functions to find whether either all or some of the elements of a list satisfy
a predicate:

#let forall p l = itlist (fun h a -> p(h) & a) l true;;

forall : (’a -> bool) -> ’a list -> bool = <fun>

#let exists p l = itlist (fun h a -> p(h) or a) l false;;

exists : (’a -> bool) -> ’a list -> bool = <fun>

#forall (fun x -> x < 3) [1;2];;

it : bool = true

#forall (fun x -> x < 3) [1;2;3];;

it : bool = false

and here are alternative versions of old favourites length, append and map:

#let length l = itlist (fun x s -> s + 1) l 0;;

length : ’a list -> int = <fun>

#let append l m = itlist (fun h t -> h::t) l m;;

append : ’a list -> ’a list -> ’a list = <fun>

#let map f l = itlist (fun x s -> (f x)::s) l [];;

map : (’a -> ’b) -> ’a list -> ’b list = <fun>

Some of these functions can themselves become useful combinators, and so on
upwards. For example, if we are interested in treating lists as sets, i.e. avoiding
duplicate elements, then many of the standard set operations can be expressed very
simply in terms of the combinators above:

#let mem x l = exists (fun y -> y = x) l;;

mem : ’a -> ’a list -> bool = <fun>

#let insert x l =

if mem x l then l else x::l;;

insert : ’a -> ’a list -> ’a list = <fun>

#let union l1 l2 = itlist insert l1 l2;;

union : ’a list -> ’a list -> ’a list = <fun>

#let setify l = union l [];;

setify : ’a list -> ’a list = <fun>

#let Union l = itlist union l [];;

Union : ’a list list -> ’a list = <fun>

#let intersect l1 l2 = filter (fun x -> mem x l2) l1;;

intersect : ’a list -> ’a list -> ’a list = <fun>

#let subtract l1 l2 = filter (fun x -> not mem x l2) l1;;

subtract : ’a list -> ’a list -> ’a list = <fun>

#let subset l1 l2 = forall (fun t -> mem t l2) l1;;

subset : ’a list -> ’a list -> bool = <fun>
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The setify function is supposed to turn a list into a set by eliminating any duplicate
elements.

4.2 Writing efficient code

Here we accumulate some common tricks of the trade, which can often make CAML
programs substantially more efficient. In order to justify some of them, we need to
sketch in general terms how certain constructs are executed in hardware.

4.2.1 Tail recursion and accumulators

The principal control mechanism in functional programs is recursion. If we are
interested in efficient programs, it behoves us to think a little about how recursion
is implemented on conventional hardware. In fact, there is not, in this respect
at least, much difference between the implementation of CAML and many other
languages with dynamic variables, such as C.

If functions cannot be called recursively, then we are safe in storing their local
variables (which includes the values of arguments) at a fixed place in memory — this
is what FORTRAN does. However, this is not possible in general if the function
can be called recursively. A call to a function f with one set of arguments may
include within it a call to f with a different set of arguments. The old ones would
be overwritten, even if the outer version of f needs to refer to them again after the
inner call has finished. For example, consider the factorial function yet again:

#let rec fact n = if n = 0 then 1

else n * fact(n - 1);;

A call to fact 6 causes another call to fact 5 (and beyond), but when this
call is finished and the value of fact 5 is obtained, we still need the original value
of n, namely 6, in order to do the multiplication yielding the final result. What
normally happens in implementations is that each function call is allocated a new
frame on a stack. Every new function call moves the stack pointer further down1 the
stack, creating space for new variables. When the function call is finished the stack
pointer moves up and so the unwanted inner variables are discarded automatically.
A diagram may make this clearer:

SP - n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

This is an imagined snapshot of the stack during execution of the innermost
recursive call, i.e. fact 0. All the local variables for the upper stages are stacked

1Despite the name, stacks conventionally grow downwards.
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up above, with each instance of the function having its own stack frame, and when
the calls are finished the stack pointer SP moves back up.

Therefore, our implementation of fact requires n stack frames when applied to
argument n. By contrast, consider the following implementation of the factorial
function:

#let rec tfact x n =

if n = 0 then x

else tfact (x * n) (n - 1);;

tfact : int -> int -> int = <fun>

#let fact n = tfact 1 n;;

fact : int -> int = <fun>

#fact 6;;

it : int = 720

Although tfact is also recursive, the recursive call is the whole expression; it
does not occur as a proper subexpression of some other expression involving values
of variables. Such a call is said to be a tail call (because it is the very last thing the
calling function does), and a function where all recursive calls are tail calls is said
to be tail recursive.

What is significant about tail calls? When making a recursive call to tfact,
there is no need to preserve the old values of the local variables. Exactly the
same, fixed, area of storage can be used. This of course depends on the compiler’s
being intelligent enough to recognize the fact, but most compilers, including CAML
Light, are. Consequently, re-coding a function so that the recursive core of it is
tail recursive can dramatically cut down the use of storage. For functions like the
factorial, it is hardly likely that they will be called with large enough values of n to
make the stack overflow. However the naive implementations of many list functions
can cause such an effect when the argument lists are long.

The additional argument x of the tfact function is called an accumulator, be-
cause it accumulates the result as the recursive calls rack up, and is then returned
at the end. Working in this way, rather than modifying the return value on the way
back up, is a common way of making functions tail recursive.

We have remarked that a fixed area of storage can be used for the arguments to
a tail recursive function. On this view, one can look at a tail recursive function as
a thinly-veiled imperative implementation. There is an obvious parallel with our C
implementation of the factorial as an iterative function:

int fact(int n)
{ int x = 1;

while (n > 0)
{ x = x * n;

n = n - 1;
}
return x;

}

The initialization x = 1 corresponds to our setting of x to 1 by an outer wrapper
function fact. The central while loop corresponds to the recursive calls, the only
difference being that the arguments to the tail recursive function make explicit
that part of the state we are interested in assigning to. Rather than assigning and
looping, we make a recursive call with the variables updated. Using similar tricks
and making the state explicit, one can easily write essentially imperative code in
an ostensibly functional style, with the knowledge that under standard compiler
optimizations, the effect inside the machine will, in fact, be much the same.
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4.2.2 Minimizing consing

We have already considered the use of stack space. But various constructs in func-
tional programs use another kind of store, usually allocated from an area called the
heap. Whereas the stack grows and shrinks in a sequential manner based on the
flow of control between functions, other storage used by the CAML system cannot
be reclaimed in such a simple way. Instead, the runtime system occasionally needs
to check which bits of allocated memory aren’t being used any more, and reclaim
them for future use, a process known as garbage collection. A particularly important
example is the space used by constructors for recursive types, e.g. ::. For example,
when the following fragment is executed:

let l = 1::[] in tl l;;

a new block of memory, called a ‘cons cell’, is allocated to store the instance of
the :: constructor. Typically this might be three words of storage, one being an
identifier for the constructor, and the other two being pointers to the head and
tail of the list. Now in general, it is difficult to decide when this memory can be
reclaimed. In the above example, we immediately select the tail of the list, so it
is clear that the cons cell can be recycled immediately. But in general this can’t
be decided by looking at the program, since l might be passed to various functions
that may or may not just look at the components of the list. Instead, one needs
to analyze the memory usage dynamically and perform garbage collection of what
is no longer needed. Otherwise one would eventually run out of storage even when
only a small amount is ever needed simultaneously.

Implementors of functional languages work hard on making garbage collection
efficient. Some claim that automatic memory allocation and garbage collection
often works out faster than typical uses of explicit memory allocation in languages
like C (malloc etc.) While we wouldn’t go that far, it is certainly very convenient
that memory allocation is always done automatically. It avoids a lot of tedious and
notoriously error-prone parts of programming.

Many constructs beloved of functional programmers use storage that needs to
be reclaimed by garbage collection. While worrying too much about this would
cripple the style of functional programs, there are some simple measures that can
be taken to avoid gratuitous consing (creation of cons cells). One very simple rule
of thumb is to avoid using append if possible. As can be seen by considering the
way the recursive calls unroll according to the definition

#let rec append l1 l2 =

match l1 with

[] -> l2

| (h::t) -> h::(append t l2);;

this typically generates n cons cells where n is the length of the first argument
list. There are often ways of avoiding appending, such as adding extra accumulator
arguments to functions that can be augmented by direct use of consing. A striking
example is the list reversal function, which we coded earlier as:

#let rec rev =

fun [] -> []

| (h::t) -> append (rev t) [h];;

This typically generates about n2/2 cons cells, where n is the length of the list.
The following alternative, using an accumulator, only generates n of them:
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#let rev =

let rec reverse acc =

fun [] -> acc

| (h::t) -> reverse (h::acc) t in

reverse [];;

Moreover, the recursive core reverse is tail recursive, so we also save stack
space, and win twice over.

For another typical situation where we can avoid appending by judicious use of
accumulators, consider the problem of returning the fringe of a binary tree, i.e. a
list of the leaves in left-to-right order. If we define the type of binary trees as:

#type btree = Leaf of string

| Branch of btree * btree;;

then a simple coding is the following

#let rec fringe =

fun (Leaf s) -> [s]

| (Branch(l,r)) -> append (fringe l) (fringe r);;

However the following more refined version performs fewer conses:

#let fringe =

let rec fr t acc =

match t with

(Leaf s) -> s::acc

| (Branch(l,r)) -> fr l (fr r acc) in

fun t -> fr t [];;

Note that we have written the accumulator as the second argument, so that the
recursive call has a more natural left-to-right reading. Here is a simple example of
how either version of fringe may be used:

#fringe (Branch(Branch(Leaf "a",Leaf "b"),

Branch(Leaf "c",Leaf "d")));;

it : string list = ["a"; "b"; "c"; "d"]

The first version creates 6 cons cells, the second only 4. On larger trees the
effect can be more dramatic. Another situation where gratuitous consing can crop
up is in pattern matching. For example, consider the code fragment:

fun [] -> []

| (h::t) -> if h < 0 then t else h::t;;

The ‘else’ arm creates a cons cell even though what it constructs was in fact
the argument to the function. That is, it is taking the argument apart and then
rebuilding it. One simple way of avoiding this is to recode the function as:

fun l ->

match l with

[] -> []

| (h::t) -> if h < 0 then t else l;;

However CAML offers a more flexible alternative: using the as keyword, a name
may be identified with certain components of the pattern, so that it never needs to
be rebuilt. For example:

fun [] -> []

| (h::t as l) -> if h < 0 then t else l;;
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4.2.3 Forcing evaluation

We have emphasized that, since CAML does not evaluate underneath function
abstractions, one can use such constructs to delay evaluation. We will see some
interesting examples later. Conversely, however, it can happen that one wants to
force evaluation of expressions that are hidden underneath function abstractions.
For example, recall the tail recursive factorial above:

#let rec tfact x n =

if n = 0 then x

else tfact (x * n) (n - 1);;

#let fact n = tfact 1 n;;

Since we never really want to use tfact directly, it seems a pity to bind it to a
name. Instead, we can make it local to the factorial function:

#let fact1 n =

let rec tfact x n =

if n = 0 then x

else tfact (x * n) (n - 1) in

tfact 1 n;;

This, however, has the defect that the local recursive definition is only evaluated
after fact1 receives its argument, since before that it is hidden under a function
abstraction. Moreover, it is then reevaluated each time fact is called. We can
change this as follows

#let fact2 =

let rec tfact x n =

if n = 0 then x

else tfact (x * n) (n - 1) in

tfact 1;;

Now the local binding is only evaluated once, at the point of declaration of fact2.
According to our tests, the second version of fact is about 20% faster when called
on the argument 6. The additional evaluation doesn’t amount to much in this case,
more or less just unravelling a recursive definition, yet the speedup is significant.
In instances where there is a lot of computation involved in evaluating the local
binding, the difference can be spectacular. In fact, there is a sophisticated research
field of ‘partial evaluation’ devoted to performing optimizations like this, and much
more sophisticated ones besides, automatically. In a sense, it is a generalization of
standard compiler optimizations for ordinary languages such as ‘constant folding’.
In production ML systems, however, it is normally the responsibility of the user to
force it, as it is here in CAML Light.

We might note, in passing, that if functions are implemented by plugging to-
gether combinators, with fewer explicit function abstractions, there is more chance
that as much of the expression as possible will be evaluated at declaration time. To
take a trivial example, f ◦ g will perform any evaluation of f and g that may be
possible, whereas λx. f(g x) will perform none at all until it receives its argument.
On the other side of the coin, when we actually want to delay evaluation, we really
need lambdas, so a purely combinatory version is impossible.

4.3 Imperative features

CAML has a fairly full complement of imperative features. We will not spend
much time on the imperative style of programming, and we assume readers already
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have sufficient experience. Therefore, we treat these topics fairly quickly with few
illustrative examples. However some imperative features are used in HOL Light,
and some knowledge of what is available will stand the reader in good stead for
writing practical CAML code.

4.3.1 Exceptions

We have seen on occasion that certain evaluations fail, e.g. through a failure in
pattern matching. There are other reasons for failure, e.g. attempts to divide by
zero.

#1 / 0;;

Uncaught exception: Division_by_zero

In all these cases the compiler complains about an ‘uncaught exception’. An
exception is a kind of error indication, but it need not always be propagated to the
top level. There is a type exn of exceptions, which is effectively a recursive type,
though it is usually recursive only vacuously. Unlike with ordinary types, one can
add new constructors for the type exn at any point in the program via an exception
declaration, e.g.

#exception Died;;

Exception Died defined.

#exception Failed of string;;

Exception Failed defined.

While certain built-in operations generate (one usually says raise) exceptions,
this can also be done explicitly using the raise construct, e.g.

#raise (Failed "I don’t know why");;

Uncaught exception: Failed "I don’t know why"

For example, we might invent our own exception to cover the case of taking the
head of an empty list:

#exception Head_of_empty;;

Exception Head_of_empty defined.

#let hd = fun [] -> raise Head_of_empty

| (h::t) -> h;;

hd : ’a list -> ’a = <fun>

#hd [];;

Uncaught exception: Head_of_empty

Normally exceptions propagate out to the top, but they can be ‘caught’ inside
an outer expression by using try ...with followed by a series of patterns to match
exceptions, e.g.

#let headstring sl =

try hd sl

with Head_of_empty -> ""

| Failed s -> "Failure because "^s;;

headstring : string list -> string = <fun>

#headstring ["hi"; "there"];;

it : string = "hi"

#headstring [];;

it : string = ""
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It is a matter of opinion whether exceptions are really an imperative feature.
On one view, functions just return elements of a disjoint sum consisting of their
visible return type and the type of exceptions, and all operations implicitly pass
back exceptions. Another view is that exceptions are a highly non-local control flow
perversion, analogous to goto.2 Whatever the semantic view one takes, exceptions
can often be quite useful.

