Secure sessions

Karthikeyan Bhargavan Ricardo Corin Pierre-Malo Deniélou

Cédric Fournet James J. Leifer

29 April 2010
Joint Institutes Workshop, Orsay

MICROSOFT RESEARCH
INRIA
JOINT
CENTRE

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 1/16

Goal

Make it simple to write distributed programs that engage in

orchestrated patterns of secure communication
between multiple peers.

Alice
(,;;
l’ =
" -
a
Charlie
Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

2/16

Goal

Make it simple to write distributed programs that engage in

orchestrated patterns of secure communication
between multiple peers.

Alice
&
- ~ rd
T
ﬁ
C“harlie

Piece of cake! (Assuming we control the network and all the peers.)

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

2/16

But the network is not under our control...

(The internet circa 2005)

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 3/16

...and our peers may not be trustworthy

@©The New Yorker C¢
From cartoonban

“On the Internet, nobody knows you're a dog.”

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

Secure distributed programming

The network and any coalition of peers are potentially malicious. l

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

Secure distributed programming

The network and any coalition of peers are potentially malicious. I

Designing a (correct) security protocol by hand is hard:

@ involves low-level, error-prone coding below communication abstractions,
@ depends on global message choreography,

@ needs to protect against coalitions of compromised peers.

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 5/ 16

Secure distributed programming

The network and any coalition of peers are potentially malicious. I

Designing a (correct) security protocol by hand is hard:

@ involves low-level, error-prone coding below communication abstractions,

@ depends on global message choreography,

@ needs to protect against coalitions of compromised peers.

Therefore, we propose:

@ to automatically generate tailored cryptographic protocols protecting against
the network and compromised peers;

@ to hide implementation details and provide mechanised proofs of correctness.
v

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

5/16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

Text representation:

role ¢ = send Request{c,w,q};
loop: recv [Reply{x} — send Extra{q};loop | Enough]

role w = recv Request{c,w,q} —
loop: send (Reply{x}; recv Extra{q} — loop + Enough)

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 6 /16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution

Labels:
Store:

X9 =0

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 7 /16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution

Labels: Request
Store:
c: Alice
w: Bob
g: “Gone with the wind"
X:

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 7 /16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution
Labels: Request-Reply
Store:
c: Alice
w: Bob
g: “Gone with the wind"
x: "8 euros”

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 7 /16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution
Labels: Request-Reply-Extra
Store:

c: Alice

w: Bob

g: ‘“In stock?”

x: "8 euros”

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 7 /16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution
Labels: Request-Reply-Extra-Reply
Store:

c: Alice

w: Bob

g: ‘“In stock?”

x: ‘yes"

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

7/16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution
Labels: Request-Reply-Extra-Reply-Extra
Store:

c: Alice

w: Bob

g: “Delivery date?”

x: ‘yes"

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

7/16

Sessions (contracts, conversations, workflows, ...)

()Enough()

@ (¢, w, g)Request(c, w, q)

(q)Extra(q)

Execution
Labels: Request-Reply-Extra-Reply-Extra-Enough
Store:

c: Alice

w: Bob

g: “Delivery date?”

x: ‘yes"

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

7/16

Expressivity

@ Loops, branching, value passing, and value rebinding (as we already
saw)

e Committment “coin flips by telephone” (¢ commits to x without prior
knowledge of y; likewise, w chooses y without knowledge of x)

@ (cw,x) Commit (cw) (y) Flip (y) () Reveal (x)

@ Dynamic principal binding (the proxy p gets to choose the web server
w based on the client ¢ and her login credentials q)

@ (c,p.q) Query (c,p,q) ‘/p\ (w) Server (w) >/c\ () Forward (c,p.w,q) /" >\ (x) Reply (x) ‘®
N N N

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 8 /16

Threats against session integrity

Powerful Attacker model

@ can spy on transmitted messages @ can access the libraries (networking,
@ can join a session as any role crypto)
@ can initiate sessions @ cannot forge signatures

Confirm

@ (Integrity) Rewrite Offer by Reject

@ (Replay) Intercept Reject and replay old Offer, triggering a new iteration
@ (Sender authentication) send Confirm to o without having received an Accept

@ ... and many more against the store

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 9 /16

Protocol outline

Principles of our © Each edge is implemented by a unique concrete message

protocol generation @ We want static message handling for efficiency.

Against replay attacks
@ between session executions: session nonces
@ between loop iterations: time stamps
@ at session initialisations: anti-replay caches

. Request . Forward . Reply .

