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Abstract. Distributed applications can be structured as parties that exchange
messages according to some pre-arranged communication patterns. These ses-
sions (or contracts, or protocols) simplify distributed programming: when coding
a role for a given session, each party just has to follow the intended message flow,
under the assumption that the other parties are also compliant.
In an adversarial setting, remote parties may not be trusted to play their role.
Hence, defensive implementations also have to monitor one another, in order to
detect any deviation from the assigned roles of a session. This task involves low-
level coding below session abstractions, thus giving up most of their benefits.
We explore language-based support for sessions. We extend the ML language
with session types that express flows of messages between roles, such that well-
typed programs always play their roles. We compile session type declarations to
cryptographic communication protocols that can shield programs from any low-
level attempt by coalitions of remote peers to deviate from their roles. Our main
result is that, when reasoning about programs that use our session implemen-
tation, one can safely assume that all session peers comply with their roles—
without trusting their remote implementations.
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1 Session types for secure distributed programming

Programming networked, independent systems is complex, because the programmer
has little control over the runtime environment. To simplify his task, programming
languages and system libraries offer abstractions for common communication patterns
(such as private channels or RPCs), with automated support to help the programmer
use these abstractions reliably and to relieve him from their low-level implementation
details (such as message format and routing). As an example, web services promote
declarative types and policies for messaging, with tools that can automatically fetch
these declarations and set up proxies with a simple typed programming interface.

From a security perspective, when parts of the system and some of the remote par-
ties are not trusted, communication abstractions can be especially effective: relying on
cryptographic protocols, secure implementations of these abstractions can sometimes
entirely shield programmers from low-level attacks (such as message interception and
rewriting) [1,2]. Unfortunately, this is seldom the case in practice, as security concerns
force the programmer to understand low-level implementation issues.

Beyond simple abstractions for communications, distributed applications can often
be structured as parties that exchange messages according to some fixed, pre-arranged
patterns. These sessions (also named contracts, or workflows, or protocols) simplify
distributed programming by specifying the behaviour of each network entity, or role.
By agreeing in advance on a common session specification, the parties can resolve most
of the complexity upfront. Then, when coding a role for a given session, each party just
has to follow the agreed message flow for this role, under the assumption that the other
parties are also compliant. At run-time, sessions can finally be instantiated by mapping
roles to actual principals and their hosts.

Language-based support for sessions is the subject of active research [23,20,9,34,7]
[8,15,19,35,37,24]. In particular, several recent type systems statically ensure compli-
ance to session specifications. In their setting, type safety implies that user code that
instantiates a session role always behaves as prescribed in the session. Thus, assuming
that every distributed program that may participate in a session is well-typed, any run
of the session follows its specification.

In an adversarial setting, remote parties may not be trusted to play their role. Hence,
defensive implementations of session roles also have to monitor one another, in order to
prevent any confusion between parallel sessions, to ensure authentication, correlation,
and causal dependencies between messages and, more generally, to detect any deviation
from the other assigned roles of a session. Left to the programmer, this task involves del-
icate low-level coding below session abstractions, which defeats their purpose. Instead,
we propose to systematically compile session specifications to cryptographic protocols.

In this paper, we explore language-based support for sessions and their implemen-
tations, as follows:

1. We design a small embedded language of types for specifying messages, roles, and
sessions, and we identify a secure implementability condition for these sessions.

2. We extend F# [33] (a dialect of ML [27,29]) with distributed communication and
sessions, so that type safety yields functional guarantees: in well-typed programs
using sessions, any sent message is expected by its receiver, with matching payload
types.
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3. We compile session types to cryptographic communication protocols, coded in F#,
that can shield programs using sessions from any low-level attempt by coalitions
of remote peers to deviate from their roles. We thus obtain a secure, functional,
distributed implementation of sessions.

4. Our main security theorems state that the safety guarantees implied by session types
do not depend on the implementations of any remote peers: from the viewpoint of
programs using sessions, any action that may occur with our distributed implemen-
tation may also occur in an idealized setting, with a centralized implementation that
globally enforces all session types.

5. We report experimental results with a prototype compiler for F+S, including the
study and benchmarking of a simplified conference management system (CMS),
expressed as a session.

To our knowledge, this paper provides the first secure implementation of session types,
both formally and concretely. It relates the semantics of three languages: at the level of
types, simple processes to specify communication patterns and payloads; as a source
language, a subset of F# with distributed communications and typed sessions; as an
implementation language, a subset of F# with distributed communications and cryp-
tography.

Typed session APIs Our compiler extracts session definitions, verifies that they meet
the secure implementability condition, generates the corresponding cryptographic pro-
tocols, and emits their code as F# modules. However, it leaves the code of programs that
use sessions unchanged, treating the session constructs of the extended language as or-
dinary higher-order function calls to their implementations. Hence, user code calls our
generated code to enter a session and then, for each received message, generated code
calls back user code and resumes the protocol once user code returns the next message
to be sent. Taking advantage of this calling convention, with a separately-typed user-
code continuation for each state of each role of the session, we can thus entirely rely on
ordinary typing à la ML to enforce session typing in user code. (In the following, as we
focus on session security, we treat this important but well-understood aspect of session
types informally.)