4.3.2 References and arrays

CAML does have real assignable variables, and expressions can, as a side-effect,
modify the values of these variables. They are explicitly accessed via references
(pointers in C parlance) and the references themselves behave more like ordinary
CAML values. Actually this approach is quite common in C too. For example, if one
wants so-called ‘variable parameters’ in C, where changes to the formal parameters
of a function propagate outside, the only way to do it is to pass a pointer, so that the
function can dereference it. Similar techniques are often used where the function is
to pass back composite data.

In CAML, one sets up a new assignable memory cell with the initial contents x
by writing ref x. (Initialization is compulsory.) This expression yields a reference
(pointer) to the cell. Subsequent access to the contents of the cell requires an explicit
dereference using the ! operator, similar to unary * in C. The cell is assigned to
using a conventional-looking assignment statement. For example:

#let x = ref 1;;

x : int ref = ref 1

#!x;;

it : int = 1

#x := 2;;

it : unit = ()

#!x;;

it : int = 2

#x := !x + !x;;

it : unit = ()

#x;;

it : int ref = ref 4

#!x;;

it : int = 4

Note that in most respects ref behaves like a type constructor, so one can
pattern-match against it. Thus one could actually define an indirection operator
like !:

#let contents_of (ref x) = x;;

contents_of : ’a ref -> ’a = <fun>

#contents_of x;;

it : int = 4

As well as being mutable, references are sometimes useful for creating explicitly
shared data structures. One can easily create graph structures where numerous
nodes contain a pointer to some single subgraph.

Apart from single cells, one can also use arrays in CAML. In CAML these are
called vectors. An array of elements of type α has type α vect. A fresh vector of size
n, with each element initialized to x — once again the initialization is compulsory
— is created using the following call:

2Perhaps more precisely, to C’s setjmp and longjmp.
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#make_vect n x;;

One can then read element m of a vector v using:

#vect_item v m;;

and write value y to element m of v using:

#vect_assign v m y;;

These operations correspond to the expressions v[m] and v[m] = y in C. The
elements of an array are numbered from zero. For example:

#let v = make_vect 5 0;;

v : int vect = [|0; 0; 0; 0; 0|]

#vect_item v 1;;

it : int = 0

#vect_assign v 1 10;;

it : unit = ()

#v;;

it : int vect = [|0; 10; 0; 0; 0|]

#vect_item v 1;;

it : int = 10

All reading and writing is constrained by bounds checking, e.g.

#vect_item v 5;;

Uncaught exception: Invalid_argument "vect_item"

4.3.3 Sequencing

There is no need for an explicit sequencing operation in CAML, since the normal
rules of evaluation allow one to impose an order. For example one can do:

#let _ = x := !x + 1 in

let _ = x := !x + 1 in

let _ = x := !x + 1 in

let _ = x := !x + 1 in

();;

and the expressions are evaluated in the expected order. Here we use a special
pattern which throws away the value, but we could use a dummy variable name
instead. Nevertheless, it is more attractive to use the conventional notation for
sequencing, and this is possible in CAML by using a single semicolon:

#x := !x + 1;

x := !x + 1;

x := !x + 1;

x := !x + 1;;
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4.3.4 Interaction with the type system

While polymorphism works very well for the pure functional core of CAML, it has
unfortunate interactions with some imperative features. For example, consider the
following:

#let l = ref [];;

Then l would seem to have polymorphic type α list ref . In accordance with
the usual rules of let-polymorphism we should be able to use it with two different
types, e.g. first

#l := [1];;

and then

#hd(!l) = true;;

But this isn’t reasonable, because we would actually be writing something as an
object of type int then reading it as an object of type bool. Consequently, some
restriction on the usual rule of let polymorphism is called for where references are
concerned. There have been many attempts to arrive at a sound but convenient
restriction of the ML type system, some of them very complicated. Recently, dif-
ferent versions of ML seem to be converging on a relatively simple method, called
the value restriction, due to Wright (1996), and CAML implements this restriction,
with a twist regarding toplevel bindings. Indeed, the above sequence fails. But the
intermediate behaviour is interesting. If we look at the first line we see:

#let l = ref [];;

l : ’_a list ref = ref []

The underscore on the type variable indicates that l is not polymorphic in
the usual sense; rather, it has a single fixed type, although that type is as yet
undetermined. The second line works fine:

#l := [1];;

it : unit = ()

but if we now look at the type of l, we see that:

#l;;

it : int list ref = ref [1]

The pseudo-polymorphic type has now been fixed. Granted this, it is clear that
the last line must fail:

#hd(!l) = true;;

Toplevel input:

>hd(!l) = true;;

> ^^^^

This expression has type bool,

but is used with type int.

So far, this seems quite reasonable, but we haven’t yet explained why the same
underscored type variables occur in apparently quite innocent purely functional
expressions, and why, moreover, they often disappear on eta-expansion, e.g.
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#let I x = x;;

I : ’a -> ’a = <fun>

#I o I;;

it : ’_a -> ’_a = <fun>

#let I2 = I o I in fun x -> I2 x;;

it : ’_a -> ’_a = <fun>

#fun x -> (I o I) x;;

it : ’a -> ’a = <fun>

Other techniques for polymorphic references often rely on encoding in the types
the fact that an expression may involve references. This seems natural, but it can
lead to the types of functions becoming cluttered with this special information. It
is unattractive that the particular implementation of the function, e.g. imperative
or functional, should be reflected in its type.

Wright’s solution, on the other hand, uses just the basic syntax of the expression
being let-bound, insisting that it is a so-called value before generalizing the type.
What is really wanted is knowledge of whether the expression may cause side-effects
when evaluated. However since this is undecidable in general, the simple syntactic
criterion of its being or not being a value is used. Roughly speaking, an expression
is a value if it admits no further evaluation according to the CAML rules — this
is why an expression can often be made into a value by performing a reverse eta
conversion. Unfortunately this works against the techniques for forcing evaluation.

Further reading

Hints and tips for practical programming can be found in many functional program-
ming books, e.g. Paulson (1991). Methods used by language implementations to
perform garbage collection are discussed in depth by Jones and Lins (1996).
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Chapter 5

Primitive basis of HOL Light

The introductory chapter gave a brief introduction to the key ideas behind HOL and
simple interaction with the system. Here we explain more systematically how math-
ematical and logical assertions are represented in HOL, and list all the primitive
ways of producing theorems.

We should distinguish carefully between abstract and concrete syntax. The ab-
stract syntax of a term, which HOL deals with internally, is a tree-like CAML data
structure indicating how the term is built up from its components. While this is
convenient to manipulate, humans are more used to representing terms by a linear
sequence of characters, the concrete syntax. HOL’s quotation parser automatically
translates the concrete syntax into the abstract syntax, and its prettyprinter per-
forms an inverse mapping back to concrete syntax. For simple use of HOL, it is not
necessary to think much about the distinction, still less to understand details of the
abstract syntax. However, we think it is best to cover this early, since it shows how
simple the underlying structures really are. The present chapter can be read as an
abstract description of the HOL logic, without considering the actual implementa-
tion in CAML. However when we discuss concrete syntax, we are implicitly talking
about that accepted by HOL’s parser.

5.1 Terms

HOL’s logic is based on λ-calculus, a formalism invented by Alonzo Church. In HOL,
as in λ-calculus, terms are built up starting just from constants and variables using
application and abstraction. All mathematical and logical assertions are represented
in this uniform way.

Constants and variables are probably familiar to the reader from an informal
understanding of mathematics. They are used as the building-blocks of terms.
Variables can have any name, e.g. n, x, p. Constants, e.g. [] (the empty list), >
(true) and ⊥ (false), are intended to be abbreviations for other terms, and except
for a couple of primitive ones such as equality itself, need to have been defined
before they can be used in terms. We will see below how the user can define new
constants.

Application is application of a function to an argument, an operation used con-
stantly in mathematics. The customary concrete syntax for the application of a
function f to an argument t is f(t). HOL, following lambda-calculus convention,
allows the parentheses to be omitted, unless they are needed because t is itself a
compound term. For example, f(g(x)) needs at least the outer pair of parentheses,
as HOL’s parser interprets f g x to mean (f(g))(x), for reasons explained shortly.

Abstraction is in a precise sense a converse operation to application. Given
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a variable x and a term t, which may or may not contain x, one can construct
the so-called lambda-abstraction λx. t, which means ‘the function of x that yields
t’. (In HOL’s ASCII concrete syntax the backslash is used, e.g. \x. t.) For
example, λx. x+ 1 is the function that adds one to its argument. Abstractions are
not often seen in informal mathematics, but they have at least two merits. First,
they allow one to write anonymous function-valued expressions without naming
them (occasionally one sees x 7→ t[x] used for this purpose), and since our logic is
avowedly higher order, it’s desirable to place functions on an equal footing with first-
order objects in this way. Secondly, they make variable dependencies and binding
explicit; by contrast in informal mathematics one often writes f(x) in situations
where one really means λx. f(x).

We should give some idea of how ordinary mathematical and logical vocabulary
(like x + 1 above) is represented in this simple term structure. The basic idea is
quite simple. Fixed operations that one wants to use have constants corresponding
to them. For example, the negation of a real number is represented by a constant
--, and so −x is represented by the application of the constant -- to the variable
x. Exactly the same idea is used for logical operations like negation (‘not’), so ¬p
(‘not p’) is represented by the application of the logical negation constant ~ to the
term p, whatever it may be.

Application makes no special provision for functions of more than one argument,
such as addition. The trick used is known as currying, after the logician Curry
(1930). (Actually the device had previously been used by both Frege (1893) and
Schönfinkel (1924), but it’s easy to understand why the corresponding appellations
haven’t caught the public imagination.) The trick is to make the operation take
its arguments ‘one at a time’. For example, rather than considering addition as a
function R × R → R, consider it as a function R → (R → R). It accepts a single
argument a, and yields a new function of one argument that adds a to its argument.
This intermediate function is applied to the second argument, say b, and yields the
final result a + b. In other words, what we write as a + b is represented by HOL
as (+ a)(b). (Certain operations like + are written infix in the concrete syntax, for
the sake of familiarity. But the use of currying is independent of this.)

This approach is used for many multiple-argument functions in HOL. However,
there is also a pairing operation ‘,’, once again written infix in the concrete syntax,
that can also be used to form pairs of terms into new terms. Of course, this itself
has to be curried, but all other functions can be written in ‘uncurried’ form to take
a tuple as its argument. Thus, what is written in the concrete syntax as f(x, y) is
actually represented in HOL as f((, x)(y)).

Operations that bind variables are common in mathematics. For example, in
limx→∞

1
x , the variable x is bound by a variable-binding operation lim, and serves

merely to connect different parts of the term. It can be renamed consistently, e.g.
limy→∞

1
y . By contrast, the inner term 1

x on its own depends on the value of x, and
here x is said to be free. Some other examples of bound variables in mathematics
and logic are the variable x in the set abstraction {x | P} (‘the set of all x such that
P ’), the variable n in ΣNn=1n (‘the sum of all n from 1 up to N ’) and the variable z in
∀z. P (‘for all z, P holds’). All these variable-binding operations are represented in
HOL using special constants but with the actual variable-binding implemented by
lambda-abstraction. For example, there is a constant liminf (‘limit at infinity’) and
one then represents limx→∞

1
x by liminf(λx. 1

x ), or expanding the body completely,
liminf(λx. (/ 1)(x)). This means one should think of liminf as a function from
real functions to reals, i.e. (R → R) → R. Similarly, the logical assertion ∀x. P is
represented using the constant ! as !(λx. P ).

It is well-known that there is a 1-1 correspondence between sets of elements
(drawn from some global ‘universe’ set U), and predicates or ‘characteristic func-
tions’ U → 2, where 2 is some 2-element set of truth values. In HOL, there is no
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separate notion of ‘set’: they are identified with predicates, i.e. Boolean-valued
functions. Thus, one can simply write s x instead of x ∈ s, though the latter is
also possible using the infix constant IN, e.g. x IN s. It is thus normal and often
convenient to slip between thinking of truth-functions as predicates or as sets, even
within the same term.

5.2 Types

Application and abstraction are converse in the precise sense that (λx. t)(x) is
equal to t, and there is a primitive HOL rule to make this inference and produce
the theorem ` (λx. t)(x) = t. More generally, HOL is capable of proving that
` (λx. t)(s) = t[s/x] where the right-hand side denotes the appropriate (see later)
replacement of each instance of x in t by s. For example, (λx. 1 + x)(y) = 1 + y.
Unfortunately, even these banalities would allow one to get inconsistencies without
further restrictions. For example, using the logical negation operation, we can derive
the Russell paradox about the set of all sets that do not contain themselves (think
of P x as x ∈ P if preferred):

` (λx. ¬(x x))(λx. ¬(x x)) = ¬((λx. ¬(x x))(λx. ¬(x x)))

In other words, something is equal to its own logical negation! The problem
seems to arise because no proper distinction of levels is made: x is treated both as
a predicate and the argument to a predicate. Even if it didn’t lead to inconsistency,
one might argue that it looks a bit strange. Normally one likes to have a clear idea of
what sort of mathematical object a term denotes — our explanation of currying, for
example, leaned on the idea that addition is thought of as a function R→ (R→ R).

Accordingly, Church (1940) augmented λ-calculus with a theory of types, simpli-
fying Russell’s system from Principia Mathematica (Whitehead and Russell 1910)
and giving what is often called ‘simple type theory’. HOL follows this system quite
closely. Every term has a unique type which is either one of the basic types or the
result of applying a type constructor to other types. The only basic type in HOL
is initially the type of booleans bool and the only type operator is the function
space constructor →. (Many others are added later, as we shall see.) HOL extends
Church’s system by allowing also ‘type variables’ which give a form of polymor-
phism. Constants with polymorphic type are generic, and can have various types
resulting from fixing the names of the type variables. For example, the equality
relation has type α → α → bool where α is a type variable. This means it can be
used with any types, even if they themselves involve type variables, replacing α.

Just as in typed programming languages, functions may only be applied to
arguments of the right type; only a function of type f : γ → . . . may be applied to
an argument of type γ.

