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A Commentary on 
Quantum Computing and Communications: A Technical Basis 

 

Jean Bacon and Jon Crowcroft 

Introduction 
In December 2018 Jon Crowcroft gave a talk  “QC for QCs”  to our MCCRC project, available at: 
www.cl.cam.ac.uk/~jac22/talks/qc-for-qc.pdf.  
 
Since this is a new area to most of the computer scientists in the project, as well as the lawyers, Jean Bacon, 
with Jon’s help, wrote a companion paper “Quantum Computing and Communication: A Technical Basis”. 
This is based on finding as much explanatory and tutorial material as possible and asking experts in quantum 
physics and computing for clarification (to whom, many thanks!). The current version of the paper is at:  
www.cam.ac.uk/~jmb25/MCCRC, listed as QC-introtech-withMathsandGates-2019-08-12.docx also as a pdf 
version. The dates in the titles are version numbers that change as updates are made.  This commentary also 
appears on the page as QC-commentary-2019-08-26.docx and as a pdf. 
 
Early versions of the paper attempted to explain Jon’s slides without mathematics and quantum circuits. 
However, it’s difficult to reach any level of understanding of the physics that is not superficial and the 
mathematical modelling helps to explain the assertions being made and capture constraints on system 
behaviour. It also became clear that to understand the operation of quantum computers it was necessary to 
introduce simple circuits. After trying the maths as “purple passages” that could be skipped, the current 
version of the paper has the maths and circuits embedded throughout, but restricts the maths to vectors, 
matrices and complex numbers.  It should be possible to work through with A level maths, plus a little work 
to understand Dirac’s bra-ket notation. 

As we read around the subject we found that some important issues and insights were hardly ever 
highlighted in the material we found. We had to “discover the wood from the trees”. These notes are 
therefore not attempting to be a text-only version of the paper but attempt to summarise these issues 
which often came as “lightbulb moments” or gradual realisations. In these notes we refer to section 
numbers in the paper for further reading.  

An equation that remains in this commentary is a visualisation of Schrödinger’s cat, based on Heisenberg’s 
uncertainty principle. The state |Ψ> of a quantum object (a qubit -- in this case, the cat) has probability ½ of 
being alive and probability ½ of being dead. When we look at the object (measure the qubit), we find out 
which. 

 

http://www.cl.cam.ac.uk/%7Ejac22/talks/qc-for-qc.pdf
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Section 1: Mathematical representation of a quantum object or qubit 

The first section sets up how to think about a quantum object or qubit, starting from a classical binary digit. 
In a classical system, the physical representation of a bit in a computer has the value 0 or 1. In a quantum 
system, the physical representation of a quantum bit (qubit) is modelled as probabilistic, resulting from the 
physical properties of spin, momentum etc. In a classical system, bits do not affect neighbouring bits. The 
power of quantum systems comes from the entanglement (coupling/interaction) property between qubits. 

In a classical system, values can be copied and output throughout a process without affecting those values. 
Copying is ubiquitous in classical systems for example, to replicate bits for error correction. When 
transmitting data, a copy of a bit is sent, and further copies may be buffered en-route, until it is successfully 
received. Copies of data are routinely logged for security against failures and for audit purposes. In quantum 
systems copying the state of a qubit is impossible. Although this was known from the early days of quantum 
theory, the “no-cloning theorem” was published surprisingly late in 1982. In Section 2.5 two approaches to 
the proof are sketched using the properties of quantum operations that have been set up.  

The paper starts by comparing a two-state quantum system with a classical system which has two stable 
states 0,1 and controlled transitions between them. In a two-state quantum system, a qubit is often 
described as simultaneously having the value 0 with some probability p and the value 1 with probability (1-p).  
Measuring a qubit yields 0 or 1, according to these probabilities, after which the previous state is lost 
(perhaps the wave becomes a particle on being measured). The idea that the probabilities must sum to 1, 
representing probability 1 as the sum of all possible measurement outcomes, carries through to any number 
of qubits and permeates the modelling mathematics.   

