
Secure sessions

Karthikeyan Bhargavan Ricardo Corin Pierre-Malo Deniélou

Cédric Fournet James J. Leifer

29 April 2010

Joint Institutes Workshop, Orsay

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 1 / 16

Goal

Make it simple to write distributed programs that engage in
orchestrated patterns of secure communication

between multiple peers.

Alice Bob

Charlie

Piece of cake! (Assuming we control the network and all the peers.)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 2 / 16

Goal

Make it simple to write distributed programs that engage in
orchestrated patterns of secure communication

between multiple peers.

Alice Bob

Charlie
Piece of cake! (Assuming we control the network and all the peers.)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 2 / 16

But the network is not under our control...

(The internet circa 2005)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 3 / 16

...and our peers may not be trustworthy

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 4 / 16

Secure distributed programming

Only realistic security assumption:

The network and any coalition of peers are potentially malicious.

Designing a (correct) security protocol by hand is hard:

involves low-level, error-prone coding below communication abstractions,

depends on global message choreography,

needs to protect against coalitions of compromised peers.

Therefore, we propose:

to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

to hide implementation details and provide mechanised proofs of correctness.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 5 / 16

Secure distributed programming

Only realistic security assumption:

The network and any coalition of peers are potentially malicious.

Designing a (correct) security protocol by hand is hard:

involves low-level, error-prone coding below communication abstractions,

depends on global message choreography,

needs to protect against coalitions of compromised peers.

Therefore, we propose:

to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

to hide implementation details and provide mechanised proofs of correctness.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 5 / 16

Secure distributed programming

Only realistic security assumption:

The network and any coalition of peers are potentially malicious.

Designing a (correct) security protocol by hand is hard:

involves low-level, error-prone coding below communication abstractions,

depends on global message choreography,

needs to protect against coalitions of compromised peers.

Therefore, we propose:

to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

to hide implementation details and provide mechanised proofs of correctness.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 5 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Text representation:

role c = send Request{c,w,q};

loop: recv [Reply{x} → send Extra{q};loop | Enough]

role w = recv Request{c,w,q} →
loop: send (Reply{x}; recv Extra{q} → loop + Enough)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 6 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels:

Request-Reply-Extra-Reply-Extra-Enough

Store:
c :

Alice

w :

Bob

q:
x :

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request

-Reply-Extra-Reply-Extra-Enough

Store:
c : Alice
w : Bob
q: “Gone with the wind”
x :

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply

-Extra-Reply-Extra-Enough

Store:
c : Alice
w : Bob
q: “Gone with the wind”
x : “8 euros”

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra

-Reply-Extra-Enough

Store:
c : Alice
w : Bob
q: “In stock?”
x : “8 euros”

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply

-Extra-Enough

Store:
c : Alice
w : Bob
q: “In stock?”
x : “yes”

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply-Extra

-Enough

Store:
c : Alice
w : Bob
q: “Delivery date?”
x : “yes”

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Sessions (contracts, conversations, workflows, ...)

c

wc

c

()Enough()

(q)Extra(q)

(x)Reply(x)(c ,w , q)Request(c ,w , q)

Execution
Labels: Request-Reply-Extra-Reply-Extra-Enough
Store:

c : Alice
w : Bob
q: “Delivery date?”
x : “yes”

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 7 / 16

Expressivity

Loops, branching, value passing, and value rebinding (as we already
saw)

Committment “coin flips by telephone” (c commits to x without prior
knowledge of y ; likewise, w chooses y without knowledge of x)

c w() Reveal (x)w (y) Flip (y)c (c,w,x) Commit (c,w)

Dynamic principal binding (the proxy p gets to choose the web server
w based on the client c and her login credentials q)

w c
(x) Reply (x)

c
() Forward (c,p,w,q)

p
(w) Server (w)

c
(c,p,q) Query (c,p,q)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 8 / 16

Threats against session integrity

Powerful Attacker model

can spy on transmitted messages

can join a session as any role

can initiate sessions

can access the libraries (networking,
crypto)

cannot forge signatures

c oAbort

w

Reject

c

Offer

w o
Confirm

Change
Accept

o Contractc Request

Attacks against an insecure implementation

(Integrity) Rewrite Offer by Reject

(Replay) Intercept Reject and replay old Offer, triggering a new iteration

(Sender authentication) send Confirm to o without having received an Accept

... and many more against the store

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 9 / 16

Protocol outline

Principles of our
protocol generation

1 Each edge is implemented by a unique concrete message.

2 We want static message handling for efficiency.

Against replay attacks

between session executions: session nonces

between loop iterations: time stamps

at session initialisations: anti-replay caches

w cReplyp Forwardc Request

Against session flow attacks

Signatures of the entire message history (optimisations possible ...)