Cryptographic protocol outline The compiled protocols rely on a combination of stan-
dard techniques for authentication and anti-replay protection. The compiler does not
introduce any additional message: each abstract session message is mapped to a crypto-
graphic message with the same sender and receiver. Principals are authenticated using
X.509 certificates. All messages include a unique session identifier (obtained as the
joint cryptographic hash of its session type, its assignment of principals to roles, and a
fresh session nonce) and a series of signatures: one signature from the message sender,
plus one forwarded signature from each peer involved in the session since the receiver’s
last message (or the start of the session). At any point in a session, each protocol role
knows exactly which messages to expect and what they should contain, so we can use
compact wire formats and compile simple, specialized message handlers. Any message
that deviates from the expected format can be silently dropped, or reliably detected as
anomalous.
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Verifying the protocol compiler In our view, the security of automatically-generated
cryptographic protocol implementations must rely on formal verification. To this end,
our language design and prototype implementation build on the approach of Bharga-
van et al. [4], which narrows the gap between concrete executable code and its verified
model. Our generated code depends on libraries for networking, cryptography, and prin-
cipals, with dual implementations.

– A concrete implementation of these libraries uses standard cryptographic algo-
rithms and networking primitives; the produced code supports distributed execu-
tion.

– A symbolic implementation of these libraries defines cryptography using algebraic
datatypes, in Dolev-Yao style; the produced code supports concurrent execution,
and is also our formal model.

Except for these libraries, the same code is shared between execution and verifica-
tion. Thus, our security theorems directly apply to any user code calling any session-
implementation code generated by our compiler calling symbolic-library code, within a
formal model of a subset of F#. This yields stronger guarantees than those obtainable by
studying an abstract, ad hoc model of the protocol loosely related to actual executable
code.

Related work Session types have been explored first for process calculi [20,23,37],
as a way to control interaction on single channels. Behavioral types [9,25] support
more expressive sessions, typed as CCS processes possibly involving multiple chan-
nels. Another type system [6] also combines session types and correspondence asser-
tions [22]. Recent works consider applications of session types to concrete settings such
as CORBA [34], a multi-threaded functional language [35], and a distributed object-
oriented language [15]. In particular, the Singularity OS [19] explores the usage of
typed contracts in operating system design and implementation.

In recent, independent work, Carbone et al. [7] present a language for describing
Web interactions from a global viewpoint and describe their end-point projection to
local role descriptions. Their approach is similar to our treatment of session graphs
and roles in Section 2; however, their descriptions are executable programs, not types.
Honda et al. [24] subsequently consider multi-party session types and their local pro-
jections for the pi-calculus. More generally, distributed languages such as Acute and
HashCaml [31,14,5] also rely on types to provide general functional guarantees for net-
worked programs, in particular type-safe marshalling and dynamic rebinding to local
resources.

In all these works, type systems are used to ensure session compliance within fully
trusted systems, excluding the presence of an (active, untyped) attacker.

Cryptographic communications protocols have been thoroughly studied, so we fo-
cus on related work on their use for securing implementations of programming-language
abstractions. They can provide secure implementations for distributed languages with
private communication channels [1,2]. They can also help support the distributed imple-
mentation of sequential languages such as JIF/Split [38], while preserving high-level,
typed-based integrity and secrecy guarantees. In a similar vein, the Fairplay [26] system
compiles high-level procedural descriptions toward secure two-party computations. In
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other work, type-based secrecy and integrity guarantees are enforced by a combination
of static typechecking and compilation to low-level cryptographic operations [18]. In
the context of Web Services, secure sessions have been considered for the WSDL and
WS-SecureConversation specification languages (see e.g. [3,8]); Bhargavan et al. [3]
verify security guarantees for session establishment and for sequences of SOAP re-
quests and responses (with no communication types).

Protocol synthesis and transformation have been explored in other settings: for in-
stance, the Automatic Protocol Generation (APG) tool [30] generates authentication
protocols then verified using Athena [32] and, more recently, Cortier et al. [12] verify
the correctness of a generic transformation to protect a protocol from active attacks (but
not from compromised participants).

Contents Section 2 defines two views of sessions, as global communication graphs
and as local role definitions. Section 3 sets the syntax and semantics for our source
and target languages. Section 4 outlines the libraries that embed our assumptions on
cryptography and principals, used by our implementation. Section 5 presents our op-
timized cryptographic protocol, as a refinement of a basic, intuitively secure protocol.
Section 6 describes our implementation code for sessions. Section 7 states our main
results, formally showing the correctness of the implementation. Section 8.1 describes
our prototype implementation and a case study. Section 9 concludes.

The appendix provides additional details on our implementation, including listings
for selected libraries, a discussion of correspondence assertions, a detailed program-
ming example, and the proofs.

Parts of this work appear in preliminary form in conference proceedings: a first
paper presents our general approach and main theoretical results [11]; a second paper
focuses on the implementation and case study [10].

The prototype implementation of our session compiler is available online, at http:
//msr-inria.inria.fr/projects/sec/sessions. It includes all the ex-
amples presented in this paper, as well as the source code for the compiler and the
runtime libraries.

2 Sessions

In this paper, a session is a static description of the valid message flows between a fixed
set of roles. Every message is of the form f(ṽ), where f is the message descriptor, or
label, and ṽ is the payload. The label indicates the intent of the message and serves to
disambiguate between messages within a session. (Throughout the paper, both ṽ and
(vi)i<n denote a comma-separated list of values v0, . . . , vn−1; we use (vi)i<n instead
of ṽ when we need to refer specifically to indexed values.)

We denote the roles of a session by a set R = {r0, . . . , rn−1} for some n ≥ 2. By
convention, the first role (r0) sends the first message, thereby initiating the session. In
any state of the session, at most one role may send the next message—initially r0, then
the role that received the last message. The session specifies which labels and target
roles may be used for this next message, whereas the selection of a particular message
and payload is left to the programs that implements the roles.
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We define two interconvertible representations for sessions. A session is described
either globally, as a graph defining the message flow, or locally, as a process for each
role defining the schedule of message sends and receives. The graph describes the ses-
sion as a whole and is convenient for discussing security properties and the secure im-
plementability condition. More operationally, local role processes are the basis of our
implementation; they provide a direct typed interface for programming roles.