Although a given qubit can only be measured once, after which its state is lost, its representation in terms of 
probabilities implies that, if instead, we were able to carry out the measurement repeatedly we would get 
values 0 and 1 in proportion to the probabilities. For example, if the probabilities of 0 and 1 were each ½, half 
the measurements would yield 0 and half 1 over a large number of measurements. In quantum experiments, 
this idea is carried through to measuring a long stream of qubits in which the measurements are deemed to 
be probabilistic. If the counts of 0s and 1s are not as expected from the probabilities over large numbers, this 
might indicate tampering with the stream.  

In quantum physics, a qubit can be modelled as a vector with unit length (representing probability 1) on the 
Bloch sphere, which dates from the 1940s and is due to the physicist Felix Bloch (1905 – 1983). The Bloch 
sphere seems a natural intuition for modelling a qubit but is not used much by modern researchers. It 
certainly adds complexity when we examine it in detail for analogies with classical systems. Its radius is a 
complex number and it represents a two-dimensional vector space, both of which have to be explained.   

In classical systems, orthogonal axes (at right angles and therefore independent of each other) i.e. x,y,z axes, 
are used to represent any point in 3D space. The representation is the projection of the point on each of the 
three axes. A point on the x axis has representation (x,0,0) meaning that its projection on the y and z axes is 
zero, similarly points on the y axis have representation (0,y,0) and z axis (0,0,z). Points on a unit sphere are 
constrained to have x2 + y2 + z2 = 1.  

Surprisingly, the maths for the vectors of quantum systems shows that, for example, the directions up and 
down on the Bloch sphere are orthogonal in this vector space world. Indeed, any line through the centre of 
the Bloch sphere represents a pair of orthogonal vectors. If these vectors are constrained to be of length 1 
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so as to be on the unit sphere, they are called orthonormal. Also surprisingly, only two orthonormal vectors 
are needed as axes to represent any vector on the unit sphere in this 2D vector space. This is because the 
vectors are complex therefore have two components each. Any vector on the unit sphere can be 
represented in terms of (say) up and down.  

Paul Dirac (who lectured in Cambridge in the 1960s) introduced the bra-ket notation to represent vectors in 
this quantum state-space. The vectors |0> (up on the Bloch sphere and �1

0� as a vector) and |1> (down on the 
Bloch sphere and �0

1� as a vector) are called the standard or computational basis, i.e. |0>, |1> are the standard 
axes for a single qubit, like x,y,z for a classical bit. 
 
Introducing the maths for the above, any vector |Ψ> on the Bloch sphere i.e. the state of any qubit, can be 
written as a combination of |0>, |1>:  |Ψ> = α |0> + β |1> where α and β are complex numbers but the 
modulus (length), |α| 2+|𝛽𝛽 | 2 =1 (because the vectors are on the unit sphere). α and β are called the 
probability amplitudes of the vector. Any attempt to measure the state results in |0> with probability |α| 2 
and |1> with probability |𝛽𝛽 | 2 and the total probability is |α| 2 + |𝛽𝛽| 2 = 1. The equation on the cover page 
showing Schrödinger’s cat, gives an example: � 1

√2
 �2+� 1

√2
 �2 = ½ + ½ = 1.  A vector with this property (the 

probabilities sum to 1) is said to be normalised, and this concept generalises to modelling the combined state 
of any number of qubits. The expression for state |Ψ> = α |0> + β |1> is called a superposition of states.  
 
Although n bits in a classical computer can represent 2n possible states (all 0 to all 1), only one of these states 
is represented at any one time. In classical probabilistic (Bayesian) programming, the logic of the program 
can keep track of probabilities and the results can be output with associated probabilities. This could 
possibly be at the level of individual bits but is more likely to be associated with n-bit numbers. The approach 
does not reduce the number of steps needed for an algorithm to produce a result.   
 