For familiarity, types are written in a concrete syntax with some type construc-
tors like → written infix. Just as with constant and variable terms, type variables
and type constants are not distinguished syntactically: HOL’s parser assumes that
everything whose name corresponds to a constant is a constant, and every other
identifier is a variable. However, it’s customary to use names beginning with an
uppercase letter for type variables, e.g. A and State. Examples of HOL types then,
include bool and A → bool (where A is a type variable). We write t : γ to indicate
that a term t has type γ. Readers familiar with set theory may like to think of types
as sets within which the objects denoted by the terms live, so t : γ can be read as
t ∈ γ. Note that the use of the colon is already standard in set theory when used
for function spaces, i.e. one typically writes f : A→ B rather than f ∈ A→ B.
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5.3 Primitive inference rules

The HOL formal system allows the deduction of arbitrary sequents of the form
φ1, . . . , φn ` ψ (read as ‘if φ1 and . . . and φn then ψ’) where the terms involved
have type bool. (Where there are no assumptions it is customary to write just ` ψ.)
There are no additional logical constants involved in the basic deductive system.
The derivable sequents are those that can be generated by the following inference
rules. Each rule is written with the conclusion below a line and the hypotheses
above, and with the standard name for the inference rule, corresponding in fact to
a CAML identifier in HOL, at the right.

` t = t
REFL

This rule says that equality is reflexive.

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

This rule says that equality is transitive. It is of course necessary to include in
the conclusion theorem any assumption that may have played a role in deducing
the top two theorems.

Γ ` s = t ∆ ` u = v
Γ ∪∆ ` s(u) = t(v)

MK COMB

This says that equal functions applied to equal arguments give equal results.
We have assumed without comment that the types agree, e.g. s : σ → τ , t : σ → τ ,
u : σ and v : σ.

Γ ` s = t
Γ ` (λx. s) = (λx. t)

ABS

This rule requires that x is not a free variable in any of the assumptions Γ. It says
that if, without using any special properties of x, we deduced that two expressions
involving x are equal, then the functions that take x to those values are equal.

` (λx. t)x = t
BETA

This expresses the fact that combination and abstraction are converse opera-
tions, i.e. ‘the function that takes an argument x to t’, applied to an argument x,
gives t.

{p} ` p ASSUME

This says simply that from any p we can deduce p. Of course, p must have type
bool.

Γ ` p = q ∆ ` p
Γ ∪∆ ` q EQ MP

This connects equality with deduction, saying that if p and q are equal, and we
can deduce p, then we can deduce q (from the appropriately combined assumptions).

Γ ` p ∆ ` q
(Γ− {q}) ∪ (∆− {p}) ` p = q

DEDUCT ANTISYM RULE

This rule also connects equality and deduction, effectively saying that equality
on the boolean type represents logical equivalence. Ignoring extra hypotheses for
a moment, it says that if we can deduce p from q and q from p, then p and q are
equal, under the accumulated assumptions.
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Γ[x1, . . . , xn] ` p[x1, . . . , xn]
Γ[t1, . . . , tn] ` p[t1, . . . , tn]

INST

This rule expresses the fact that variables are to be interpreted as schematic,
i.e. if p is true for variables x1, . . . , xn, then we can replace those variables by any
terms of the same type and still get something true. Note that the substitution is
also applied to all hypotheses.

Γ[α1, . . . , αn] ` p[α1, . . . , αn]
Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]

INST TYPE

This is the same, but for substitution of type variables rather than term vari-
ables.

5.4 Definitions

All theorems in HOL are deduced using just the above rules, starting from a small
set of axioms, which we will discuss shortly. Mathematics in HOL is derived just
from these very basic axioms. However there is a special rule of definition, which
allows the addition of new constants and corresponding new axioms provided they
are purely definitional in character.1 If t : τ is any term without free (term or type)
variables, and c : τ an unused constant, then c : τ may be added to the stock of
constants, and the axiom ` c = t included as a theorem.

One can also define new types and type constructors in HOL. Given any subset
of a type γ, marked out by its characteristic predicate P : γ → bool, then given a
theorem asserting that P is nonempty, one can define a new type δ (or type operator
if γ contains type variables) in bijection with this set.
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Both these definitional principles give a way of producing new mathematical
theories without compromising soundness: one can easily prove that these principles
are consistency-preserving. Effectively, constant definitions could be avoided simply
by writing the definitional expansion out in full, while type definitions could be
avoided by incorporating appropriate set constraints into theorems: rather than
saying ∀x : δ. . . . one could say ∀y : γ. P (y)⇒ . . ., with the appropriate isomorphic
mappings.2

1From a logical point of view, we may say that HOL is actually an evolving sequence of logical
systems, each a conservative extension of previous ones.

2In general, the logical core of HOL is reasonably intuitionistic, with classical principles intro-
duced later as axioms. However the above definitional principle jars slightly with this since one of
the type bijections is a total function γ → δ. This is at least weakly nonconstructive, allowing us
for example to pass from p⇒ ∃x. q[x] to ∃x. p⇒ q[x].
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5.5 Derived rules

HOL’s logic is then built up by including constants for the usual logical operations.
An attractive feature is that these do not need to be postulated: it has been known
since Henkin (1963) how to define all logical constants in terms of equality, at least
from a classical point of view. We do things in an ‘intuitionistic’ manner, giving
useful deductive rules before we later assert the Law of the Excluded Middle, i.e.
that every Boolean term is either true or false. While it is more typical (Prawitz
1965) to take a few additional logical constants such as ∀ and ⇒ as primitive, our
approach is very similar to the usual definitions of the internal logic of a topos; see
e.g. Lambek and Scott (1986).

We will now show how all the logical constants are defined. These are > (true),
∧ (and), ⇒ (implies), ∀ (for all), ∃ (there exists), ∨ (or), ⊥ (false) ¬ (not) and ∃!
(there exists a unique). Recall that what we write as ∀x.P [x] is a syntactic sugaring
of ∀(λx. P [x]). Using this technique, quantifiers and the Hilbert ε operator can be
used as if they bound variables, but with all binding implemented in terms of λ-
calculus. There are several examples in this book.

> = (λx. x) = (λx. x)
∧ = λp. λq. (λf. f p q) = (λf. f > >)
⇒ = λp. λq. p ∧ q = p

∀ = λP. P = λx.>
∃ = λP. ∀Q. (∀x. P (x)⇒ Q)⇒ Q

∨ = λp. λq. ∀r. (p⇒ r)⇒ (q ⇒ r)⇒ r

⊥ = ∀P. P
¬ = λt. t⇒ ⊥
∃! = λP. ∃P ∧ ∀x. ∀y. P x ∧ P y ⇒ (x = y)

While these might look puzzling at first sight, a little thought will convince
the reader that they express what is intended. For example ∀x. P [x], or without
sugaring ∀(λx. P [x]), says that for any a, P [a], or equivalently (λx. P [x]) a, is true.
This is exactly the same as saying that λx. P [x] is a constant function that always
returns > (true), which is how ∀ is defined.

From the above definitions and the primitive rules, it is then possible to define
derived inference rules that give convenient ways of manipulating logical formulas
without explicitly taking everything back to the definitions. Because HOL is a
programmable system in the LCF style, these can all be encapsulated as CAML
functions that look to the user the same as primitive rules.

5.6 Classical axioms

That concludes the logic proper, and in fact quite a bit of interesting mathematics,
e.g. infinitary inductive definitions, can be developed just from that basis (Harrison
1995). But for general use we adopt three more axioms.

• First, there is an axiom of extensionality, which we encode as an η-conversion
theorem: ` (λx. t x) = t.

• Secondly, we introduce one new primitive logical constant ε, of polymorphic
type (α→ bool)→ α, the so-called Hilbert choice operator. It is accompanied
by a new axiom giving the basic property of ε, namely that it picks out
something satisfying P whenever there is something to pick:
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` ∀x. P (x)⇒ P (εx. P (x))

The intuitive reading of εx. P (x) is ‘some x such that P (x)’, which is an
invaluable idiom when expressing some mathematical assertions. (Note that
if there isn’t anything satisfying P (x), then εx. P (x) is still well-defined, but
one can’t prove any interesting properties of it.) However the above axiom
isn’t just an innocent convenience: it is a form of the Axiom of (global)
Choice; since P can contain other variables, one can pass from ∀x. ∃y. P [x, y]
to ∀x. P [x, εy. P [x, y]]. Rather surprisingly, it also makes the logic classical,
i.e. allows us to prove the theorem ` ∀p. p ∨ ¬p; see Beeson (1984) for the
proof we use.

• Finally we introduce a new type ind of ‘individuals’, and add an axiom of
infinity, asserting that the type ind is infinite. The Dedekind/Peirce definition
of ‘infinite’ is used:

` ∃f : ind→ ind. (∀x1, x2. (f(x1) = f(x2))⇒ (x1 = x2))∧
¬(∀y. ∃x. y = f(x))

That is, we assert the existence of a function from the type of individuals to
itself that is injective but not surjective. Such a mapping is impossible if the
type is finite, since it would entail that it can be put into 1-1 correspondence
with a proper subset of itself.

From that simple foundation, all the HOL mathematics and applications, in-
cluding those described here, is developed by definitional extension.
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Chapter 6

Implementation in CAML

The above description of HOL’s logical basics abstracted away somewhat from its
actual realization in CAML. However it has a fairly direct realization as three CAML
types to represent HOL types, terms and theorems. (Note the object-meta distinc-
tion here: one has a CAML type of data structures representing HOL types.) These
CAML types are all treated as abstract, with members only being created via spe-
cial interface functions.1 This guards against construction of meaningless types
(e.g. using undefined type constructors), ill-typed terms, and theorems that have
not been proved using the primitive rules.

6.1 Types

Each HOL type is either a type variables, or a type constructor applied to other
types. Primitive types like bool are treated as nullary constructors, i.e. constructors
with no arguments. We will now show some of the most useful CAML functions for
manipulating types.

get_type_arity :string -> int finds the arity of the appropriately-named
type constructor. If there is no type constructor with that name, it fails. For
example:

#get_type_arity "bool";;

it : int = 0

#get_type_arity "fun";;

it : int = 2

#get_type_arity "con";;

Uncaught exception: Failure "find"

The rest of the functions divide nicely into three groups: those for creating HOL
types, those for breaking them apart, and those for testing their structure.

mk_vartype :string -> hol_type creates a type variable with the requested
name. This is permissible even if there is also a type constant of that name, but
can look confusing. For example:

#mk_vartype "A";;

it : hol_type = ‘:A‘

#mk_vartype "bool";;

it : hol_type = ‘:bool‘

1This could actually be enforced by the CAML system by separately compiling the modules.

57
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mk_type :string * hol_type list -> hol_type creates a composite type given
the name of a type constructor and a list of component types of the right length.
It fails if the name is not that of a constructor, or if the constructor’s arity doesn’t
match the length of the list.

#mk_type("bool",[mk_vartype "A"]);;

Uncaught exception: Failure "mk_type: wrong number of arguments to bool"

#mk_type("bool",[]);;

it : hol_type = ‘:bool‘

#mk_type("fun",[it; it]);;

it : hol_type = ‘:bool->bool‘

dest_vartype :hol_type -> string reverses the effect of mk_vartype, i.e.
takes a type variable and returns its name. It fails if the type isn’t a type vari-
able.

#dest_vartype ‘:A‘;;

it : string = "A"

#dest_vartype ‘:bool‘;;

Uncaught exception: Failure "dest_vartype: type constructor not a variable"

#dest_vartype (mk_vartype "bool");;

it : string = "bool"

Analogously, dest_type :hol_type -> string * hol_type list reverses the
effect of mk_type, and fails if given a type variable.

#dest_type ‘:bool‘;;

it : string * hol_type list = "bool", []

#dest_type ‘:A‘;;

Uncaught exception: Failure "dest_type: type variable not a constructor"

#dest_type ‘:bool->bool‘;;

it : string * hol_type list = "fun", [‘:bool‘; ‘:bool‘]

The functions is_type :hol_type -> bool and is_vartype :hol_type -> bool
test whether a HOL type is a composite type or a type variable respectively.

6.2 Terms

The CAML function get_const_type :string -> hol_type finds the type of the
appropriately-named constant, or fails if there is no constant of that name. Some
constants have polymorphic type, meaning a type including type variables. Such a
constant can have any type that arises from replacing the component type variables
consistently by other types. For example the equality constant is a curried operator
of two arguments, but the types of the arguments are arbitrary, provided they are
the same:

#get_const_type "=";;

it : hol_type = ‘:A->(A->bool)‘

In such cases, the type returned by get_const_type is a most general type, and
can be specialized by setting type variables appropriately. In general, terms feature
instances of polymorphic constants. The type of an arbitrary term can by found
using type_of :term -> hol_type, e.g.
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#type_of ‘x:A‘;;

it : hol_type = ‘:A‘

#type_of ‘x = x‘;;

Warning: inventing type variables

it : hol_type = ‘:bool‘

By analogy with HOL types, the rest of the functions divide nicely into those
for creating HOL terms, those for breaking them apart, and those for testing their
structure.

mk_var :string * hol_type -> term creates a HOL variable with the chosen
name and type.

#mk_var("x",mk_vartype "A");;

it : term = ‘x‘

#type_of it;;

it : hol_type = ‘:A‘

#mk_var("p",‘:bool‘);;

it : term = ‘p‘

mk_const :string * (hol_type * hol_type) list -> term is the analogous
constructor for HOL constants, but it’s a bit more complicated to use. The second
argument indicates not the desired type, but rather a list of settings for the type
variables in order to attain that type. For example:

#mk_const("=",[]);;

it : term = ‘(=)‘

#type_of it;;

it : hol_type = ‘:A->(A->bool)‘

#mk_const("=",[‘:bool‘,‘:A‘]);;

it : term = ‘(=)‘

#type_of it;;

it : hol_type = ‘:bool->(bool->bool)‘

There is an alternative function mk_mconst :string * hol_type -> term which
works out the instantiations itself. However it is not part of the logical core, relying
as it does on higher-level functions to match up types. It will fail if the desired type
cannot be realized:

#mk_mconst("=",‘:bool->bool->bool‘);;

it : term = ‘(=)‘

#type_of it;;

it : hol_type = ‘:bool->(bool->bool)‘

#mk_mconst("=",‘:A->B->C‘);;

Uncaught exception: Failure "mk_const: generic type cannot be instantiated"

mk_comb : term * term -> term creates an application; it is given two terms,
one a function and one an argument, and tries to create the corresponding applica-
tion term, failing if the types don’t match up.