In the rest of this section, we describe these two representations; we explain how
sessions are instantiated at runtime; we discuss session integrity; and we give an imple-
mentability condition.

2.1 Global session graphs

We represent sessions as directed graphs where nodes are session states tagged with
their active role, and edges are labelled with message descriptors. Formally, a session
graph G = 〈R,V,L,m0 ∈ V, E ⊆ V × L × V, r : V → R〉 consists of a finite set of
rolesR = {r0, . . . , rn−1}, a set of nodes m,m′,mi ∈ V and a set of labels f, g, l ∈ L,
with initial node m0, labelled edges (m, f,m′) ∈ E , and a function r from nodes to
roles such that r(m0) = r0 ∈ R. We require that session graphs meet the following
properties:

1. Edges have distinct source and target roles: if (m, f,m′) ∈ E , then r(m) 6= r(m′).
2. Two different edges have distinct labels: if (m1, f,m

′
1) ∈ E and (m2, f,m

′
2) ∈ E ,

then m1 = m2 and m′1 = m′2.

Property 1 disallows a role from sending a message to itself; such a message would be
invisible to the other roles and should not be part of the session specification. Property 2
ensures that the intent of each message label is unambiguous; the label uniquely iden-
tifies the source and target session states. Note that one can always transform graphs so
that they meet Property 2 by renaming message labels that occur on multiple edges.

As usual, a path is a sequence of connected edges. By Property 2 above, a sequence
of labels uniquely defines a path, so we just write f̃ to denote paths. To emphasize
the first node of a path, we write a pair (m, f̃). In particular, paths of the form (m0, f̃),
wherem0 is the initial node of the graph, are called initial paths; they represent possible
message sequences for the session. We say that a role r is active on a path f̃ when r is
the role of any source node of a label of the path.

As a running example, we consider sessions with a customer role C arranging the
delivery of an item with a store role S. This arrangement may include several negotiation
rounds, until both C and S agree on the details, for instance the delivery date and time.
In addition, a third notary officer role O may take part in the session to record the
transaction, preventing further disputes. Figure 1 displays three increasingly complex
examples of session graphs:

(a) The customer C sends a Request message to store S, which may reply with either
an Accept message or a Reject message.

(b) As a refinement to (a), S may either Reject as before, or accept the request and
propose a delivery time by sending an Offer message. C may then either Change
the delivery time or approve it by sending an Accept message.
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Fig. 1. Graphs for (a) a basic session, (b) a session with a cycle, and (c) a three-party
session.

(c) A new officer role O acts as a notary for the transaction. Initially, C sends its
Request to O, which forwards this request to S. S negotiates with C as before, and
finally O receives either a Confirm from S indicating that the request is successful,
or an Abort from C indicating that the request is void.

In session (a), there are only two paths from the initial node; hence, only two mes-
sage sequences are allowed. In sessions (b) and (c), however, the negotiation can be
repeated indefinitely, so the number and the length of possible message sequences are
unbounded.

2.2 Local session roles

We also define a syntax for sessions, as a map from roles to role processes that specify
the local operational behaviour of each role in the session:

τ ::= Payload types
int | string base types

p ::= Role processes
!(fi : eτi ; pi)i<k send
?(fi : eτi ; pi)i<k receive
µχ.p recursion declaration
χ recursion
0 end

Σ ::= Sessions
(ri : eτi = pi)i<n initial role processes pi for the roles ri

Role processes can perform two communication operations: send (!) and receive (?).
When sending, the process performs an internal choice between the labels fi for i =
0, . . . , k − 1 and then sends a message fi(ṽ) where the payload ṽ is a tuple of values
of types τ̃i, a possibly empty tuple of int or string types. Conversely, when receiving,
the process accepts a message with any of the receive labels fi (thus resolving an ex-
ternal choice). The µχ construction sets a recursion point which may be reached by the
process χ; this corresponds to cycles in graphs. Finally, 0 represents a completion of
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session S1 =
role customer = !Request:string; ?(Reject + Accept)
role store:string = ?Request:string; !(Reject + Accept)

session S2 =
role customer = !Request:string;mu X.

?(Reject + Offer:string;!(Change:string;X + Accept))
role store:string = ?Request:string;mu X.

!(Reject + Offer:string;?(Change:string;X + Accept))

Fig. 2. Local session roles for the session graphs of Figure 1(a,b) (files S1.session
and S2.session)

the role for the session. On completion, a session role returns values whose types τ̃ i
are specified on the process role ri : τ̃ i = pi. For convenience, we often omit type
annotations when the payload or return type tuple is empty. Our concrete syntax uses
the keyword ‘mu’ for µ and keywords ‘session’ and ‘role’ in front of session and role
definitions.

Figure 2 illustrates our local role syntax for the session graphs of Figure 1(a,b). (We
also provide the names of the corresponding files included in our prototype compiler
distribution, at http://msr-inria.inria.fr/projects/sec/sessions.)
The concrete syntax for the session graph of Figure 1(c) appears in Appendix D.
Session S1 corresponds to graph (a), with role customer standing for C and role store
standing for S. Session S2 uses recursion to represent the negotiation loop of graph (b).