Against session flow attacks J

@ Signatures of the entire message history (optimisations possible ...)

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 10 / 16

Optimisation: visibility

Do we really need to include a complete signed history in every message?

Confirm

Execution paths: which signatures to convince the receiver?
@ Request-Contract-Reject
@ Request-Contract-0ffer-Change-0ffer-Change

@ Request-Contract-(0ffer-Change)”’-Reject-Abort

Visibility: at most one signature from each of the previous roles is enough.

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 11 /16

Message format

Session code Session Id Nonce

Time stamp

x1v] .. Payload |
Hashes ‘

MAC

Header Hashes

sid ts st hx hy

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

Architecture

AN NN NN NN NN NN NN EEEEEEEEEEEEEEEEE

S2ml, : H
A secure = Networking & Concrete .
session = Cryptography :
compiler :Ill EEEEEEEEEEEEEEEEEER sssmmma”

Session Session
declarations implementation [\
ML ML
Application Application
code code
Concrete
L ML compiler Model

An extension of ML
with sessions

Executable

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 13 /16

Architecture

SN NN I NN NN NN EEEEEEEEEEEEEEEN
A secure = Networking & .
session = Cryptography :
compi’er :lll EEEEEEEEEESEEEEEEEEEEEEEEmma”

formally
verified code

Session
implementation

Session
declarations

ML compiler

An extension of ML
with sessions

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions

Architecture

S2ml,
A secure
session
compiler

H Networking &
= Cryptography

Concrete

formally
. . verified code
Session Session
declarations implementation
ML ML
Application Application
code code
. Concrete
L ML compiler Model

An extension of ML
with sessions

Executabltlej—l‘:I—‘

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 13 /16

Security result

Theorem (Session Integrity)

For any run of a S3....S,-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session S; from from S;...S,,.

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 14 / 16

Security result

Theorem (Session Integrity)

For any run of a S3....5,-system, there is a partition of the compliant
events such that each equivalence class coincides with a compliant
subtrace of a session S; from from S;...S,,.

All events: > -
Compliant events: | 4 > P
...corresponding to S; events: | 4 > > >

...and S, events:

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 14 / 16

Performance evaluation

Performance of the code generation

File | Appli- Graph Compi-
Session S | Roles | .session | cation | Local graph S.mli | S.ml lation
(loc) (loc) (loc) (loc) (loc) | (loc) (s)
Single 2 5 21 8 12 19 247 1.26
Rpc 2 7 25 10 18 23 377 1.35
Forward 3 10 33 12 25 34 632 1.66
Auth 4 15 45 16 38 49 | 1070 1.86
Ws 2 7 33 12 24 25 481 1.36
Wsn 2 15 44 13 42 29 782 1.50
Wsne 2 19 45 15 48 31 881 1.90
Shopping 3 29 70 21 85 49 | 1780 2.43
Conf g 48 86 37 181 78 | 3451 3.32
Loi 6 101 189 57 310 141 | 7267 6.29
Performance of the generated code for Conf (10000 messages)

Time | Overhead

Unprotected (no key establishment) | 1.31s 0%

Don't sign but do cache checking 1.43s 9%

Sign but don't verify 1.66s 27 %

Fully protected 1.77s 35%

.

Conclusion

@ Security protocols are hard to write by hand. They are
long, complicated, difficult to verify, and fragile in the face of
specification change.

@ Automatic generation with mechanised verification is the future!

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

Conclusion

@ Security protocols are hard to write by hand. They are

long, complicated, difficult to verify, and fragile in the face of
specification change.

@ Automatic generation with mechanised verification is the future!
We have:
@ designed a high-level session language,

@ built a compiler for generating secure implementations from session
specifications,

@ mechanised the verification of the resulting security protocols
(executable code not just models!)

http://www.msr-inria.inria.fr/projects/sec/sessions/

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

Conclusion

@ Security protocols are hard to write by hand. They are

long, complicated, difficult to verify, and fragile in the face of
specification change.

@ Automatic generation with mechanised verification is the future!
We have:
@ designed a high-level session language,

@ built a compiler for generating secure implementations from session
specifications,

@ mechanised the verification of the resulting security protocols
(executable code not just models!)

http://www.msr-inria.inria.fr/projects/sec/sessions/

Thank you and bon appétit!

Karthikeyan Bhargavan, Ricardo Corin, Pierre Secure sessions 16 / 16

http://www.msr-inria.inria.fr/projects/sec/sessions/