#mk_comb(‘P:A->bool‘,‘x:A‘);;

it : term = ‘P x‘

#mk_comb(‘P:A->bool‘,‘x:B‘);;

Uncaught exception: Failure "mk_comb: types do not agree"

mk_abs :term * term -> term creates an abstraction term, given a variable
to abstract over and the term to act as body. It fails if the first term argument isn’t
a variable.
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#mk_abs(‘x:A‘,‘x:A‘);;

it : term = ‘\x. x‘

#mk_abs(it,it);;

Uncaught exception: Failure "mk_abs: not a variable"

There are now analogous destructor functions dest_var, dest_const, dest_comb
and dest_abs that act as inverses to the above. Strictly speaking dest_const is an
inverse to mk_mconst, since it returns the constant name and type, not the instan-
tiation list. Similarly, there are discriminator functions is_var, is_const, is_abs
and is_comb to test whether a term is in each class.

#dest_comb ‘~p‘;;

it : term * term = ‘(~)‘, ‘p‘

#dest_comb ‘\p. ~p‘;;

Uncaught exception: Failure "dest_comb: not a combination"

#dest_abs ‘\p. ~p‘;;

it : term * term = ‘p‘, ‘~p‘

#is_var ‘x:A‘;;

it : bool = true

#is_var ‘~p‘;;

it : bool = false

As well as the primitive syntax operations on terms, there are various derived
ones, which avoid the need to reduce everything right down to the basic opera-
tions above. For example, rator and rand (the names established lambda-calculus
jargon) take respectively the operator and operand of an application, i.e. return
respectively f and x when applied to a term f x. They can be implemented just
by applying dest comb to get a pair of terms, then applying the CAML functions
fst or snd:

#let rator tm = fst(dest_comb tm);;

rator : term -> term = <fun>

#let rand tm = snd(dest_comb tm);;

rand : term -> term = <fun>

#rand ‘SUC 2‘;;

it : term = ‘2‘

#rator ‘1 + 2‘;;

it : term = ‘(+) 1‘

#rand ‘1 + 2‘;;

it : term = ‘2‘

There are also derived functions to create, break apart and test for equations:

#dest_eq ‘x = 1‘;;

it : term * term = ‘x‘, ‘1‘

#is_eq ‘x = y + 3‘;;

it : bool = true

#is_eq ‘x <= y + 3‘;;

it : bool = false

#is_eq ‘p = q‘;;

it : bool = true

#mk_eq(‘T‘,‘F‘);;

it : term = ‘T = F‘

Similarly, when the other constants are defined, they often have a corresponding
set of functions to create, test, and destroy them. For example, mk imp creates an
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implication p ==> q, dest conj breaks apart a conjunction p /\ q, and is_disj
tests if a term is a disjunction p \/ q.

6.3 Theorems

HOL theorems can be taken apart into a list of assumptions and a conclusion
using the function dest_thm :thm -> term list * term. The hypotheses and
conclusion can be grabbed separately using hyp and concl. However they can only
be created by using one of the primitive rules, making a term or type definition,
or finally asserting an axiom. The last of these is only done three times for the
basic mathematical axioms, and thereafter HOL users are discouraged from adding
new axioms, as this does not maintain the guarantee of consistency. The primitive
inference rules were listed earlier, and their CAML realizations are simply CAML
functions returning something of type thm. For example:

#BETA ‘(\p. ~p) p‘;;

it : thm = |- (\p. ~p) p = ~p

#INST [‘q:bool‘,‘p:bool‘] it;;

it : thm = |- (\p. ~p) q = ~q

#TRANS (ASSUME ‘p:bool = q‘) (ASSUME ‘q:bool = r‘);;

it : thm = p = q, q = r |- p = r

#dest_thm it;;

it : term list * term = [‘p = q‘; ‘q = r‘], ‘p = r‘

New definitions are made using the function new definition, which takes an
equational term ‘c = t’, where c is a variable. The system introduces a new con-
stant called c and returns the theorem |- c = t for the new constant. For example:

#new_definition ‘true = T‘;;

it : thm = |- true = T

Later on, more convenient derived definitional principles are built on top of this
— even new definition is bound to a more powerful derived function that can, for
example, accept function definitions in the form ‘f x1 ... xn = ...’.

The primitive function for performing type definitions is new_basic_type_definition.
The user gives the desired name for the new type and for the bijections that map
between the old and new types, and finally a theorem asserting that the chosen
subset of the existing type contains some object. For example, we can define a new
type single in bijection with the 1-element subset of bool containing just T. The
appropriate predicate is the function that asks of its argument x whether it is equal
to t, i.e. \x. x = T:

#let th1 = BETA_CONV ‘(\x. x = T) T‘;;

th1 : thm = |- (\x. x = T) T = T = T

#let th2 = EQ_MP (SYM th1) (REFL ‘T‘);;

th2 : thm = |- (\x. x = T) T

#new_basic_type_definition "single" ("mk_single","abs_single") th2;;

it : thm * thm =

|- mk_single (abs_single a) = a,

|- (\x. x = T) r = abs_single (mk_single r) = r

Two theorems are returned as an ML pair, which together imply that the chosen
bijections map 1-1 between the new type and the chosen subset of the old one.
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6.4 Some predefined constants

HOL has a large number of constants predefined. The most basic of these are the
logical operators whose definitions were given in passing above. Here is a table
showing the conventional logical symbols, HOL’s ASCII approximation, and the
English reading. In the concrete syntax, they bind according to their order in the
above table, negation being strongest and the variable-binding operations weakest.

⊥ F Falsity
> T Truth
¬ ~ Not
∧ /\ And
∨ \/ Or
⇒ ==> Implies
≡ = If and only if
∀ ! For all
∃ ? There exists
∃! ?! There exists a unique
ε @ Some . . . such that
λ \ The function taking . . . to

Readers are no doubt used to writing symbols like + rather than the word ‘plus’,
but may well find these analogous logical operations less familiar. However, it’s
worth spending some time getting accustomed to them, since they are needed to
understand most HOL terms. Here are a few examples:

• T says ‘truth holds’.

• F ==> p says ‘if falsity holds, so does any p’.

• !x. x > 0 = (?y. x = y + 1) says ‘for all x, x is greater than zero if and
only if there exists a y such that x = y + 1’.

• x >= y /\ u > v ==> x + u > y + v says ‘if x is greater than or equal to
y and u is greater than v, then x+ u is greater than y + v’.

• p /\ q ==> q \/ r says ‘if p and q are true, then either q or r is true’.

• ~(p = ~p) says ‘it is always false that p holds if and only if p does not hold’.

• (m * n = 0) = (m = 0) \/ (n = 0) says ‘mn is zero if and only if either m
is zero or n is zero’.

• (\x. x + 1) 3 = 4 says that the function mapping any x to x + 1, when
applied to the argument 3, is equal to 4.

• (?!x. P x) ==> !a. P(a) = (a = @x. P x) says ‘if there is a unique x sat-
isfying P , then for all a, P holds of a if and only if a is equal to some canonical
x satisfying P ’.

• !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n expresses the prin-
ciple of complete mathematical induction, i.e. ‘for every predicate P over
numbers, if for each n, whenever P holds for each smaller m, then P holds
for n, then for every n, P holds’.
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There are also a lot of constants defined in mathematical theories. Most of these
should look familiar, and in any case are summarized in a later chapter. However,
the following is a list of some of the less obvious ones, which may help the reader
follow some of the examples below.

HOL notation Standard symbol Meaning
SUC n n+ 1 Successor of n
# (none) Natural map N→ R or N→ Z

--x −x Unary negation of x
inv(x) x−1 Multiplicative inverse of x
abs(x) |x| Absolute value of x
m EXP n mn Natural m raised to natural power n
x pow n xn Real x raised to natural number power n
root n x n

√
x Positive nth root of x

Sum(n,d) f Σn+d−1
i=n f(i) Sum of d terms f(i) starting with f(n)

x IN s x ∈ s x is a member of set s
EMPTY ∅ The empty set
UNIV none Universe set for a type
x INSERT s {x} ∪ s Set s with element x
s DELETE x s− {x} Set s without element x
s UNION t s ∪ t Union of sets s and t
s INTER t s ∩ t Intersection of sets s and t
s DIFF t s− t Difference of sets s and t
UNIONS s

⋃
s Union of all members of s

INTERS s
⋂
s Intersection of all members of s

Formally, naturals, integers and reals are all different types, hence the use of a
mapping # between then. The usual arithmetic operations like + are overloaded,
meaning that they are used for addition of reals, integers, and natural numbers.
(The main exception is that EXP is used for natural numbers.) The next chapter
explains the translation from the usual symbols to different constants under the
surface.
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Chapter 7

Parsing and printing

We have already used the automatic quotation parsers quite extensively, and it’s
time we looked at the relationship between the underlying representations and the
surface syntax in more detail. Many convenient constructs are representing using
some special constants inside HOL, and the parser and printer transform such inter-
nal representations into more palatable surface syntax. For example the conditional
expression

if b then e1 else e2

is represented inside the logic using a constant COND:

CONS b e1 e2

Various other handy syntactic constructs are also dealt with in this way, e.g.
abstractions over non-variables, and let-terms. For example

\(x,y,z). x + y + z

is represented by:

GABS (\f. !x y z. GEQ (f (x,y,z)) (x + y + z))

and

let x = 1 and y = 2 in x + y

is represented by:

LET (\x y. LET_END (x + y)) 1 2

Apart from special case like these, the parser-printer transformations are pretty
straightforward. Identifiers may be declared infix, and given a precedence and
associativity (right or left) using parse as infix. Here are a few genuine examples
from the source code:

parse_as_infix("<",(12,"right"));;

parse_as_infix("+",(16,"right"));;

parse_as_infix("-",(18,"left"));;

parse_as_infix("IN",(11,"right"));;

parse_as_infix("UNION",(16,"right"));;
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7.1 Overloading

The parser and printer allow front-end symbols to be overloaded, and tries to resolve
ambiguities by exploiting type information. Before a symbol can be overloaded, it
must be given a most general type, and any term it maps to must have a type
that is an instance of this type. During typechecking, the overloaded symbol is
given its most general type. If the typechecking process fixes the type sufficiently
to disambiguate, then the appropriate target is picked. Otherwise some instance
is defaulted, and typechecking repeated until all symbols have been resolved. For
example, the addition symbol is made overloadable:

make_overloadable "+" ‘:A->A->A‘;;

Now in order to make ”+” overloaded to natural number, integer and real ad-
dition, we do:

overload_interface ("+",‘(+):num->num->num‘);

overload_interface ("+",‘int_add:int->int->int‘);

overload_interface ("+",‘real_add:real->real->real‘);

Now the symbol + will map to one of three terms in the underlying represen-
tation, decided according to type. The default chosen is always the most recently
declared version, real addition after the above sequence. If the user wants to avoid
any defaults, then type information sometimes needs to be supplied. All the follow-
ing are unambiguous:

#‘x + 1‘;;

it : term = ‘x + 1‘

#‘x:int + y‘;;

it : term = ‘x‘

#‘(x + y):real‘;;

it : term = ‘x + y‘

Instead of mapping a symbol to multiple targets, one can always choose just one.
The function override interface is similar to overload interface, except that
it removes any existing mappings for the symbol first. For example, the user who
dislikes the use of equality to mean logical equivalence could remap HOL Light’s
interface as follows:

#parse_as_infix("<=>",(2,"right"));;

it : unit = ()

#override_interface ("<=>",‘(=):bool->bool->bool‘);;

it : unit = ()

#‘x = F‘;;

it : term = ‘x <=> F‘

#‘x <=> F‘;;

it : term = ‘x <=> F‘



Chapter 8

Conversions

A conversion in HOL is a derived rule of type term -> thm that when given a
term t, always returns (assuming it doesn’t fail) a theorem of the form |- t = t’.
Conversions were introduced into Cambridge LCF by Paulson (1983), who showed
that they gave a convenient and regular way of implementing many handy derived
rules. Conversions can be considered as transforming a term into an equal one,
and also giving a theorem to justify this equality. They are therefore useful as
building-blocks for larger transformations, similarly justified.

HOL has a variety of built-in conversions, and they often have names ending
in CONV as a reminder that they are conversions. Rather trivially, for example, the
primitive inference rule REFL is a conversion, which takes a term t and returns a
theorem |- t = t. If we think of conversions as transforming one term to another,
REFL is a sort of ‘identity’ conversion. In fact, for this reason, it is given a new
name ALL CONV, since it is a conversion that always, trivially, works on any term.
Its converse, in a sense, is a conversion NO CONV which always fails:

#let (ALL_CONV:conv) = REFL;;

ALL_CONV : conv = <fun>

#let (NO_CONV:conv) = fun tm -> failwith "NO_CONV";;

NO_CONV : conv = <fun>

A slightly more interesting conversion is BETA CONV, which performs a beta re-
duction step on terms of the form (\x. ...) t:

#BETA_CONV ‘(\x. x + 1) 2‘;;

it : thm = |- (\x. x + 1) 2 = 2 + 1

There are also some conversions special to particular theories. For example there
is a conversion NUM RED CONV to evaluate the result of an arithmetic operation on
two numerals:

#NUM_RED_CONV ‘2 * 2‘;;

it : thm = |- 2 * 2 = 4

#NUM_RED_CONV ‘2 EXP 10‘;;

it : thm = |- 2 EXP 10 = 1024

#NUM_RED_CONV ‘100 DIV 7‘;;

it : thm = |- 100 DIV 7 = 14

8.1 Conversionals

These conversions are building blocks. The mechanism for building them up is
a suite of higher order functions called ‘conversionals’ or ‘conversion combining

67



68 CHAPTER 8. CONVERSIONS

operators’. These allow one to construct composite conversions in a user-defined
way. For example, the conversional THENC, used infix, uses one conversion and then
afterwards, another, e.g.

#(BETA_CONV THENC NUM_RED_CONV) ‘(\x. x + 1) 2‘;;

it : thm = |- (\x. x + 1) 2 = 3

The conversional REPEATC allows one to use a conversion repeatedly until it fails
(maybe zero times), e.g.