The power of QC is that in some sense, before measurement, n bits can hold the whole range of probabilities 
of values simultaneously (infinitely many), because each qubit is a linear superposition of |0> and |1>. Each 
operation on the bits carried out by a quantum computing program can therefore be seen as operating on all 
the probability patterns at once. The challenge is to be able to manipulate, select, collapse and read the one 
bit pattern that represents the answer to the problem at hand.  Quantum algorithms work to increase the 
probability of the required answer relative to other possible results. After measuring n qubits, the resulting 
number of patterns of 0 and 1 is the same as for n classical bits, i.e. 2n patterns.   
 
Section 2: Fundamental properties of quantum systems and how to model them 
This section gives what experts present as the fundamental properties of quantum systems. It also 
introduces how they model quantum systems mathematically, including how to represent operations on 
qubits including measurement and transformation.  
 
Heisenberg’s Uncertainty Principle  (Section 2.1) 
An unknown quantum state cannot be observed (measured) without being disturbed. Heisenberg initially 
had the properties of position and momentum of a particle in mind and described how any conceivable 
method of measuring a particle’s position would disturb its conjugate property, its momentum, thus 
destroying its coherence. It is therefore impossible to simultaneously observe both properties with certainty.  
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A consequence of this is that once a quantum object has been measured it stays in the measured state. You 
have collapsed it to measure it -- it is no longer a complex vector representing a wave, but a binary value 0 or 
1 (a particle?). 

Superposition (Section 2.2)     
Phases: An analogy for superposition comes from the wave-like (analogue) properties of qubits in that waves 
can be added or can cancel each other out, depending on their phases. Quantum algorithms use this addition 
and cancellation to reinforce the required result both within a single qubit and in multiple qubits. Using the 
Bloch sphere to understand phase, changing the phase angle of a vector so that it traverses a line of latitude, 
does not affect the probability associated with the qubit. Changing the phase angle of a vector so that it 
traverses a line of longitude allows it to take the whole range of probabilities from 0 to 1. The literature on 
quantum mechanics often mentions that a global phase change has no effect on the value of a qubit. I take 
this to mean that the whole qubit may be tilted with respect to some external measuring equipment without 
changing the internal relative phases (latitude and longitude).  
 
Equal superpositions: After initialising the qubits to be used in a quantum algorithm to |0>, it is usual to 
create an equal superposition, with equal probability of measuring |0> or |1> (both equal to ½). As mentioned 
above, an example is shown on the cover page. (Recall that a general expression for the state |Ψ> of a qubit 
is |Ψ> = α |0> + β |1> where |α| 

2+| 𝛽𝛽 | 2 = 1, because the probabilities of measuring |0> or |1> must sum to 1.  An 
equal superposition is  |Ψ>= 1

√2
 |0>+ 1

√2
 |1>, where |α| 

2+| 𝛽𝛽 | 2 = ½ + ½ = 1.) 
 
Superposition of states and equal superpositions are also defined for multiple qubits. Two qubits can 
represent 4 states, three qubits 16 equally superposed states, and so on (n qubits represent 22𝑛𝑛  equally 
superposed states). The probability amplitudes with the n terms of equal superpositions are each 1

√ 2𝑛𝑛 
. 

 
For two qubits (n=2), a general expression of state is a linear combinations of the computational bases |00> 
|01> |10> |11>. 
                                         |Ψ > = α0|00> + α1|01> + α2|10> + α3|11> where    ∑  3

𝑖𝑖=0 | α 𝑖𝑖 |2 = 1 
As the values of αi vary continuously, infinitely many states result.   
For an equal superposition α 𝑖𝑖 = ½ since | α 𝑖𝑖 |2 = ½2 = ¼ and ∑  3

𝑖𝑖=0 | α 𝑖𝑖 |2 = ¼ + ¼ + ¼ + ¼ = 1 
 
Entanglement (Section 2.3) 
Entanglement is essential to achieving quantum computing and communication, which is not obvious on a 
first reading of the subjects. It is perhaps the least intuitive property of quantum systems. It is the 
entanglement property, that allows qubits to influence each other, that yields the large state space of 
quantum computing, with its potential for simultaneously capturing multiple steps of complex algorithms.   
 