We equip role processes with a simple labelled semantics that describes their exe-
cution, with labels η that range over f , f with f a message label. We identify roles up
to µ-unfolding, so our semantics has just two rules for sending and receiving:

(SEND) !(fi : eτi ; pi)i<k
fi−→r pi (RECEIVE) ?(fi : eτi ; pi)i<k

fi−→r pi

Traces of the labelled semantics represent possible series of actions for these roles.
For example, the customer process in S1 can perform the following two sequences of
actions:

!Request:string; ?(Reject + Accept)
Request
−−−−−−→r ?(Reject + Accept)

Accept
−−−−−→r 0

!Request:string; ?(Reject + Accept)
Request
−−−−−−→r ?(Reject + Accept)

Reject
−−−−→r 0

Given the role processes for a session (Σ), if the sends and receives are correctly
matched, we can construct a corresponding session graph (G). Appendix A details this
construction—implemented as the first step in our prototype session compiler—and
gives a reverse construction from G to Σ.

2.3 Distributed session runs

At runtime, a session run involves processes for each of its roles, running on hosts
connected through an untrusted network. Each process runs on behalf of a principal. In
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general, a principal may be engaged in multiple sessions with other principals, may play
multiple roles within a session run, and may also communicate with other principals
outside the session.

A run of a session begins as a principal a0 initiates it, taking its initial role r0, select-
ing other principals to play the other roles, and sending a first message. If a0 picked the
principal ai to play role ri, then ai joins the session run in role ri only when it receives
the first message sent to this role. The session run proceeds by exchanging messages
between these principals until all role processes have completed, at which point the run
terminates. We consider implementations that enjoy “message transparency”, that is,
every message send in a session is implemented as a single (asynchronous) message
send on the network.

As an example, a principal Alice may begin a run of session S1 as a customer. Alice
computes a unique session run identifier s, picks the principal Bob to play the role of the
store, and sends the first message Request(v), for some string v, to Bob. (All messages
implicitly contain the session identifier s.) On receiving the message, Bob joins the
running session s as a store, sends either a Reject or an Accept message back to Alice,
and thereby completes its role for the session. After receiving the response, Alice also
completes its role, and the session run s is terminated.

So far, we described session executions in which every principal is compliant. If
a principal is malicious, however, it may deviate from its role. We consider a threat
model where some of the principals participating in a session may be malicious and
may collude with an attacker that also controls the network, and can thus intercept,
modify, and replay any messages.

2.4 Session integrity

We say that a distributed session implementation preserves session integrity if, during
every run, regardless of the behaviour of the malicious principals and the network, the
process states at the compliant principals are consistent with a run where all principals
seem to comply with all sessions. Intuitively, every time a compliant principal sends
or accepts a message in a session run, such a message must be allowed by the session
graph; conversely, every time a malicious principal tries to derail the session by sending
or replaying an incorrect message, this message must be ignored.

Session integrity requires that all message sequences exchanged at compliant prin-
cipals are consistent and comply with the session graph. For instance, in a run of the
session graph of Figure 1(c), a compliant officer Charlie should accept a Confirm from
a store Bob only if a customer Alice previously sent an Accept for the same session
run to the store Bob. Such properties on message sequences can also be interpreted as
injective correspondences between message events [36] (see Section 7.1).

Conversely, if in a session run, some malicious principals, possibly in collusion with
the network-based opponent, succeed in confusing a compliant principal into accepting
or generating a message sequence that deviates from the session, we say that this run
constitutes an attack against session integrity. In the example above, if the store Bob is
malicious, it may Confirm a transaction to Charlie, without ever completing its negoti-
ation with Alice, hence attempting to lead the compliant principals Alice and Charlie to
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Fig. 3. (a) A session graph with a vulnerable fork and (b) its safe counterpart.

inconsistent session states. To avoid this attack, Charlie’s implementation will require
further cryptographic evidence from Alice and Bob.

Even if all principals are compliant, a network-based opponent could still try to
confuse them by mixing messages from different session runs, or by replaying old mes-
sages. In the example above, assume the customer Alice sends a Change to store Bob,
who then sends a Reject to officer Charlie. A network-based opponent may intercept
the Reject message and replay instead a previous Offer message, to trigger a new iter-
ation of the loop. Such attacks, as well as simpler attacks on the integrity of message
payloads, are reminiscent of common attacks against (flawed variants of) cryptographic
protocols, in the style of Dolev and Yao [16].

A secure implementability condition for sessions For some session graphs, it is diffi-
cult to rule out certain attacks without either trusting some principals, or introducing
additional messages, or relying on a trusted party.

Consider for example the session of Figure 3(a), where S may send either a Reject
message to C or an Accept message to O. Unless C and O exchange some informa-
tion, they cannot prevent a malicious S from sending both messages, thereby breaking
session integrity.

To avoid such cases, we formalize a secure implementability condition as a third
property of session graphs, in addition to Properties 1 and 2 given above:

3. For any two paths f̃1 and f̃2 starting from the same node and ending with roles r1
and r2, if neither r1 nor r2 are in the active roles of f̃1 and f̃2, then r1 = r2.

Property 3 is trivially met for sessions with two roles; it excludes only some particular
sessions where choices between different messages are not seen by all roles.

The session of Figure 3(a) does not meet this condition: the principal instantiat-
ing the (single) role S active on the paths f̃1 = Reject and f̃2 = Accept, may form
a “coalition” of one, against r1 = C and r2 = O by contacting them simultaneously.
Nevertheless, such vulnerable session graphs can always be transformed to functionally
equivalent ones that meet Property 3, at the cost of inserting additional messages (see
Appendix B for the general case). Figure 3(b) shows a safe counterpart for the vulnera-
ble session of Figure 3(a): the message Accept is split into two messages, Accept1 and
Accept2, so that S is obliged to contact C irrespective of the branch is selects.
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In the rest of this paper, we consider sessions that meet Properties 1–3, and we
describe distributed implementations that preserve their integrity.