#REPEATC BETA_CONV ‘23‘;;

it : thm = |- 23 = 23

#REPEATC BETA_CONV ‘(\x. x + 1)‘;;

it : thm = |- (\x. x + 1) = (\x. x + 1)

#REPEATC BETA_CONV ‘(\x. x + 1) 2‘;;

it : thm = |- (\x. x + 1) 2 = 2 + 1

#REPEATC BETA_CONV ‘(\x. (\y. x + y) 2) 1‘;;

it : thm = |- (\x. (\y. x + y) 2) 1 = 1 + 2

8.2 Depth conversions

The conversions above are still only applied at the top level of a term. For example,
the following fails because the beta-redex is deeper inside the term than expected:

#BETA_CONV ‘1 + (\x. x + 1) 2‘;;

Uncaught exception: Failure "BETA_CONV: Not a beta-redex"

However there is an additional set of conversionals that apply the given conver-
sion at depth inside the term. For example ONCE DEPTH CONV applies a conversion
to the first applicable term(s) encountered in a top-down traversal of the term. No
deeper terms are examined, but several terms can be converted provided they are
disjoint:

#ONCE_DEPTH_CONV NUM_RED_CONV ‘1 + (2 + 3)‘;;

it : thm = |- 1 + 2 + 3 = 1 + 5

#ONCE_DEPTH_CONV NUM_RED_CONV ‘(1 + 1) * (1 + 1)‘;;

it : thm = |- (1 + 1) * (1 + 1) = 2 * 2

Conversions like NUM RED CONV can be used to reduce a term completely by ap-
plying it in a single bottom-up sweep. This is done by the conversional DEPTH CONV,
e.g.

#DEPTH_CONV NUM_RED_CONV ‘7 * (3 EXP 10) + 11‘;;

it : thm = |- 7 * 3 EXP 10 + 11 = 413354

However, this isn’t always what’s needed; sometimes the act of applying a
conversion at one level can create new applicable terms lower down; in this case
DEPTH CONV will not reexamine them. Two other conversionals, TOP DEPTH CONV
and REDEPTH CONV, will keep applying conversions as long as possible all over the
term.
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#DEPTH_CONV BETA_CONV ‘(\f x. f x) (\y. y + 1)‘;;

it : thm = |- (\f x. f x) (\y. y + 1) = (\x. (\y. y + 1) x)

#REDEPTH_CONV BETA_CONV ‘(\f x. f x) (\y. y + 1)‘;;

it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)

#TOP_DEPTH_CONV BETA_CONV ‘(\f x. f x) (\y. y + 1)‘;;

it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)

#TOP_DEPTH_CONV NUM_RED_CONV ‘7 * (3 EXP 10) + 11‘;;

it : thm = |- 7 * 3 EXP 10 + 11 = 413354

The difference is that the main sweeps are respectively top-down and bottom-up,
which can lead to one or the other being preferable, mainly for efficiency reasons,
in some situations. TOP DEPTH CONV is the default for HOL’s rewriting, described
in a later chapter.

The conversionals all have fairly straightforward definitions using HOL’s primi-
tive and derived equality rules. For example, THENC just needs to apply the conver-
sion to a term, getting a theorem, then take the right-hand side of this theorem’s
conclusion, apply the second conversion to that and then link the equations together
using the primitive inference rule TRANS. One could write an equivalent function as:

#let THENC’ conv1 conv2 t =

let th1 = conv1 t in

let th2 = conv2 (rand(concl th1)) in

TRANS th1 th2;;

THENC’ : (’a -> thm) -> (term -> thm) -> ’a -> thm = <fun>

The depth conversionals can be implemented by a recursive traversal of the term,
using primitive rules like MK COMB to lift the equational theorems up to the whole
term. In fact, the implementations are a bit more sophisticated because they are
careful to avoid creating trivial equations unless needed.
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Chapter 9

Derived rules

HOL has a variety of other derived rules that are not conversions, or at least aren’t
used much as in the previous chapter. Here we cover some of the most basic ones.

9.1 Logical rules

All the logical constants are defined; we have seen the definitions above. From the
definitions, rules for manipulating them directly are derived, so for most purposes
users can forget that they aren’t primitives. Most of the rules are so-called intro-
duction and elimination rules of natural deduction (Prawitz 1965).1 For example,
the introduction rule for conjunctions, CONJ, takes two theorems and gives a new
theorem that results from conjoining (‘anding’) them, e.g.

#CONJ (REFL ‘1‘) (ASSUME ‘x = 2‘);;

it : thm = x = 2 |- (1 = 1) /\ (x = 2)

Conversely, the elimination rules CONJUNCT1 and CONJUNCT2 take a theorem
with a conjunction as conclusion, and give new theorems for the left and right
arms. CONJ PAIR gives a pair of both, while CONJUNCTS repeatedly breaks down a
conjunctive theorem into a list of theorems.

#let th1 = CONJ (REFL ‘T‘) (ASSUME ‘p /\ q‘);;

th1 : thm = p /\ q |- (T = T) /\ p /\ q

#let th2 = CONJ (REFL ‘1‘) th1;;

th2 : thm = p /\ q |- (1 = 1) /\ (T = T) /\ p /\ q

#CONJ_PAIR th2;;

it : thm * thm = p /\ q |- 1 = 1, p /\ q |- (T = T) /\ p /\ q

#CONJUNCTS th2;;

it : thm list = [p /\ q |- 1 = 1; p /\ q |- T = T; p /\ q |- p; p /\ q |- q]

#CONJUNCT2 th1;;

it : thm = p /\ q |- p /\ q

Abstracting away a bit from the implementation in CAML, we can represent
the rules in the usual form as:

Γ ` p ∆ ` q
Γ ∪∆ ` p ∧ q CONJ

1Although HOL uses a sequent presentation, the conventional derived rules are natural deduc-
tion rules, i.e. introduction and elimination on the right, rather than left and right introduction.
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Γ ` p ∧ q
Γ ` p CONJUNCT1

Γ ` p ∧ q
Γ ` q CONJUNCT2

All the other defined constants come equipped with a similar suite of rules. In
most cases the reader will be able to guess how the corresponding CAML function
is used, and can experiment a little on the lines of the above examples.

Γ ` p
Γ ` p = > EQT INTRO

Γ ` p = >
Γ ` p EQT ELIM

Γ ` p⇒ q ∆ ` p
Γ ∪∆⇒ q

MP

Γ ` q
Γ− {p} ` p⇒ q

DISCH

Γ ` p⇒ q

Γ ∪ {p} ` q UNDISCH

Γ ` ∀x. p
Γ ` p[t/x]

SPEC

Here p[t/x] denotes the result of substituting t for all free instances of x in
p. HOL automatically renames variables to avoid capture if necessary, by adding
prime characters. (This happens in the primitive function INST that is used in the
implementation.)

#let th1 = ASSUME ‘!x. x >= 0‘;;

th1 : thm = !x. x >= 0 |- !x. x >= 0

#let th2 = SPEC ‘y + 1‘ th1;;

th2 : thm = !x. x >= 0 |- y + 1 >= 0

#let th3 = ASSUME ‘!x. ?y. y > x‘;;

th3 : thm = !x. ?y. y > x |- !x. ?y. y > x

#let th4 = SPEC ‘y:num‘ th3;;

th4 : thm = !x. ?y. y > x |- ?y’. y’ > y

Note that the naive result of substituting would be the incorrect ?y. y > y.

Γ ` p
Γ ` ∀x. p GEN

This rule will fail if the variable x is free in the assumptions Γ. Again, this
restriction arises naturally out of one in the underlying primitives, in this case in
ABS.
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#let th1 = REFL ‘x:num‘;;

th1 : thm = |- x = x

#let th2 = GEN ‘x:num‘ th1;;

th2 : thm = |- !x. x = x

#let th3 = GEN ‘y:num‘ th2;;

th3 : thm = |- !y x. x = x

#let th4 = ASSUME ‘x = 2‘;;

th4 : thm = x = 2 |- x = 2

#let th5 = GEN ‘x:num‘ th4;;

Uncaught exception: Failure "GEN"

#let th5 = GEN ‘y:num‘ th4;;

th5 : thm = x = 2 |- !y. x = 2

Γ ` p[t/x]
Γ ` ∃x. p EXISTS

The ML invocations for this rule are relatively complicated; the function requires
the user to specify the desired form of the result and the term t to choose. It could
work out the latter for itself, but in general one can derive many existential theorems
from the same starting point, e.g.

#let th1 = REFL ‘1‘;;

th1 : thm = |- 1 = 1

#let th2 = EXISTS(‘?x. x = 1‘,‘1‘) th1;;

th2 : thm = |- ?x. x = 1

#let th3 = EXISTS(‘?x:num. x = x‘,‘1‘) th1;;

th3 : thm = |- ?x. x = x

#let th4 = EXISTS(‘?x:num. 1 = 1‘,‘23‘) th1;;

th4 : thm = |- ?x. 1 = 1

Γ ` q
Γ− {p} ` (∃x. p)⇒ q

CHOOSE

This rule requires that x is not free in q nor in any of the Γ besides p.

Γ ` p
Γ ` p ∨ q DISJ1

Γ ` q
Γ ` p ∨ q DISJ2

Γ ` r Γ′ ` r ∆ ` p ∨ q
(Γ− {p}) ∪ (Γ′ − {q}) ∪∆ ` r DISJ CASES

Γ ` ¬p
Γ ` p⇒ ⊥ NOT ELIM

Γ ` p⇒ ⊥
Γ ` ¬p NOT INTRO

Γ ` p ≡ ⊥
Γ ` ¬p EQF ELIM

Γ ` ¬p
Γ ` p ≡ ⊥ EQF INTRO
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9.2 Rewriting and simplification

HOL has various rules and conversions at a somewhat higher level. Some of the
most useful of these automatically work out how to instantiate variables to apply to
the case in hand. For example, the above ‘Modus Ponens’ rule requires the theorems
to match up exactly:2

#MP (ASSUME ‘x < 1 ==> x <= 1‘) (ASSUME ‘x < 1‘);;

it : thm = x > 1 ==> x >= 1, x >= 1 |- x > 1

#MP (ASSUME ‘y < 1 ==> y <= 1‘) (ASSUME ‘x < 1‘);;

Uncaught exception: Failure "MP: theorems do not agree"

A more powerful rule, MATCH MP, tries to work out settings for free or universally
quantified variables in the first theorem in order to make things match up. we can
illustrate this using a built-in theorem LT IMP LE:

#let th1 = LT_IMP_LE;;

th1 : thm = |- !m n. m < n ==> m <= n

#MATCH_MP th1 (ASSUME ‘x < 1‘);;

it : thm = x < 1 |- x <= 1

A similar rule, actually a conversion, is REWR CONV. It takes an equation, perhaps
universally quantified, and sets the variables if possible so that the left-hand side
matches the proffered term, ‘rewriting’ it. Again, we will illustrate it using a built-in
theorem:

#let th1 = NOT_LE;;

th1 : thm = |- !m n. ~(m <= n) = n < m

#REWR_CONV th1 ‘~(x + 1 <= x)‘;;

it : thm = |- ~(x + 1 <= x) = x < x + 1

Since it is a conversion, REWR CONV can be combined with various depth con-
versions to rewrite repeatedly at various levels of a term. Built-in functions like
REWRITE CONV take a whole list of theorems, extract rewrites from them and re-
peatedly apply them to a term.3 Moreover, they throw in a set of handy rewrites to
get rid of trivial propositional clutter, e.g. reducing p /\ p to p. They are one of
the workhorses in typical HOL proofs. If the additional propositional simplifications
are not required, prefix the name with PURE:

#PURE_REWRITE_CONV[NOT_LE; LT_REFL] ‘~(x < x) \/ q‘;;

it : thm = |- ~(x < x) \/ q = ~F \/ q

#REWRITE_CONV[NOT_LE; LT_REFL] ‘~(x < x) \/ q‘;;

it : thm = |- ~(x < x) \/ q = T

As in this example, one often rewrites Boolean terms. In cases where conversions
are applied to Boolean terms, it’s often handy to convert conversions to forward
inference rules. This is done using CONV RULE, whose definition is simply:

#let CONV_RULE conv th =

EQ_MP (conv(concl th)) th;;

CONV_RULE : (term -> thm) -> thm -> thm = <fun>

#CONV_RULE(REWRITE_CONV[NOT_LE; LT_REFL]) (ASSUME ‘~(x < x) \/ q‘);;

it : thm = ~(x < x) \/ q |- T

2Actually, only up to alpha-equivalence, i.e. renaming of bound variables.
3They do work by applying REWR CONV at depth, but are optimized using term nets to avoid too

many wasteful attempts to match theorems against subterms.
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Some conversions are made into rules and given names, because they are used
so often. For example:

#let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);;

BETA_RULE : thm -> thm = <fun>

#let REWRITE_RULE thl = CONV_RULE(REWRITE_CONV thl);;

REWRITE_RULE : thm list -> thm -> thm = <fun>

Still more powerful than rewriting is simplification. This allows the use of equa-
tions that are conditional, i.e. of the form ` p ⇒ l = r. After matching up l
with the term if possible, setting the theorem to ` p′ ⇒ l′ = r′ the conversion is
recursively applied to the hypothesis p′, trying to reduce it to > and so eliminate
it. This can often avoid tedious chains of straightforward logical reasoning. For
example, in

#DIV_LT;;

it : thm = |- !m n. m < n ==> (m DIV n = 0)

#SIMP_CONV[DIV_LT; ARITH] ‘3 DIV 7 = 0‘;;

it : thm = |- (3 DIV 7 = 0) = T

the built-in theorem DIV LT is used as a rewrite, giving a hypothesis 3 < 7 which
is then attacked by more simplification, this time using a set of rewrites to do
basic arithmetic (described later). Simplification also accumulates context, so when
traversing a term p ⇒ q and descending to q, additional rewrites are derived from
p, e.g.

#SIMP_CONV [] ‘p /\ q ==> p‘;;

it : thm = |- p /\ q ==> p = T

The rewrite p = T is extracted from the context p and this is used to rewrite
the consequent to T. The final result follows from an additional rewrite with the
built-in simplification p ==> T = T.

9.3 Ordered rewriting

It is possible for rewriting and simplification to go into an infinite loop, e.g. applying
two successive rewrites ` s = t and ` t = s alternately. However, HOL tries to avoid
looping in some cases, ignoring rewrites that would loop:

#REWRITE_CONV[ASSUME ‘x = x + 1‘] ‘x:num‘;;

Warning: discarding looping rewrite

it : thm = |- x = x

Some rewrites are said to be permutative, meaning that the left hand side can
be matched to the right hand side and vice versa. For example, there is a built-in
theorem ADD SYM asserting that addition of natural numbers is commutative, and
several others:

#ADD_SYM;;

it : thm = |- !m n. m + n = n + m

#CONJ_SYM;;

it : thm = |- !t1 t2. t1 /\ t2 = t2 /\ t1

#INSERT_COMM;;

it : thm = |- !x y s. x INSERT y INSERT s = y INSERT x INSERT s
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The HOL Light approach to permutative rewrite rules has long been used in
the Boyer-Moore theorem prover, and more recently in Isabelle thanks to Tobias
Nipkow. They are only applied if, after instantiation, the left-hand side is “larger”
than the right according to some well-founded ordering. The basic building block is
ORDERED_REWR_CONV. This calls REWR_CONV, but will then force failure unless in the
resulting theorem Γ ` s′ = t′ one has t′ > s′ according to the given ordering > on
terms. In this way, one can rewrite freely with a theorem such as ` x + y = y + x
without fear of infinite looping.