Certain pairs (or more generally groups) of qubits can be inextricably interconnected; independent but 
correlated. There is no suggestion of communication between the objects; the effect is instantaneous. This 
“spooky action at a distance” (according to Einstein) is called the Einstein, Podolsky, Rosen (EPR) paradox. 
The paradox is that if this related behaviour were due to communication between the entangled objects it 
would be faster than the speed of light.  

Entanglement was a controversial concept from the start. Physicists have investigated whether the 
phenomenon could be explained by “hidden local variables”, i.e., that the entangled bits somehow have a 
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hidden plan (metadata) on how they will behave under all measurement possibilities. In 1964, John S. Bell 
produced a theorem to the effect that observed quantum results could not be explained by hidden local 
variables. Experiments have been carried out since, to validate the theorem as well as to close claimed 
loopholes in the various experimental setups. To date, experimental results have favoured the quantum (not 
hidden variable) explanation. The phenomenon is already in practical use in quantum communication.  

Section 2.3 spells out the infinitely many states two qubits can be in, most of which are entangled states. The 
idea is that in non-entangled states, the values of the two bits are separable, for example in 

  1
√2

 |00> + 1
√2

 |01>, the first bit has to be 0, and it can therefore be factorised as |0>( 1
√2

 |0> + 1
√2

 |1>). 

 in 1
√2

 |01> + 1
√2

 |11>, the second bit has to be 1, so it can be written ( 1
√2

 |0> + 1
√2

 |1>)|1>. 

An example of two entangled states is  1
√2

 |00> ± 1
√2

 |11> where we know the two bits are the same, but 
only on measuring one do we know its value, and instantly know the value of the other.  This expression 
cannot be factorised into two bits. Another example is  1

√2
 |01> ±  1

√2
 |10> where the values have to be 

opposite. These four states are known as the Bell States after John S. Bell (1928 – 1990). In the modelling, 
there are infinitely many possible states as the probability amplitudes vary, constrained by the condition that 
the sum of the squares of the probability amplitudes’ moduli = 1.  
 
So, the potential power of quantum computing comes from exploiting entanglement. This means that the 
technologies used to fabricate qubits have to be capable of interaction (coupling) with each other, unlike 
neutrinos, for example. The downside of this need to interact is that the qubits are subject to unwanted 
interactions; they lose accuracy by existing in an external environment. This is called decoherence. For this 
reason, quantum computers have to be shielded from environmental interactions by being kept at a 
temperature close to absolute zero.  
 
Another implication of this exposure to interaction is loss of accuracy during operation or communication.  
Classical data can easily be cleaned to 0 or 1, since a bit must at all stages be precisely one or the other and 
small changes can be detected and corrected. An example is that a bit stream on a communication channel 
can be corrected into a square-wave form representing 0s and 1s. Because qubits have a superposed state 
until measured, it is impossible to tell whether small errors have been introduced during operation, so errors 
can accumulate. There is therefore an overwhelming need for quantum error correction. Multiple copies of 
classical bits are used for error correction in classical computing but making copies of a qubit is not an 
option, due to the no-cloning theorem. 
 
Measurement and transformation of qubits (Section 2.4) 
Measurement has been one of the most controversial and difficult areas of quantum mechanics since the 
early days and is important for quantum computing. In the two-slit experiment of early quantum physics, a 
single particle can behave like a wave,  as though it passes through both slits, because interference patterns 
are observed on a light-sensitive screen beyond the slits. Interference patterns are caused by reinforcement 
and cancellation when waves are combined, as we see for classical waveforms. However, if a detector is 
placed on the path to either or both slots, while allowing the particle to continue, then the interference 
effects disappear – the act of measurement has collapsed the quantum object into a particle.  
 
Measurement and transformation are the essential operations of quantum computing: 
• measurement of qubits to read out the end results of algorithms; 
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• quantum algorithms use transformations of qubits without measurement. 
 