3 Language specification

We now embed sessions within ML. We adopt the concrete syntax of F#, a dialect
of ML, to which we add the syntax for session type definitions. Formally, we give a
semantics only to a subset of this language (which we call F+S) with primitives for
both session-based and channel-based communications. We compile programs in this
language to a language without session constructs (which we call F).

T ::= Type expressions
t type variable
int, string, unit base types
T chan channel type
T1 → T2 arrow type

v ::= Values (also used as Patterns)
x variable
0, 1,. . . , Alice, Bob,. . . , () constants for base types
l, c, n, . . . names for functions, channels, nonces
f(v1, . . . , vk) constructed term (when f has arity k)

e ::= Expressions
v value
l v1 . . . vk function application
match v with (|vi → ei)i<k value matching
0 inert expression
let x = e1 in e2 value definition
let (li x0 . . . xki = ei)i<k in e mutually-recursive function definition
type (ti = (|fji of eT ji)ji<ki)i<k in e mutually-recursive datatype definition
session S = Σ in e session type definition
S.rb ev (v) session entry
s.p(e) session role (run-time only)

E[·] ::= Evaluation contexts
[·] top level
let x = E[·] in e2 sequential evaluation
s.p(E[·]) in-session evaluation (run-time only)

P ::= Processes
e running thread
P |P parallel composition

The grammar defined for T , v, and e (except for 0 and the final three session-related
constructs) generates a simple subset of ML; this is the language we call F. Type ex-
pressions T include constructed types t, base types int, string and unit, channel types
T chan (with payload type T ), and arrow types. Channel types T chan are included
only for compatibility with the concrete F# language; our formal semantics is in fact
untyped; this allows us to reason about arbitrary opponents. Values v include constants,
functions, and terms built with type constructors. We assume given a finite set of prin-
cipal constants, such as Alice and Bob, which are implemented as strings. Expressions
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include an inert expression, 0, with no reduction, that abstractly represents thread ter-
mination.

Our language has four pi-calculus-like primitive functions: new, send, recv, and
fork, to which we give a semantics below. It also has simple core libraries for func-
tional data, including booleans, tuples, lists and functional records (as syntactic sugar
for tuples). We omit their standard definitions.

Our language embeds the session types Σ of Section 2 as follows: F+S code can
define named session types S = Σ in expressions; F+S code can enter such sessions in
a given role r using the expression S.rb ã (e).

In case r is the initial role of the session, the first argument ã is a tuple of principals
that binds all roles for the session and e is a message send; otherwise, ã is the single
principal that attempts to join the session in role r and e is a message handler. A mes-
sage handler is a tuple (concretely implemented as a record) of continuations for each
message that the role may receive in its current state, whereas a message send is an
expression that yields a pair of a message to be sent and a message handler to receive
the next message, if any. Their structure is illustrated in the example below.

Our syntax for session-entry expressions S.rb ã (e) in F+S coincides with the
syntax for ordinary function application in F#, where S is the name of the module that
implements the session, where r is a function provided by this module (for each role),
and where e is built using ordinary datatype constructors. (The optional mark b in S.rb

will be set to • to record that the session role is entered by the opponent; this mark is
used only to specify session-integrity despite the compromise of some principals.)

At runtime, session-entry expressions reduce to active roles s.p(e′), where s ranges
over unique session identifiers, p is the current role process, and e′ is the current ex-
pression for the role: either a message-send expression or a message-handler value,
depending on p.

We illustrate our syntax by giving an expression that initiates session S1 of Section 2
as a customer (file customer.fs):

let handle accept a r = printf "The request has been accepted." in
let handle reject a r = printf "The request has been rejected." in
S1.customer
{customer=‘‘Alice’’; store=‘‘Bob’’}
(Request("12 May 2007", { hAccept = handle accept; hReject = handle reject }))

In this code, the first argument to the customer role function instantiates the customer
and store roles with principals Alice (the running principal) and Bob (some remote
store). The second argument is the user code for the customer role: it defines a Request
to be sent with payload "12 May 2007" and handlers (hAccept, hReject) for each of
the two messages Accept and Reject that may be received next.

Semantics We define a labelled semantics for expressions, then for processes; we begin
with the rules for plain F, then give the additional rules for sessions in F+S.

Our semantics has an explicit store, ranged over by ρ, that keeps track of generated
names, defined functions, defined types, and (in F+S only) defined session types and
information about running sessions. Syntactically, ρ contains names n; types (ti =
(|fji of T̃ ji)ji<ki)i<k; function definitions (li x0 . . . xki = ei)i<k; session types S =
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Σ; and running sessions s ã (δ) : S, where s is the session identifier, ã are the principals
for all roles, δ is a set of roles activated so far, and S is the session type variable name.
We use ] to express extensions of ρ with disjoint domain. (Before extending ρ, we may
use renaming to obtain distinct constructor, function, type, and session type names).

Transitions are either unlabelled (implicitly labelled with the silent action) or la-
belled with either an input z v or an output z v, where z is either a channel name
(e.g. c) or a session name concatenated with a message label (e.g. sf, sf ), and where v
is a value. We let α, β range over labels, and let ϕ, ψ range over series of labels.