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 10 / 16

Optimisation: visibility

Do we really need to include a complete signed history in every message?

c oAbort

w

Reject

c

Offer

w o
Confirm

Change
Accept

o Contractc Request

Execution paths: which signatures to convince the receiver?

Request-Contract-Reject

Request-Contract-Offer-Change-Offer-Change

Request-Contract-(Offer-Change)n-Reject-Abort

Visibility: at most one signature from each of the previous roles is enough.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 11 / 16

Message format

MessageHeaderSession IdSession code Nonce

Time stamp

Content… Payload

 MACs

 ...

x y

 MAC
Header

… Hashes hx hy

Hashes

sid ts st hx hy

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 12 / 16

Architecture

ML
Application

code
Concrete
Model

F+S

Networking &
Cryptography

ML compiler

ML
Application

code

Session
declarations

An extension of ML
with sessions

S2ml,
A secure
session
compiler

Concrete

Executable

Session
implementation

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 13 / 16

Architecture

ML
Application

code

F+S

Networking &
Cryptography

Session
implementation

ML compiler

Symbolic
Model

Symbolic

formally
verified code

ML
Application

code

Session
declarations

An extension of ML
with sessions

S2ml,
A secure
session
compiler

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 13 / 16

Architecture

ML
Application

code
Concrete
Model

F+S

Networking &
Cryptography

Session
implementation

ML compiler

Symbolic
Model

Symbolic

formally
verified code

ML
Application

code

Session
declarations

An extension of ML
with sessions

S2ml,
A secure
session
compiler

Concrete

Executable

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 13 / 16

Security result

Theorem (Session Integrity)

For any run of a S1....Sn-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session Si from from S1...Sn.

All events: ������������

Compliant events: ������������

...corresponding to S1 events: ������������

...and S2 events: ������������

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 14 / 16

Security result

Theorem (Session Integrity)

For any run of a S1....Sn-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session Si from from S1...Sn.

All events: ������������

Compliant events: ������������

...corresponding to S1 events: ������������

...and S2 events: ������������

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 14 / 16

Performance evaluation
Performance of the code generation

File Appli- Graph Compi-
Session S Roles .session cation Local graph S.mli S.ml lation

(loc) (loc) (loc) (loc) (loc) (loc) (s)
Single 2 5 21 8 12 19 247 1.26
Rpc 2 7 25 10 18 23 377 1.35
Forward 3 10 33 12 25 34 632 1.66
Auth 4 15 45 16 38 49 1 070 1.86
Ws 2 7 33 12 24 25 481 1.36
Wsn 2 15 44 13 42 29 782 1.50
Wsne 2 19 45 15 48 31 881 1.90
Shopping 3 29 70 21 85 49 1 780 2.43
Conf 3 48 86 37 181 78 3 451 3.32
Loi 6 101 189 57 310 141 7 267 6.29

Performance of the generated code for Conf (10 000 messages)

Time Overhead
Unprotected (no key establishment) 1.31 s 0 %
Don’t sign but do cache checking 1.43 s 9 %

Sign but don’t verify 1.66 s 27 %
Fully protected 1.77 s 35 %

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 15 / 16

Conclusion

Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

Automatic generation with mechanised verification is the future!

We have:

designed a high-level session language,

built a compiler for generating secure implementations from session
specifications,

mechanised the verification of the resulting security protocols
(executable code not just models!)

http://www.msr-inria.inria.fr/projects/sec/sessions/

Thank you and bon appétit!

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

Conclusion

Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

Automatic generation with mechanised verification is the future!

We have:

designed a high-level session language,

built a compiler for generating secure implementations from session
specifications,

mechanised the verification of the resulting security protocols
(executable code not just models!)

http://www.msr-inria.inria.fr/projects/sec/sessions/

Thank you and bon appétit!

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

Conclusion

Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

Automatic generation with mechanised verification is the future!

We have:

designed a high-level session language,

built a compiler for generating secure implementations from session
specifications,

mechanised the verification of the resulting security protocols
(executable code not just models!)

http://www.msr-inria.inria.fr/projects/sec/sessions/

Thank you and bon appétit!

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou [2ex], Cédric Fournet, James J. Leifer, ()Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