We first revisit representation/measurement bases which were introduced above as orthogonal axes used to 
represent superpositions. For background, Schrödinger’s equation represents the progression of a quantum 
system, without taking account of any external environmental interaction. Bases are stable solutions to 
Schrödinger’s equation which are called eigenvectors. A set of orthogonal (independent) eigenvectors can 
be the bases for representing qubits. For example, |0> and |1> are orthogonal; |0> has no component in the 
|1> direction and vice versa. A general state |Ψ> = α |0> + β |1> has projections α and β on these bases. 
Measuring the state results in |0> with probability |α| 2 and |1> with probability |𝛽𝛽 | 2 where the total 
probability is |α| 2 + |𝛽𝛽| 2 = 1. Section 2.4 attempts to explain the mathematical modelling of measurement.  
 
Both measurement and transformation are represented by the operation of a matrix on a state vector. For a 
single qubit these are 2x2 matrices. Hermitian matrices are associated with measurement in physical systems 
since they have real eigenvalues and orthogonal eigenvectors which can act as bases. For measurement 
operations, the matrix operations that achieve measurement separate out α and β. This is also known as 
projection since α is the projection of the state on |0> and β is the projection on |1>. The final result is scalar 0 
or 1 depending on the probabilities |α| 2 and |𝛽𝛽 | 2. 
 
If an unknown qubit is measured, the orientation of the measuring apparatus is random relative to the 
qubit’s behavior, such as orbit, spin, polarisation etc.  For example, a photon can be polarised in two 
orientations, rectilinear and diagonal. This is used in quantum communication, as described in Section 3. If 
the measurement happens to use the correct orientation, the result is a 100% correct 0 or 1, otherwise the 
result is a random 0 or 1 with an associated probability.  

Therefore, when qubits are used in quantum computation, they are initialised to |0> according to a known 
orientation so that they can be operated on and eventually be measured. This can be achieved by measuring 
some qubit, then using the resulting |0> directly or inverting the resulting |1> to become |0> using a quantum 
NOT gate. The orientation and axis of measurement are then maintained through all the transformations 
comprising the quantum algorithm. Only by such means can a meaningful answer be arrived at.  
 
Transformation  
 A transformation must conserve certain properties of the object and move it between viable states.   
In quantum physics: 
• The allowed evolution of quantum systems must ensure that the sum of probabilities of all possible 

outcomes of any event always equals 1. In linear algebra terms, the transformation conserves inner 
products and so lengths and probabilities.  

• All operations must be reversible, i.e., applying an operator twice brings the system back to where it 
was.  This means that no information can be lost during a transformation, and that the number of inputs 
to a quantum gate is equal to the number of outputs (unlike many classical gates such as AND, OR, XOR).  

• All operators are linear, that is, they can be modelled as operating on the components of a state α |0> 
then β |1> in turn. 
 

Any transformation operator that has these properties is represented by a unitary matrix.  A little more of 
the maths of unitary operators is given in the paper and summarised in its appendix, repeated here as an 
appendix for reference. 
 
Three famous unitary operators (matrices) that achieve unitary transformations for a single qubit are the 
Pauli operators, due to Wolfgang Pauli (1900 – 1958). 
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                                       X = �0 1
1 0

�     Y= �0 −𝑖𝑖
𝑖𝑖 0

�      𝑍𝑍 = �1 0
0 −1

� 

Each of these has a corresponding quantum gate. Note that the identity operator I = �1 0
0 1

� is also unitary, 
and that X X = I, Y Y = I and Z Z = I. 
 
Nonclonability (Section 2.5)  
It follows from the properties of unitarity and linearity that a quantum state |Ψ> = α|0> + β|1> cannot 
accurately be copied (cloned).  Although this was known from the early days, a mathematical proof was not 
published until 1982. Section 2.5 sketches how either linearity or unitarity can be used to prove the 
nonclonability theorem. 

As mentioned, a big problem for quantum computers is decoherence and the general build-up of errors.  
Error correction technology usually relies on taking the majority value of multiple copies, e.g., three or five 
copies. But the no-cloning theorem means that copies can’t be taken. Again, entanglement comes to the 
rescue. Entangled groups of qubits can be created where all the qubits should have the same value. They can 
be used to test whether any qubit has diverged from the majority value, allowing error detection and 
correction.  