For F expressions (without sessions yet), our semantics is as follows:

(APPLY) ρ, l v0 . . . vk −→e ρ, e{x0 = v0; . . . ;xk = vk}
when (l x0 . . . xk = e) ∈ ρ

(MATCH) ρ,match v with (|vi → ei)i<k −→e ρ, e0γ
when v = v0γ for some substitution γ

(MISMATCH) ρ,match v with (|vi → ei)i<k −→e

ρ,match v with (|vi → ei)0<i<k otherwise
(LETVAL) ρ, let x = v in e −→e ρ, e{x = v}
(LETFUN) ρ, let (li x0 . . . xki = ei)i<k in e −→e

ρ ] {(li x0 . . . xki = ei)i<k}, e
up to renamings of li

(TYPE) ρ, type (ti = λi)i<k in e −→e ρ ] {(ti = λi)i<k}, e
where λi = (|fji of eT ji)ji<ni
up to renamings of ti, fji

(FRESH) ρ, new () −→e ρ ] {n}, n
(SEND) ρ, send c v c v−−→e ρ, () when c ∈ ρ
(RECV) ρ, recv c c v−−→e ρ, v when c ∈ ρ

This small-step semantics is standard; labels are used only to collect calls to send and
recv; the rules (FRESH), (LETFUN), and (TYPE) simply extend ρ.

For processes, we have rules for forking new threads and communicating on both
sides of a parallel composition.

(EVAL)
ρ, e

α−→e ρ
′, e′

ρ,E[e]
α−→P ρ

′, E[e′]
(FORK) ρ,E[fork l] −→P ρ,E[()] | l ()

(COMMR)
ρ, P

z v−−→P ρ
′, P ′ ρ′, Q

z v−−→P ρ
′′, Q′

ρ, P |Q −→P ρ
′′, P ′ |Q′

(PARR)
ρ, P

α−→P ρ
′, Q

ρ,R |P α−→P ρ
′, R |Q

(COMML)
ρ,Q

z v−−→P ρ
′, Q′ ρ′, P

z v−−→P ρ
′′, P ′

ρ, P |Q −→P ρ
′′, P ′ |Q′

(PARL)
ρ, P

α−→P ρ
′, Q

ρ, P |R α−→P ρ
′, Q |R

The communication rules (COMMR) and (COMML) combine matching send and re-
ceive actions; in case these actions are session actions, this may in turn may involve
session transitions that update ρ (as shown below).

For sessions, we let σ range over S.rb ã and s.p, that is, session entries parameter-
ized by principals as well as running sessions. We first define auxiliary transitions that
keep track of running sessions in the store, written ρ, σ

η−→s ρ
′, s.p, obtained from the

role transitions p
η−→r p

′ of Section 2 and with the same labels.
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(INIT)
p0

g−→r p
′ S = (ri : eτi = pi)i<n ∈ ρ s fresh

ρ, S.rb0 (ai)i<n
g−→s ρ ] {s (ai)i<n {r0} : S}, s.p′

(STEP)
p
η−→r p

′

ρ, s.p
η−→s ρ, s.p

′

(JOIN)
pj

f−→r p
′ S = (ri : eτi = pi)i<n ∈ ρ ρ′ = ρ ] {s (ai)i<n δ : S}

ρ′, S.rbj aj
f−→s ρ ] {s (ai)i<n (δ ] {rj}) : S}, s.p′

Rule (INIT) initiates a session, adding a new record s (ai)i<n {r0} : S to ρwith s being
a freshly generated session name. Rule (JOIN) requires that (1) rj for some j < n is
a role for the session S; (2) S is the session type of s; (3) the set δ of already-running
roles for s does not contain rj ; and (4) the joining principal aj matches the principal
for rj in s. The label f records the first input label for pj according to S.

For sessions in expressions (hence in processes), we have:

(SESSION) ρ, session S = Σ in e −→e ρ ] {S = Σ}, e up to renamings of S

(SENDS)
ρ, σ

g−→s ρ
′, s.p safe σ

ρ, σ (g(ev), w)
sg ev−−→e ρ

′, s.p (w)

(RECVS)
ρ, σ

g−→s ρ
′, s.p s ea δ : S ∈ ρ safe σ

ρ, σ (w)
sg ev−−→e ρ

′, s.p (w.g ea ev) (ENDS) ρ, s.0 (v) −→e ρ, v

where the predicate safe σ (defined only in Section 4) depends on the principal that
enters the session. Rule (SESSION) adds a session type definition to ρ; Rules (SENDS)
and (RECVS) enable role processes to send and receive messages using the session
transitions; Rule (ENDS) returns the final value computed by a role process.

4 Libraries for cryptography and principals

In this section, we describe the design and interfaces of our libraries for cryptography
and principals, coded as F# modules. We follow the approach of Bhargavan et al. [4]
and provide a symbolic implementation in addition to the standard concrete implemen-
tation of these libraries. The symbolic implementation, written in the formal subset F
of F#, is an important part of our security model. Its code is listed in Appendix C. (For-
mally, an F# module implementation M is just an expression context that binds types,
session types, values, and functions; we write M M ′ as syntactic sugar for M [M ′[ ]].)

Cryptography The cryptographic library includes the following types and functions,
plus a few auxiliary formatting functions such as concat and utf8.

type bytes
type keybytes
val nonce: name→ bytes
val hash: bytes→ bytes

val genskey: name→ keybytes
val genvkey: keybytes→ keybytes
val sign: bytes→ keybytes→ bytes
val verify: bytes→ bytes→ keybytes→ bool

It has abstract types bytes for bitstrings and keybytes for cryptographic keys, and func-
tions for constructing messages: nonce takes a (typically fresh) name and returns a
nonce; hash returns the cryptographic hash of a message; genskey returns the signing
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key associated with a name (used as a seed); genvkey returns the verification key asso-
ciated with a signing key; sign signs a message using a signing key, and verify verifies
a signature on a message using a verification key.