However in conjunction with other rewrites, infinite looping can reappear. For
example, rewriting with the above commutative law and the associative law ` (x+
y) + z = x+ (y + z) one could still have an infinite rewrite:

x+ (y + z) −→ (y + z) + x

−→ y + (z + x)
−→ (z + x) + y

−→ z + (x+ y)
−→ (x+ y) + z

−→ x+ (y + z)

This, however, can be prevented by a suitable choice of ordering. In fact, given
the right ordering, the associative and commutative laws together not only always
terminate, but actually reduce AC combinations to their canonical form. Martin
and Nipkow (1990) give a slightly tricky ordering that makes the associative and
commutative laws alone give a normalizer. However a more obvious approach is to
add a third theorem, easily derived from the other two: ` x+ (y+ z) = y+ (x+ z).
Now, suppose that the ordering has the following properties for any terms x, y and
z:

(x+ y) + z > x+ (y + z)
x+ y > y + x iff x > y

x+ (y + z) > y + (x+ z) iff x > y

Such an ordering, if it is also monotonic (if s > t then u[s] > u[t]) and total and
is wellfounded on ground terms, is said to be AC-compatible. Intuitively it is clear
that ordered rewriting with these theorems will canonicalize AC combinations by
‘bubbling’ terms in iterated additions to their proper place. Theorems in this class
for some associative and commutative operators are built into HOL, e.g.

#ADD_AC;;

it : thm =

|- (m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)

#MULT_AC;;

it : thm =

|- (m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)

#REWRITE_CONV[ADD_AC; MULT_AC] ‘x * y + z * x + w * x + x * w =

x * w + x * z + y * x + x * w‘;;

it : thm =

|- (x * y + z * x + w * x + x * w = x * w + x * z + y * x + x * w) = T

Martin and Nipkow (1990) show that one can also add laws of left and right
distributivity for + and ∗, as well as idempotence laws ` x+x = x and ` x+(x+y) =
x+y and get canonicalizers under these laws too. (For example, if + is conjunction
or disjunction.)
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#CONJ_ACI;;

it : thm =

|- (p /\ q = q /\ p) /\

((p /\ q) /\ r = p /\ q /\ r) /\

(p /\ q /\ r = q /\ p /\ r) /\

(p /\ p = p) /\

(p /\ p /\ q = p /\ q)

#REWRITE_CONV[CONJ_ACI] ‘p /\ q /\ p /\ r /\ q = r /\ q /\ p‘;;

it : thm = |- (p /\ q /\ p /\ r /\ q = r /\ q /\ p) = T

9.4 Higher order matching

HOL Light supports a limited form of higher order matching. This is immensely
useful in order to express more general term transformations as rewrite rules. If
only simple ‘first order’ matching is used, the scope of rewriting, matching modus
ponens etc. is rather restricted. Even quite simple schematic theorems need to be
instantiated manually — a very tedious task. For example, if we want to use the
theorem:

#SKOLEM_THM;;

it : thm = |- !P. (!x. ?y. P x y) = (?y. !x. P x (y x))

to rewrite the term !n. ?m. m EXP 2 <= n /\ n < (SUC m) EXP 2, then simple
rewriting won’t work; one first needs to instantiate the theorem with

P = (\n m. m EXP 2 <= n /\ n < (SUC m) EXP 2)

then beta-reduce it, and only then rewrite with it. HOL Light will do this automat-
ically in some situations. For example, it will perform the following rewrite, even
though the term isn’t literally an instance of the theorem’s left hand side:

#NOT_FORALL_THM;;

it : thm = |- !P. ~(!x. P x) = (?x. ~P x)

#REWR_CONV NOT_FORALL_THM ‘~(!n. n < n - 1)‘;;

it : thm = |- ~(!n. n < n - 1) = (?n. ~(n < n - 1))

The implementation of higher order matching aims to make matching as gen-
eral as possible while keeping it deterministic. It allows higher order matches of
P x1 · · ·xn where P is an instantiable variable, but only if it can decide with cer-
tainty how to instantiate the xi. Generally speaking, there are lots of possible
higher order matches; for example the pattern P (x + y) can be matched against
(a+ b) + (c+ d) in several different ways, e.g. x = a+ b, y = c+ d or x = a, y = b.
In order to make the matches determinate, information is taken from corresponding
variable bindings. For example there is no doubt about the matching of ∀x. Px
to ∀n. n < n + 1, whereas with the bound variables removed one could have var-
ious alternatives, e.g. P = λx. n < x + 1 and x = n. Our allowable patterns
correspond quite closely to higher order patterns, for which Miller (1991) proved
even the unification (two-way matching) problem to be decidable and deterministic
(‘unitary’). We generalize higher order patterns in two ways. First, one need not
simply have variables in the patterns, but can have arbitrary terms involving only
these ‘resolvable’ variables. Thus one can match:

|- (!x. P(SUC x)) = !x. 0 < x ==> P x

with a term:
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!n. (m / SUC n) * SUC n = m

We allow variables to be repeated in patterns (in the jargon, ‘nonlinear’ pat-
terns); this does in theory introduce an element of nondeterminacy but this is
resolved by always traversing the term to be matched top-down and picking the
first match. For example:

|- (!x. P (SUC x) x) = !x. 0 < x ==> P x (PRE x)

matched against:

!n. (m / SUC n) * (n + 1) = m

will yield

|- (!n. (m / SUC n) * (n + 1) = m) =

(!n. 0 < n ==> (m / n) * (PRE n + 1) = m)

rather than

|- (!n. (m / SUC n) * (n + 1) = m) =

(!n. 0 < n ==> (m / SUC(PRE n)) * (PRE n + 1) = m)

Second, as well as binding instances, first-order matchable parts of the term are
used to resolve more variables. The implementation reflects this: in a first pass, all
first order parts are dealt with (in first order matches, all the term is dealt with).
Then the new variable assignments are used to keep the overall match deterministic.
For example:

|- C x y ==> P x y

(where C is a constant and so not eligible itself as a higher order pattern) will
deterministically match:

C a b ==> (a + b = 27)

whereas the respective consequents could not be matched deterministically.
Note, by the way, that even beta-conversion can be implemented as a higher

order rewrite rule, and hence conveniently thrown into a bunch of rewrites instead
of being called separately.

#BETA_THM;;

it : thm = |- !f y. (\x. f x) y = f y

But note that rewrites with the following theorem go into an infinite loop at any
beta-redex because of higher order matching!

#ETA_AX;;

it : thm = |- !t. (\x. t x) = t
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9.5 Other rules

As well as these handy general-purpose rules, there are some special ones for par-
ticular theories, described later. For example, ARITH RULE is useful for disposing of
trivial facts of linear arithmetic over the natural numbers:

#ARITH_RULE ‘x < y ==> 4 * x + 3 < 4 * y‘;;

it : thm = |- x < y ==> 4 * x + 3 < 4 * y

Another easy rule, TAUT, proves propositional tautologies automatically, e.g.

#TAUT ‘p /\ q ==> p‘;;

it : thm = |- p /\ q ==> p

#TAUT ‘(p ==> q) \/ (q ==> p)‘;;

it : thm = |- (p ==> q) \/ (q ==> p)
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Chapter 10

Tactics

Rules give a way of performing proofs in a step-by-step, forward manner. However
it’s often more convenient to prove theorems in a backwards fashion, starting with
the goal and reducing it to various subgoals until these can be solved. The tactic
mechanism of HOL Light allows one to tackle proofs in a mixture of forward and
backward steps. The user starts with a goal, which is roughly speaking, the theorem
(sequent) that is desired: a list of assumptions and a conclusion.

A tactic takes a goal and reduces it to a list of subgoals. But it also keeps track of
how to construct a proof of the main goal if the user succeeds in proving the subgoal;
this is simply an ML function. So the user can keep applying tactics, and the forward
proof is reconstructed by HOL. It’s rather as if the machine automatically reverses
the user’s proof and converts it to the standard primitive inferences. The user can
perform the proof via a mixture of forward and backward steps, as desired.

10.1 The goalstack

Proofs can be discovered interactively using the goal stack. This allows tactic steps
to be performed, and if necessary retracted and corrected. The user sets up an
initial goal using g, e.g.

#g ‘p /\ q ==> p‘;;

it : goalstack = 1 subgoal (1 total)

‘p /\ q ==> p‘

It is then possible to apply a tactic to the current goal, e.g.

#e DISCH_TAC;;

it : goalstack = 1 subgoal (1 total)

‘p‘

0 [‘p /\ q‘]

If the user makes a mistake, b() backs up to the previous level. The goal can
be finished here by rewriting:

#e(ASM_REWRITE_TAC[]);;

it : goalstack = No subgoals

There are no subgoals; the proof is finished. To make HOL generate the desired
theorem, use top thm():
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#top_thm();;

it : thm = |- p /\ q ==> p

If a tactic splits a goal into more than one subgoal, they are presented one at a
time. When one subgoal is solved the next unsolved one is presented. For example:

#g ‘p /\ q /\ r ==> q /\ p /\ r‘;;

it : goalstack = 1 subgoal (1 total)

‘p /\ q /\ r ==> q /\ p /\ r‘

#e DISCH_TAC;;

it : goalstack = 1 subgoal (1 total)

‘q /\ p /\ r‘

0 [‘p /\ q /\ r‘]

#e CONJ_TAC;;

it : goalstack = 2 subgoals (2 total)

‘p /\ r‘

0 [‘p /\ q /\ r‘]

‘q‘

0 [‘p /\ q /\ r‘]

#e(ASM_REWRITE_TAC[]);;

it : goalstack = 1 subgoal (1 total)

‘p /\ r‘

0 [‘p /\ q /\ r‘]

#e CONJ_TAC;;

it : goalstack = 2 subgoals (2 total)

‘r‘

0 [‘p /\ q /\ r‘]

‘p‘

0 [‘p /\ q /\ r‘]

#e(ASM_REWRITE_TAC[]);;

it : goalstack = 1 subgoal (1 total)

‘r‘

0 [‘p /\ q /\ r‘]

#e(ASM_REWRITE_TAC[]);;

it : goalstack = No subgoals

Effectively, the user is always at a point in the fringe of the partial proof tree.
The position can be rotated by n goals by doing r n.
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10.2 Basic tactics

The most basic tactics correspond to the basic logical derived rules, but working
the other way round. We have seen some of them above. For example, where CONJ
takes two theorems and gives their conjunction, the tactic CONJ TAC breaks down a
conjunctive goal and returns the two subgoals. Similarly DISJ1 TAC reduces a goal
with conclusion p ∨ q to one with conclusion p, i.e. allows the user to decide to
prove the first disjunct. Again, DISCH TAC reverses the effect of the rule DISCH, i.e.
it reduces a goal Γ `? p⇒ q to Γ ∪ {p} `? q.

Tactics are especially useful for using rules like CHOOSE. If one has a theorem
` ∃x. p, then one can just put p into the assumptions of the goal using CHOOSE TAC.
Thereafter, it is as if one had picked some x such that p holds and can use it to
solve the goal; HOL handles the appropriate application of CHOOSE.

The tactics MP TAC and MATCH MP are a bit tricker to understand, in that it’s
not quite so clear how they amount to reversals of MP and MATCH MP. In fact their
behaviour is quite different, going well beyond one performing matching and one
not. Given a goal with conclusion q and a theorem that after matching is of the
form p⇒ q, then MATCH MP TAC reduces the goal to p. For example:

#g ‘0 <= SUC n‘;;

it : goalstack = 1 subgoal (1 total)

‘0 <= SUC n‘

#e(MATCH_MP_TAC LT_IMP_LE);;

it : goalstack = 1 subgoal (1 total)

‘0 < SUC n‘

MP TAC, on the other hand, simply places the theorem as an antecedent of the
goal:

#g ‘0 <= SUC n‘;;

it : goalstack = 1 subgoal (1 total)

‘0 <= SUC n‘

#e(MP_TAC LT_IMP_LE);;

it : goalstack = 1 subgoal (1 total)

‘(!m n. m < n ==> m <= n) ==> 0 <= SUC n‘

However this effect can be quite useful, since it’s often more convenient to do
things like rewrite on the conclusion of a goal, rather than the assumptions.

None of the tactics we have considered so far solves goals completely. The most
primitive tactic that does is ACCEPT TAC, which is used with a theorem with the
same conclusion as the goal. A slightly more general version, MATCH ACCEPT TAC,
will do some matching, e.g.

#g ‘x + 1 = 1 + x‘;;

it : goalstack = 1 subgoal (1 total)

‘x + 1 = 1 + x‘

#e(MATCH_ACCEPT_TAC ADD_SYM);;

it : goalstack = No subgoals

Another group of tactics can be created from conversions, using CONV TAC. This
creates a tactic that applies the given conversion to the goal, e.g.
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#g ‘(\x. x + 1) 2 = 3‘;;

it : goalstack = 1 subgoal (1 total)

‘(\x. x + 1) 2 = 3‘

#e(CONV_TAC(ONCE_DEPTH_CONV BETA_CONV));;

it : goalstack = 1 subgoal (1 total)

‘2 + 1 = 3‘

If the conversion transforms the goal to T, the tactic mechanism accepts that as
solving the goal, rather than presenting T as the subgoal, e.g.

#g ‘2 + 1 = 3‘;;

it : goalstack = 1 subgoal (1 total)

‘2 + 1 = 3‘

#e(CONV_TAC NUM_REDUCE_CONV);;

it : goalstack = No subgoals

The rewriting conversions are also all used as tactics, e.g. REWRITE TAC. The
same names prefixed with ASM also use the assumptions of the current goal as
rewrites.

10.3 Tacticals

Just as basic conversions are built up into composite ones by conversionals, so
tactics are built up via tacticals. For example the infix THEN executes two tactics in
sequence. Once a proof has been found using the subgoal mechanism, it’s common
to plug all the steps into one tactic using THEN, e.g.

#g ‘!m n p. m * (n + p) = (m * n) + (m * p)‘;;

it : goalstack = 1 subgoal (1 total)

‘!m n p. m * (n + p) = m * n + m * p‘

#e(GEN_TAC THEN

INDUCT_TAC THEN

ASM_REWRITE_TAC[ADD; MULT_CLAUSES; ADD_ASSOC]);;

it : goalstack = No subgoals

If the first tactic sequenced by THEN generates more than one subgoal, then the
second tactic is applied to all of them. If different tactics are used for each subgoal,
they can be put into a list and sequenced using THENL, e.g.