Quantum  gates and circuits (Section 4.2) 
Quantum logic gates are the building blocks for quantum circuits in most quantum computers. (The DWave 
computer instead uses a process called quantum annealing). Quantum gates can operate on one, two or 
three qubits. The number of qubits in the input and output of a gate must be equal because of the no-loss, 
reversibility requirement.  
 
Mathematically, a quantum gate performs a reversible, norm/length/probability-preserving transformation 
on the qubits. Quantum gates are therefore represented by unitary operators i.e. unitary matrices operating 
on the vectors that represent qubits. For a single qubit, unitary transformations correspond to rotations of 
the qubit (unit) vector on the Bloch sphere to specific superpositions. Quantum algorithms are designed to 
exploit possible cancellations and reinforcements as vectors are rotated. 
 
Section 4.2 introduces a notation for describing quantum gates and circuits and presents them together with 
the corresponding matrix operators. For example, the quantum NOT gate is implemented by the Pauli X 
operator. This is equivalent to an exclusive OR (XOR) operation. Like all unitary and therefore linear 
operators, it can be applied to the terms of a general quantum state in turn, i.e. to α |0> and then β |1>. 
 
As introduced above, when discussing superposition, a quantum computation usually starts by clearing a 
number of qubits to |0> then operating on them to create in each an equal superposition of states,  
 1
√2

 |0> + 1
√2

 |1>. The operator (and gate) that achieves this is called the Hadamard (H) operator.  

Its matrix representation is H =   1
√2

 �1 1
1 −1�, which must be unitary of course (checking,  H H = I). 

Entangled states: An important operator is the controlled NOT or C-NOT gate which has two inputs and two 
outputs. If the first input (called the control) is |0>, the output leaves the two bits unchanged. If the first 
input is |1> the first output is equal to the first input and the second output is flipped.  The second input is 
called the target. The importance of C-NOT is that it can create entangled states and, being reversible (as are 
all quantum gates), can separate out entangled states into the states that were originally entangled (see 
Sections 4.2.6 and 4.2.7).  This separation process is called Bell State Measurement (BSM). 
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Quantum algorithms (Section 5) 
In 1994 Peter Shor published a quantum algorithm for factorizing prime numbers while at Bell Laboratories. 
(He became a professor of applied mathematics at MIT in 2003.) Much of existing cryptography relies on the 
inability of classical computers to factorise large prime numbers. The threat that current cryptography (PKI) 
will be broken by quantum computation’s prime factorisation algorithm  has led to the funding of many 
quantum computing projects worldwide.   
 
Section 5.3 presents some of the work of Deutsch and Jozsa . The idea is to give an example of how a 
quantum computer might, in one operation, achieve a result that would take a classical computer many, in 
this case n/2 +1 operations, for n inputs and n outputs. The example is somewhat artificial but illustrates the 
point for a binary function, i.e., a function that takes a series of 0 or 1 as input and for each input yields 0 or 1 
as output.  We are told that the output is either constant (either entirely 1 or entirely 0, whatever the input) 
or balanced (with an equal number of 1 and 0, e.g., a balanced function might output whether each of a 
sequence of fixed length binary numbers was odd or even). Section 5.3 tabulates the possible functions, 
shows the maths and gives the circuit that achieves the result.  
 
Section 5.4 shows Grover’s algorithm for searching a list to find whether some item is present. The full 
analysis is not given. Section 5.5 introduces Shor’s algorithm for prime factorisation but does not attempt to 
explain quantum Fourier transform algorithms or give the circuits to implement them. The paper would have 
doubled in size to explain these algorithms fully.  
 
Quantum computers are not general-purpose, stored program machines.  
What is emerging from the description of quantum gates and algorithms is that quantum circuits are 
designed to implement quantum algorithms. The quantum computers envisaged so far are not like classical 
general-purpose, stored-program computers. An outline of how classical computers operate is given in 
Section 1 of the paper. Quantum circuits are built to achieve specific algorithms, similar to the wartime 
Colossus computer at Bletchley Park.  
 