The concrete implementation of this library uses standard cryptographic algorithms.
For instance, the datatype bytes is implemented as a byte array, and sign is implemented
as an asymmetric signing function on the hash of the message (RSA-SHA1).

The symbolic implementation, on the other hand, uses algebraic datatypes and
datatype constructors to model cryptographic operations. For example, the type bytes
is defined as an algebraic datatype, and sign is implemented as the application of a bi-
nary constructor Sign that represents signed bytes. (Both bytes and keybytes types are
abstract in the interface, and hence values of these types can be accessed only through
the exported functions, preventing e.g. trivial key leakage by pattern matching on sig-
natures.)

Executing code linked with our symbolic libraries is useful for debugging; Ap-
pendix D displays a symbolic run for an example. More importantly, the symbolic
implementation encodes our formal model of cryptography that is used to establish
our security results in the subsequent sections. Specifically, we consider a variant of the
standard Dolev-Yao threat model: the opponent can control corrupted principals (that
may instantiate any of the roles in a session), intercept, modify, and send messages
on public channels, and perform cryptographic computations. However, the opponent
cannot break cryptography, guess secrets belonging to compliant principals, or tamper
with communications on private channels. (We rely on private channels only for sim-
plicity; we could use instead, for instance, message authentication codes.) For example,
the symbolic implementation ensures that ‘verify m (sign m′ k) vk = true’ only when
m = m′ and vk = genvkey k.

Principals This library manages principals and their data; our implementation uses it
to exercise the two privileges associated with the principals that play session roles, that
is, signing values and receiving messages. Principals are just strings. (For clarity we use
the type alias principal instead of type string.) The interface contains:

val skey : principal→ keybytes
val vkey : principal→ keybytes
val psend : principal→ bytes→ unit
val precv : principal→ bytes

val safe : principal→ bool
val psend• : (principal ∗ bytes) chan
val chans• : (principal ∗ bytes chan) list
val skeys• : (principal ∗ bytes) list

Functions skey and vkey return the signing and verification keys of a principal, re-
spectively. (In the concrete implementation, we fetch keys from a local X.509 store,
and return an error if no certificate is available.) Functions psend and precv provide
message delivery with replay protection (explained below): ‘psend a v’ asynchronously
sends message v to principal a, whereas ‘precv a’ receives a message sent to a. Calling
‘skey a’ and ‘precv a’ is a’s privilege.

In the model, we assume a fixed, finite population of principals and an arbitrary
but fixed predicate safe that indicates whether a principal is compliant or possibly cor-
rupted. This predicate is used only to specify the security properties that hold for com-
pliant principals—clearly, our implementation could not guarantee the security of prin-
cipals whose signing keys are compromised. To this end, in our semantics, only safe

14



principals may enter a session in compliant code, and only unsafe principals may enter
a session in opponent code. Formally, in rules (SENDS) and (RECVS), we let safe σ
hold if and only if either σ = S.r (ai)i<n and safe a0, or σ = S.r• (ai)i<n and not
safe a0, or σ = s.p.

Accordingly, opponent code is not given direct access to psend, precv and skey. In-
stead, it is given a channel psend• for sending messages to safe principals, a list chans•

of channels to receive messages sent to unsafe principals, and a list skeys• of signing
keys belonging to unsafe principals. Using these, the attacker can receive messages sent
to any unsafe principal and sign any value on their behalf. Hence, the initial knowledge
of our Dolev-Yao opponent (calledK in Section 7) consists of the values psend•, chans•

and skeys•, and all the functions above except for psend, precv and skey.

Anti-replay cache Like any protocols with responder roles, our protocols rely on dy-
namic anti-replay protection mechanisms for the messages that may cause principals to
join a session, that is, the first messages they may receive in their roles.

To prevent such replays, each principal maintains a cache that records pairs of ses-
sion identifiers and roles for all sessions it has joined so far. The cache for princi-
pal a is used only to filter incoming messages through the call to an auxiliary function
‘antireplay’ that can determine from the message header whether the message may need
replay protection (by checking its header) and, when it is the case, which cache entry
is associated with the message. If the message does not need replay protection, it is
transmitted; otherwise, if the cache entry already occurs in the cache for a, the message
is ignored; otherwise, the message is transmitted and the entry is added to the cache.
The code of psend, precv and antireplay in the symbolic implementation is listed in
Appendix C. This simple mechanism is thus verified as part of our formal model. Con-
cretely, it may be refined using standard, timestamp-based techniques to bound the size
of the cache while preserving its correctness.

5 Protocol outline

This section outlines the security protocol used to enforce session integrity; Section 6
describes its compiled implementation. We present our protocol (the third protocol be-
low) as a refinement of simpler, intuitively secure protocols (the first and second pro-
tocols below). Exploiting the session structure and the implementability condition of
Section 2, we obtain a final, optimized protocol with compact messages and minimal
message processing.

The protocols all implement sends and receives by converting them to and from
low-level bytes messages that consist of a session identifier, a payload, and a series of
signatures (depending on the protocol, as described below). The identifier is computed
as s = hash(D ã N ), where D ã N is the tagged concatenation of D = hash(S=Σ), a
digest of the whole named session-type definition (type digest: bytes in the implemen-
tation); the principals ã assigned to the session roles; and a nonce N freshly generated
by the initiator. Every initial message also includes D, ã, and N , so that its recipient
can verify the identifier hash.
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First protocol: signing the full session history In order to prevent any misbehaviour
from any of the principals participating in a session, every message may conservatively
include a record of the whole session history, countersigned by the sender of every
message that extends the session. Every receiver can then verify the validity of incoming
messages by replaying the received history on the session graph and verifying all its
signatures.