#g ‘p ==> p /\ (1 = 1)‘;;

it : goalstack = 1 subgoal (1 total)

‘p ==> p /\ (1 = 1)‘

#e(DISCH_TAC THEN

CONJ_TAC THENL

[ASM_REWRITE_TAC[];

ACCEPT_TAC (REFL ‘1‘)]);;

it : goalstack = No subgoals

Tactics can be executed repeatedly by REPEAT, and there are various other useful
tacticals.
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If one uses THEN to compress a proof into a single large tactic, then one might
as well dispense with the goal stack completely. One can simple get the theorem by
applying prove to the goal and the tactic, e.g.

let LTE_ADD2 = prove

(‘!m n p q. m < p /\ n <= q ==> m + n < p + q‘,

ONCE_REWRITE_TAC[ADD_SYM; CONJ_SYM] THEN

MATCH_ACCEPT_TAC LET_ADD2);;

10.4 Dealing with assumptions

Various tactics like DISCH TAC push parts of the goal onto the assumption list. You
can put any theorem there yourself using ASSUME TAC. The problem then arises of
identifying a particular assumption when it is needed. Often it is not necessary, but
when required there are several alternatives. One can design a tactic that will suc-
ceed only on the desired assumption, and use FIRST ASSUM. For example the tactic
SUBST1 TAC expects and equational theorem as an argument and substitutes in the
goal, so if there is only one equational assumption, FIRST ASSUM SUBST1 TAC will
use it. Alternatively, one can explicitly recreate the assumption as a theorem using
ASSUME. Finally, it is possible to label things when putting them on the assumptions
using LABEL TAC instead of ASSUME TAC. The appropriate assumption can then be
used with USE ASSUM.

10.5 Model elimination

Although proofs often need theory-specific reasoning tools, e.g. linear arithmetic,
quite a lot of small parts of proofs can be finished off by a prover for pure logic.
HOL Light provides a tactic MESON TAC that can dispose of a lot of simple first order
reasoning. It also has a limited ability to do higher order and equality reasoning.
This prover is based on the Prolog Technology Theorem Prover (Stickel 1988),
an implementation of model elimination (Loveland 1968). Such systems work by
reducing to clausal form and then further to a set of pseudo-Horn clauses that can
be used for Prolog-style backward search. The default search mode is one of our
own invention — see (Harrison 1996) for more details and a comparison with other
techniques. Here are a few examples of the HOL tactic in action:

#let LOS = prove

(‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. P x y ==> P y x) /\

(!(x:A) y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)‘,

MESON_TAC[]);;

LOS : thm =

|- (!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. P x y ==> P y x) /\

(!x y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)

and1

1See message from Wishnu Prasetya to the info-hol mailing list on 18 October 1993, available
on the Web as http://lal.cs.byu.edu/lal/holdoc/info-hol/15xx/1515.html.
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#let WISHNU = prove

(‘(?!x. x=f(g x)) = (?!y. y=g(f y))‘,

MESON_TAC[]);;

WISHNU : thm = |- (?!x. x = f (g x)) = (?!y. y = g (f y))

The tactic accepts a list of theorems to use in the proof. ASM MESON TAC also
uses the assumptions of the goal.
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Principles of definition

HOL’s basic principles of definition are often quite inconvenient to use. The function
new definition is extended quite soon to permit definitions of functions with the
arguments on the left, including pairs and tuples of arguments:

#let func = new_definition

‘func f x = f(x + 1) - 1‘;;

func : thm = |- !f x. func f x = f (x + 1) - 1

#let add3 = new_definition

‘add3(x,y,z) = x + y + z‘;;

add3 : thm = |- !x y z. add3 (x,y,z) = x + y + z

It’s often convenient to make definitions recursively. HOL has some limited sup-
port for so-called primitive recursive definitions, which we examine below. General
recursive functions can be defined using some of the theorems in the theory of well-
foundedness described below, but HOL Light doesn’t provide any handy functions
for doing it elegantly. So one can’t write down recursive functions with the abandon
that one can in ML. This is inevitable to some extent, since all HOL functions are
total and in general recursive definition schemes do not give well-defined or unique
total functions. For example f(n) = f(n) + 1 has no solution, and neither (at least
for functions N → N) does f(n) = f(n + 1) + 1, whereas f(n) = f(n − 1) + 1 has
many possible solutions.

11.1 Inductive definitions

What HOL does support in a more convenient way is the definition of inductive pred-
icates (or sets). Inductive definitions are very common in mathematics, especially
in the definition of formal languages used in mathematical logic and programming
language semantics. Camilleri and Melham (1992) give some illustrative examples.
Examples crop up in other parts of mathematics too, e.g. the definition of the Borel
hierarchy of subsets of R. A detailed discussion, from an advanced point of view, is
given by Aczel (1991).

Inductive definitions define a set S by means of a set of rules of the form ‘if
. . . then t ∈ S’, where the hypothesis of the rule may make assertions about mem-
bership in S. These rules are customarily written with a horizontal line separating
the hypotheses (if any) from the conclusion. For example, the set of even numbers
E might be defined as a subset of the reals by:

0 ∈ E
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n ∈ E
(n+ 2) ∈ E

Read literally, such a definition merely places some constraints on the set E,
asserting its ‘closure’ under the rules, and does not, in general, determine it uniquely.
For example, the set of even numbers satisfies the above, but so does the set of
natural numbers, the set of integers, the set of rational numbers and even the the
whole set of real numbers! But implicit in writing a definition like this is that E
is the least set which is closed under the rules. It is when understood in this sense
that the above defines the even numbers.

This convention, however, needs to be justified by showing that there is a least
set closed under the rules. A good try is to consider the set of all sets which
are closed under the rules, and take their intersection. If only we knew that this
intersection was closed under the rules, then it would certainly be the least such
set. But in general we don’t know that, as the following example illustrates:

n 6∈ E
n ∈ E

There are no sets at all closed under this rule! However it turns out that a simple
syntactic restriction on the rules is enough to guarantee that the intersection is
closed under the rules. Crudely speaking, the hypotheses must make only ‘positive’
assertions about membership in S. To state this precisely, observe that we can
collect together all the rules in a single assertion of the form:

∀x. P [S, x]⇒ x ∈ S

The following example for the even numbers should be a suitable paradigm to
indicate how:

∀n. (n = 0 ∨ ∃m. n = m+ 2 ∧m ∈ E)⇒ n ∈ E

If we make the abbreviation f(S) = {x | P [S, x]} the assertion can be written
f(S) ⊆ S. Our earlier plan was to take the intersection of all subsets S which
have this property, and hope that the intersection too is closed under the rules.
A sufficient condition for this is given in the following fixpoint theorem due to
Knaster (1927) and Tarski (1955) (which holds for an arbitrary complete lattice):
if f : ℘(X)→ ℘(X) is monotone, i.e. for any S ⊆ X and T ⊆ X

S ⊆ T ⇒ f(S) ⊆ f(T )

then if we define

F =
⋂
{S ⊆ X | f(S) ⊆ S}

not only is f(F ) ⊆ F but F is actually a fixpoint of f , i.e. f(F ) = F . HOL Light
can take an inductive definition and generally manage to prove monotonicity for
itself, providing the user with three useful theorems. The first says that the defined
set is closed under the rules, the second that it is the least set closed under the
rules, and the third gives a case analysis theorem saying that everything in the set
is generated by applying the rules to something else in the set. For example, we
can define finiteness of sets (or, viewed as a set, the set of all finite sets) as follows:
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#let finite_RULES,finite_INDUCT,finite_CASES =

new_inductive_definition

‘finite {} /\

!x s. finite s ==> finite (x INSERT s)‘;;

Warning: inventing type variables

finite_RULES : thm =

|- finite EMPTY /\ (!x s. finite s ==> finite (x INSERT s))

finite_INDUCT : thm =

|- !finite’. finite’ EMPTY /\ (!x s. finite’ s ==> finite’ (x INSERT s))

==> (!a. finite a ==> finite’ a)

finite_CASES : thm =

|- !a. finite a = (a = EMPTY) \/ (?x s. (a = x INSERT s) /\ finite s)

HOL Light allows the user to define mutually inductive relations. For example
here are predicates for evenness and oddity:

#let even_odd_RULES,even_odd_INDUCT,even_odd_CASES =

new_inductive_definition

‘even 0 /\

(!n. even(n) ==> odd(n + 1)) /\

(!n. odd(n) ==> even(n + 1))‘;;

even_odd_RULES : thm =

|- even 0 /\ (!n. even n ==> odd (n + 1)) /\ (!n. odd n ==> even (n + 1))

even_odd_INDUCT : thm =

|- !odd’ even’.

even’ 0 /\

(!n. even’ n ==> odd’ (n + 1)) /\

(!n. odd’ n ==> even’ (n + 1))

==> (!a0. odd a0 ==> odd’ a0) /\ (!a1. even a1 ==> even’ a1)

even_odd_CASES : thm =

|- (!a0. odd a0 = (?n. (a0 = n + 1) /\ even n)) /\

(!a1. even a1 = (a1 = 0) \/ (?n. (a1 = n + 1) /\ odd n))

The induction theorem can be applied conveniently during backward proof using
the tactical RULE INDUCT THEN, or in simple cases just with MATCH MP TAC.

11.2 Free recursive types

HOL Light’s primitive type definition facility is rather awkward to work with. One
of the most useful, and complicated, derived rules in HOL Light allows one to define
recursive types much as in CAML, even using a similar syntax. There are some
restrictions; for example a function space involving the type being defined cannot be
used. However types can be defined mutually recursively and can involve instances
of previously defined type constructors. The primitive function is define type, and
it always returns two theorems, the first a kind of induction theorem for the new
type, the second a justification of definition by primitive recursion. For example we
can define binary trees:
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#let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf A

| Branch btree btree";;

btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

This defines a new type constructor (A)btree, since the definition contained a
free type variable A. The recursion theorem can be used later to define functions
by ‘primitive recursion’, i.e. defining a function on a type constructor in terms of
the function on its arguments. For example here are functions to reflect a tree, i.e.
swap left and right subtrees, and add up all the integers in an (int)btree:

#let reflect = new_recursive_definition btree_RECURSION

‘(reflect(Leaf x) = Leaf x) /\

(reflect(Branch t1 t2) = Branch (reflect t2) (reflect t1))‘;;

Warning: inventing type variables

reflect : thm =

|- (reflect (Leaf x) = Leaf x) /\

(reflect (Branch t1 t2) = Branch (reflect t2) (reflect t1))

#let addup = new_recursive_definition btree_RECURSION

‘(addup (Leaf n) = n) /\

(addup (Branch t1 t2) = addup t1 + addup t2)‘;;

addup : thm =

|- (addup (Leaf n) = n) /\ (addup (Branch t1 t2) = addup t1 + addup t2)

The induction theorem can be used to prove theorems about objects of the new
type. In simple cases one can just use MATCH MP TAC; for example:

#let ADDUP_REFLECT = prove

(‘!t. addup(reflect t) = addup t‘,

MATCH_MP_TAC btree_INDUCT THEN

SIMP_TAC[addup; reflect; ADD_AC]);;

ADDUP_REFLECT : thm = |- !t. addup (reflect t) = addup t

Having defined a type constructor like btree, it can itself be used in the defini-
tion of new types. For example HOL Light already has a type of lists defined using
the definition list = NIL | CONS A list, and we can create a type of finitely-
branching trees like this:



11.2. FREE RECURSIVE TYPES 91

#let xtree_INDUCTION,xtree_RECURSION = define_type

"xtree = Lf A

| Br (xtree list)";;

xtree_INDUCTION : thm =

|- !P0 P1.

(!a. P0 (Lf a)) /\

(!a. P1 a ==> P0 (Br a)) /\

P1 [] /\

(!a0 a1. P0 a0 /\ P1 a1 ==> P1 (CONS a0 a1))

==> (!x0. P0 x0) /\ (!x1. P1 x1)

xtree_RECURSION : thm =

|- !f0 f1 f2 f3.

?fn0 fn1.

(!a. fn1 (Lf a) = f0 a) /\

(!a. fn1 (Br a) = f1 a (fn0 a)) /\

(fn0 [] = f2) /\

(!a0 a1. fn0 (CONS a0 a1) = f3 a0 a1 (fn1 a0) (fn0 a1))

The induction and recursion theorems are as if the list constructor had been
defined mutually recursively, but it uses the standard type of lists.
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Chapter 12

Mathematical theories

To prove theorems in HOL Light, one needs a reasonable grasp of the theorem
proving infrastructure. But equally important is knowing what has already been
proved, and what the theorem one is after has been called. The following is not an
exhaustive list, but gives some of the main theorems, grouped according to subject
area. The following gives only a general overview; the reader should browse the
source files to become more familiar with what is available.

12.1 Pairs

There is a type constructor prod that constructs Cartesian product types. In the
concrete syntax of the type parser it is written as #. For example num # num is
the type of pairs of natural numbers. Larger tuples can be built by iterating the
pairing operation; the type constructor and the term function that constructs pairs
(the infix comma) are both right associative. Destructors FST and SND are defined.
Some of the main theorems about pairs are:

PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b)

PAIR_SURJECTIVE = |- !p. ?x y. p = x,y

FST = |- !x y. FST (x,y) = x

SND = |- !x y. SND (x,y) = y

PAIR = |- !x. FST x,SND x = x

pair_INDUCT = |- (!x y. P (x,y)) ==> (!p. P p)

pair_RECURSION = |- !PAIR’. ?fn. !a0 a1. fn (a0,a1) = PAIR’ a0 a1

The last two are chosen as if pairs had been defined as a recursive type, though
in fact they logically precede other recursive types.