Quantum communication (Sections 3, 5.1 and 5.2) 
Another consequence of the threat that current cryptography could be broken by quantum prime 
factorisation is the development of post-quantum cryptography; cryptographic algorithms that don’t rely on 
prime factorisation or other properties that are vulnerable to quantum algorithms. Quantum key 
distribution (QKD) can be seen as part of post-quantum cryptography, being a method of transmitting a 
secret key of any length to two communicating parties.  
 
Section 3 describes quantum key distribution which, to detect and prevent eavesdropping, depends on the 
no-cloning theorem and the fact that quantum measurement destroys quantum state. Current 
implementations depend on entanglement. Communicating parties A and B are each sent a stream of 
photons. Each photon sent to A has its entangled pair sent to B.  
 
Quantum communication has been demonstrated in the research domain and is moving to the 
implementation phase. As large networks are developed, it will be necessary to perform a function similar to 
repeaters in traditional networks, in which classical bits are cleaned and copied. Section 5.1 describes 
quantum teleportation whereby a qubit’s state can be transferred (not copied) from A to a repeater, then 
from the repeater to B. The method depends on entanglement.  Superdense coding is described in Section 
5.2. Here, two measured bits can be transferred from A to B by means of a single entangled qubit transfer. 
Again, quantum entanglement is at the heart of the process. 
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Quantum communication is being shown to be practically viable. The properties of photons are such that the 
devices that manipulate them do not need to be kept at very low temperatures. Devices that polarise and 
measure the polarisation of photons are becoming routinely deployed.  
 
Projects, challenges and conclusions (Sections 6, 7, 8) 
An overview of fabrication technologies and current quantum computing projects is covered in a related 
paper.  A discussion of challenges for quantum computing to become feasible concludes this paper.  
 
Appendix: Some definitions from linear algebra 
Norm of a vector 
The norm (length) of a vector |a> =�< a|a > 
Inner product of two vectors 
The inner product of two vectors |a> and |b> = <a|b> 

|a> = �
 α1 
α2 �, <a| = (α1*, α2*)  and |b> = � β1  

 β2
�,  <b| = (β1 *, β2*) 

<a|a> = (α1*, α2*) �
 α1 
 α2

� = |α1|2 +|α2 | 2 and <a|b>= (α1*, α2*)� β1  
 β2

� = (α1* β1  + α2* β2). 

Commutative matrices 
Two square matrices A, B commute if AB = BA 
Inverse of a matrix 
The inverse A-1 of a square matrix A is such that AA-1=I 
Transpose of a matrix 
The transpose of a matrix A is obtained by exchanging rows and columns, denoted AT 
Conjugate transpose of a matrix 
The conjugate transpose of a complex matrix A is obtained by taking the complex conjugate of each element 
and exchanging rows and columns, denoted A†  (sometimes A*). 
Note that if A is real then A† =AT 
Normal matrix 
A complex square matrix A is normal if it commutes with its conjugate transpose, AA†   = A† A 
An eigenvector v of a linear transformation A is a non-zero vector that changes by only a scalar factor when 
that linear transformation is applied to it, i.e. Av = cv, where (scalar) c is the eigenvalue associated with the 
eigenvector v.  
Hermitian matrix 
A complex matrix A is Hermitian if A† =A 
If A is real, A †  = AT. Note that AT = A is just the definition of a symmetric real matrix. 
Hermitian matrices have real eigenvalues and their eigenvectors are always orthogonal for different 
eigenvalues, so they form a basis for the whole space.  
Unitary matrix 
A complex matrix U is unitary if UU†  = U† U=I,  i.e. U†  =U- 1  and U†   is also unitary. 
The importance of unitary matrices in quantum mechanics is that they preserve norms, and thus probability 
amplitudes. U is a normal matrix with eigenvalues lying on the unit circle. 
Unitary matrices are Hermitian and are those matrices with a complete set of orthonormal eigenvectors such 
that the corresponding eigenvalues are ±1.  
The rows (and columns) of a Unitary matrix form a unitary basis, that is, each row (or column) is of length 1.   
Given two complex vectors a and b, multiplication by U preserves their inner product:  
<Ua|Ub> = <a|U†U|b> = <a|I|b> = <a|b> 
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