12.2 Natural numbers

The type of natural numbers is carved out, using an inductive definition, from the
infinite type ind. The Peano axioms are derived from the definition and the axioms
of infinity. As with pairs, two theorems mimic those resulting from recursive type
definitions, allowing proofs by induction and definitions by primitive recursion:
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num_INDUCTION = |- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

num_RECURSION = |- !e f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n)

The latter is used to define most of the arithmetic operations, including the
comparisons:

ADD = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))

MULT = |- (!n. 0 * n = 0) /\ (!m n. SUC m * n = m * n + n)

EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP SUC n = m * m EXP n)

LE = |- (!m. m <= 0 = m = 0) /\
(!m n. m <= SUC n = (m = SUC n) \/ m <= n)

LT = |- (!m. m < 0 = F) /\ (!m n. m < SUC n = (m = n) \/ m < n)

EVEN = |- (EVEN 0 = T) /\ (!n. EVEN (SUC n) = ~EVEN n)

ODD = |- (ODD 0 = F) /\ (!n. ODD (SUC n) = ~ODD n)

Numerals are prettyprinted forms of an internal binary representation using two
constants:

BIT0 = |- BIT0 n = n + n

BIT1 = |- BIT1 n = SUC(n + n)

The rather artificial definition of the second is because multiplication (which
uses numeral 1 in its definition) has not yet been defined. Now these constants are
sufficient to express any number in binary. For example, we implement 37 as:

NUMERAL (BIT1 (BIT0 (BIT1 (BIT0 (BIT0 (BIT1 _0))))))

The reader may wonder why we use the constant NUMERAL at all, instead of just
using BIT0, BIT1 and 0. The reason is that in that case one number becomes a
subterm of another (e.g. 1 is a subterm of 2), which can lead to some surprising acci-
dental rewrites. Besides, the NUMERAL constant is a useful tag for the prettyprinter.

The parser and printer transformations established, the theory of natural num-
bers can now be developed as usual. Most of the arithmetic operations are defined
by primitive recursion, indicating a simple evaluation strategy for unary notation.
For example one can evaluate 3 + 5 as follows:

3 + 5
SUC 2 + 5
SUC (2 + 5)
SUC (SUC 1 + 5)
SUC (SUC (1 + 5))
SUC (SUC (SUC 0 + 5)))
SUC (SUC (SUC (0 + 5)))
SUC (SUC (SUC 5))
SUC (SUC 6)
SUC 7
8
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But many of them have an almost equally direct strategy in terms of our binary
notation.1 For example the following theorems, easily proved, can be used directly
as rewrite rules to perform arithmetic evaluation.

|- (!n. SUC (NUMERAL n) = NUMERAL (SUC n)) /\
(SUC _0 = BIT1 _0) /\
(!n. SUC (BIT0 n) = BIT1 n) /\
(!n. SUC (BIT1 n) = BIT0 (SUC n))

or

|- (!m n. (NUMERAL m = NUMERAL n) = (m = n)) /\
((_0 = _0) = T) /\
(!n. (BIT0 n = _0) = (n = _0)) /\
(!n. (BIT1 n = _0) = F) /\
(!n. (_0 = BIT0 n) = (_0 = n)) /\
(!n. (_0 = BIT1 n) = F) /\
(!m n. (BIT0 m = BIT0 n) = (m = n)) /\
(!m n. (BIT0 m = BIT1 n) = F) /\
(!m n. (BIT1 m = BIT0 n) = F) /\
(!m n. (BIT1 m = BIT1 n) = (m = n))

Most arithmetic operations can be implemented as a set of rewrite rules like
the above, and applied using the standard rewriting mechanism. A suite of such
rewrites is collected together into a single rewrite rule ARITH that will evaluate most
ground expressions using just the standard rewriting mechanism. For example:

#let conv = PURE_REWRITE_CONV[ARITH];;
conv : conv = <fun>
#conv ‘12345 * 12345‘;;
it : thm = |- 12345 * 12345 = 152399025

However, a few operations are hard to evaluate efficiently with the standard
rewriting mechanism; even ARITH_SUB is a bit inefficient, since the same condition
is tested repeatedly. Therefore we also provide a full suite of conversions, and collect
them together as NUM RED CONV and NUM REDUCE CONV.

12.3 Lists

A HOL recursive type of lists is defined, and various standard list combinators
defined by recursion. These often have the same names as their CAML counterparts,
but in upper case.

HD = |- HD (CONS h t) = h

TL = |- TL (CONS h t) = t

APPEND =
|- (!l. APPEND [] l = l) /\

(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))

1Another nice example, though we don’t actually implement it, is the GCD function. Knuth
(1969) gives a simple algorithm based on gcd(2m, 2n) = 2gcd(m,n), gcd(2m+ 1, 2n) = gcd(2m+
1, n) and gcd(2m+1, 2n+1) = gcd(m−n, 2n+1). This outperforms Euclid’s method on machines
where bitwise operations are relatively efficient; our in-logic implementation would surely exhibit
the same characteristics even if our ‘bits’ are rather large!
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REVERSE =
|- (REVERSE [] = []) /\ (REVERSE (CONS x l) = APPEND (REVERSE l) [x])

LENGTH =
|- (LENGTH [] = 0) /\ (!h t. LENGTH (CONS h t) = SUC (LENGTH t))

MAP = |- (!f. MAP f [] = []) /\
(!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))

LAST = |- LAST (CONS h t) = (if t = [] then h else LAST t)

REPLICATE = |- (REPLICATE 0 x = []) /\
(REPLICATE (SUC n) x = CONS x (REPLICATE n x))

NULL = |- (NULL [] = T) /\ (NULL (CONS h t) = F)

FORALL = |- (FORALL P [] = T) /\
(FORALL P (CONS h t) = P h /\ FORALL P t)

EX = |- (EX P [] = F) /\ (EX P (CONS h t) = P h \/ EX P t)

ITLIST =
|- (ITLIST f [] b = b) /\ (ITLIST f (CONS h t) b = f h (ITLIST f t b))

MEM = |- (MEM x [] = F) /\ (MEM x (CONS h t) = (x = h) \/ MEM x t)

A somewhat ad hoc collection of facts about these functions is collected, for
example:

APPEND_ASSOC = |- !l m n. APPEND l (APPEND m n) = APPEND (APPEND l m) n

LENGTH_APPEND = |- !l m. LENGTH (APPEND l m) = LENGTH l + LENGTH m

LENGTH_MAP = |- !l f. LENGTH (MAP f l) = LENGTH l

REVERSE_REVERSE = |- !l. REVERSE (REVERSE l) = l

MAP_o = |- !f g l. MAP (g o f) l = MAP g (MAP f l)

NOT_EX = |- !P l. ~EX P l = FORALL (\x. ~P x) l

12.4 Well-founded relations

Wellfoundedness of a binary relation can be expressed in many equivalent ways.
HOL Light includes a definition of wellfoundedness and a proof that it equivalent
to several other important properties, like the admissibility of complete induction
and wellfounded recursion. For example, the last theorem below, which also has a
converse, says that one can define recursive functions provided the value of f(x) is
defined in terms of f(y) for y below x in the wellfounded ordering.

WF =
|- WF (<<) = (!P. (?x. P x) ==> (?x. P x /\ (!y. y << x ==> ~P y)))
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WF_IND =
|- WF (<<) = (!P. (!x. (!y. y << x ==> P y) ==> P x) ==> (!x. P x))

WF_DCHAIN = |- WF (<<) = ~(?s. !n. s (SUC n) << s n)

WF_REC =
|- WF (<<)

==> (!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> (?f. !x. f x = H f x))

12.5 Real numbers

HOL Light constructs the real numbers and then proves various properties of them.
Algebraic trivialities include:

REAL_OF_NUM_SUB : thm = |- !m n. m <= n ==> (&n - &m = &(n - m))

REAL_ADD_RID : thm = |- !x. x + &0 = x

REAL_LT_IMP_LE : thm = |- !x y. x < y ==> x <= y

REAL_LT_LADD_IMP : thm = |- !x y z. y < z ==> x + y < x + z

REAL_LT_LNEG : thm = |- !x y. -- x < y = &0 < x + y

REAL_ABS_TRIANGLE : thm = |- !x y. abs (x + y) <= abs x + abs y

REAL_ABS_MUL : thm = |- !x y. abs (x * y) = abs x * abs y

REAL_INV_MUL : thm = |- !x y. inv (x * y) = inv x * inv y

Note that the inverse is defined with 0−1 = 0. Most theorems not involving
multiplication can be proved automatically using REAL ARITH or the tactic form
REAL ARITH TAC:

#REAL_ARITH ‘abs(x) < y ==> x < y‘;;

it : thm = |- abs x < y ==> x < y

The key higher-order property of the reals asserts that any nonempty bounded
set of reals has a least upper bound:

#REAL_COMPLETE;;

it : thm =

|- !P. (?x. P x) /\ (?M. !x. P x ==> x <= M)

==> (?M. (!x. P x ==> x <= M) /\

(!M’. (!x. P x ==> x <= M’) ==> M <= M’))

There is not much real analysis in the basic system, but there is a reasonable
development included with the examples.

12.6 Integers

A theory of integers is also available, with theorems named by analogy with the
reals, e.g. INT LT IMP LE rather than REAL LT IMP LE. Similarly, there is a decision
procedure for linear integer arithmetic called INT ARITH.
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12.7 Sets

Sets in HOL Light are just predicates, but the usual set operations are defined:

EMPTY = |- EMPTY = (\x. F)

UNIV = |- UNIV = (\x. T)

UNION = |- !s t. s UNION t = {x | x IN s \/ x IN t}

UNIONS = |- !s. UNIONS s = {x | ?u. u IN s /\ x IN u}

INTER = |- !s t. s INTER t = {x | x IN s /\ x IN t}

INTERS = |- !s. INTERS s = {x | !u. u IN s ==> x IN u}

DIFF = |- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}

INSERT = |- x INSERT s = {y | y IN s \/ (y = x)}

DELETE = |- !s x. s DELETE x = {y | y IN s /\ ~(y = x)}

SUBSET = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t)

PSUBSET = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)

DISJOINT = |- !s t. DISJOINT s t = s INTER t = EMPTY

The parser and printer support set enumerations and set abstractions. Triv-
ial facts of set theory, which are just liftings of first order facts, can be proved
automatically in a tactic framework using SET TAC, e.g.

#prove

(‘x INSERT (s UNION t) = (x INSERT s) UNION (x INSERT t)‘,SET_TAC[]);;

it : thm = |- x INSERT (s UNION t) = x INSERT s UNION x INSERT t

There are quite a lot of such theorems pre-proved. Some more interesting pre-
proved theorems concern the finiteness and cardinality of sets, and in general the
definition of function over finite sets by recursion:

CARD_CLAUSES =
|- (CARD EMPTY = 0) /\

(!x s.
FINITE s
==> (CARD (x INSERT s) =

if x IN s then CARD s else SUC (CARD s)))

HAS_SIZE = |- !s n. s HAS_SIZE n = FINITE s /\ (CARD s = n)

CARD_SUBSET_LE =
|- !a b. FINITE b /\ a SUBSET b /\ CARD b <= CARD a ==> (a = b)

FINITE_RECURSION =
|- !f b.

(!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))
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==> (ITSET f EMPTY b = b) /\
(!x s.

FINITE s
==> (ITSET f (x INSERT s) b =

if x IN s then ITSET f s b else f x (ITSET f s b)))
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Chapter 13

Examples

A few examples are included in Examples directory. These just give some indication
of how the system can be used. They aren’t held up as particularly good examples
exploiting HOL Light’s facilities; indeed many of them are crudely ported from
older versions of HOL. A few of them might be useful to some readers, but they are
generally not polished or documented.

• analysis.ml is a development of elementary real analysis, e.g. sequences,
series, limits, continuity, differentiation and integration.

• lagrange.ml shows how to prove some numerical identities using ordered
rewriting and/or decision procedures.

• mizar.ml is a system for writing HOL proofs in a more readable declarative
style based on Trybulec’s Mizar system (Rudnicki 1992).

• prog.ml is a simple embedding of the semantics of a toy imperative program-
ming language, derivation of weakest preconditions and Floyd-Hoare rules,
and a tactic that performs verification condition generation on an annotated
program.

• rectypes.ml defines a wide variety of (mutual, nested) recursive types.

• reduct.ml defines some basic notions for reductions, e.g. confluence, nor-
malization, and proves a few theorems like Newman’s Lemma. It requires
rstc.ml to have been loaded first.

• rstc.ml defines various combinations of reflexive, symmetric and transitive
closures of binary relations, and proves a comprehensive set of theorems about
them.

• transc.ml defines and proves properties of the elementary transcendental
functions like exp, sin and ln. It requires analysis.ml to have been loaded
first.

• wo.ml proves some important version of the Axiom of Choice, e.g. the wellorder-
ing principle and Zorn’s Lemma.
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Appendix A

Compatibility with other
HOLs

Here is a brief list of some of the major incompatibilities with other versions of
HOL:

• CAML, the underlying ML is different from previous HOL versions, some-
where between ‘Classic ML’ and Standard ML.

• There is no theory mechanism; every theorem is just bound to an ML name.
It is possible to save and load theorems via CAML primitives, but this is
not recommended since it subverts the usual mechanisms for constructing
elements of the thm type.

• Parsing status is orthogonal to whether an identifier is a constant or a variable.
Parsing status is not indicated at the time constants are defined. To suppress
special parse status, HOL Light requires the identifier to be put in parentheses
like (+), whereas other HOL versions use $+.

• Higher order matching is applied pervasively throughout the system, and in
some cases this can lead to a different result from a first order match even
when both succeed.

• All permutative rewrite rules are automatically ordered by the rewriting func-
tions.

• Operator overloading is permitted in the surface syntax. There are however
still some limitations on overloading of polymorphic operators. The interface
map feature in previous HOLs has been abolished and operator overloading
is used instead.

• Decision procedures for linear arithmetic are available for integers and reals
as well as naturals.

• A comprehensive theory of wellfounded relations is provided, but no tools for
automating general recursive definitions.

• The resolution tactics have been removed, or more accurately replaced by
trivial ones that do not attempt multiple chaining.

• Goals have theorems as assumptions, rather than terms to be assumed. The
tactic mechanism allows the use of instantiable metavariables, and assump-
tions may be labelled with names. The internal type of tactics has changed
to reflect these changes.
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• The names of many theorems, especially about natural numbers, are different.
Some of the operations on natural numbers are defined differently.

• Various facilities are in the core system rather than loadable libraries, e.g. tau-
tology checking, higher order matching, first order reasoning, quotient types,
integers, reals and nested recursive types.

• The axiomatization of the logic is simpler and all ‘derived rules’ are genuinely
derived. There is no separate boolean cases axiom, since it follows from the
axiom of choice.

• The preferred concrete syntax for conditional expressions is ‘if . . . then . . . else
. . . ’, although the old HOL syntax is still accepted.

• The internal encodings of paired abstractions and let-terms are different. The
former is an instance of a more general method of allowing abstractions over
arbitrary expressions.

• The term syntax uses a name-carrying representation like HOL88, rather than
a de Bruijn representation as in hol90. It was felt that this would be more
efficient on average, even if it makes a couple of primitive term operations like
substitution tricky to get right.

Despite the above, readers familiar with older HOLs should find the system
reasonably familiar. Many of the differences do not greatly affect day-to-day use of
the system.
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