Although intuitively correct, this solution is inefficient, as it requires both senders
and receivers to do significant work, since session runs (and hence their records in
messages) may be arbitrarily long in the presence of cycles.

Second protocol: signing message labels Since the session type is statically known and
Property 2 of Section 2 ensures that every label has unique source and target nodes,
each sender may simply sign the message label, rather than countersign the whole ses-
sion record. Thus, every sender may forward previously-signed labels and append its
own signed label to every message. Specifically, every message now carries a series of
cryptographic signatures, each computed as ts = sign(s f t, skey(a)) where s f t is
the concatenation of the session identifier s, the message label f , and a logical times-
tamp t and where a is the principal assigned to the sending role of f , determined by s.
The timestamp disambiguates signatures for labels occurring in cycles, which may be
signed several times within a session; when receiving a message, a series of signatures is
accepted only if they have increasing timestamps larger than the last-received message.

Although session records are now more compact, and their processing may be par-
tially cached, receivers still need to dynamically replay session histories.

Third protocol: signing visible labels We can entirely avoid graph computations at
runtime, and rely instead on a static notion of visibility between nodes and labels.

Let g̃ be the sequence of labels on a given path from the initial nodem0 to a nodem
with role r. Let f̃ be the sequence of labels obtained from g̃ by erasing every label g (1)
whose sending role is r; or (2) that is followed by a label whose sending role is either r
or g’s sending role. (Thus, f̃ retains the last label sent by every role other than r, if any,
along the path g̃.) We then say that f̃ is visible from m.

For example, for session (c) of Figure 1, the bottom-right node has a single vis-
ible sequence of labels, Accept-Confirm; the central node has two visible sequences,
Request-Contract (along the initial path) and Change (through the cycle). Relying on
visibility information computed at session-type compile-time, we obtain an efficient
protocol with compact messages. To send a message with label f from node m to m′

in the session graph, we pre-compute the series of labels g̃f that is visible from m′ on
a path with final label f . The message for f then includes the corresponding series of
signatures, consisting of signatures for g̃ previously received in messages from other
roles, plus a new signature for f computed by the sender. Conversely, to verify a mes-
sage received at node m, we pre-compute all series of visible labels at m, and accept a
message only if it is well-formed and has valid signatures that match a series of visible
labels. Hence, message size overheads and receiver checks are statically bounded by
the number of roles.
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6 Compiler implementation

In this section we present a translation from the session definitions of Section 2 to gen-
erated code for each of their roles, built on top of the libraries of Section 4. For a given
valid session, we describe the generated interface, then present the generated protocol,
and finally provide its implementation. To illustrate the translation, Appendix D lists
excerpts from the code generated for the example session of Figure 1(c).

Generated session-type interface We first generate type declarations, including a record
type principals that maps roles to principals and, for each role, types that reflect the mes-
sage flow of a session from this role’s viewpoint. We generate a type for each message
sent or received by the role. For sending, we use a sum type with a constructor for each
message that the role may send at this point, along with the corresponding continuation
type. For receiving, we use a record type, with a message-handler for each message that
the role may receive at this point. These types are mutually recursive when there is a
cycle in the graph.

We omit a general definition, and list instead the types for session S2 of Section 2,
with two roles (customer and store):

type principals = { customer: principal; store: principal }

type msg0 = Request of (string ∗ msg1)
and msg1 = { hReject : principals→ unit→ unit;

hOffer : principals→ string→msg2}
and msg2 = Change of (string ∗ msg1) | Accept of (unit ∗ unit)

type msg3 = { hRequest : (principals→ string→msg4) }
and msg4 = Reject of (unit ∗ string ) | Offer of (string ∗ msg5)
and msg5 = { hChange : (principals→ string→msg4) ;

hAccept : (principals→ unit→ string) }

For each role of the session, we also generate a session-entry function that inputs
principal information and the user’s message (or message handler). For session S2,
these functions have the following types.

val customer: principals→msg0→ unit
val store: principal→msg3→ string

We rely on ordinary ML typing of the session-entry parameters against the gener-
ated types msgir to ensure that the nested messages and handlers provided by the user
will comply with role r for the whole session. Hence, inasmuch as all principals en-
ter sessions by calling our typed interface, all their sessions will be correctly executed.
In the rest of the section, we describe more dynamic implementation mechanisms that
provide guarantees even when some principals are compromised.

Role implementation In our implementation, the dynamic state for each active role
consists of a principal assignment prins, a nonce (used in the session identifier), a logical
time (the timestamp of the last issued signature), and a record tsigs of the last-received
verified signature for each role of the given session typeΣ, if any. (In the following, the
text in italics included in code specifies how the compiler produces that code.)
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type tsig = { tstime: int; tsval: bytes }
type tsigs = {

ˆ
r: tsig;

˜
for each (r :eτ = p) ∈ Σ }

type state =
{ prins: principals; nonce: bytes; time: int; sigs: tsigs }

In addition, much like in code implementing control automata, we generate distinct,
mutually-recursive functions indexed by series of labels, so that the current node and
stored signatures for the role are always statically known when we generate the code for
each of these functions. To generate a message with label f in a state where g̃ denotes
the series of labels for the signatures currently stored in tsigs, we implement:

val gen eg f : state ∗ payload(f)→ bytes
val gensig p f : state→ bytes

The function gensig p f computes a signature ts for label f using the currently-
stored time, as described above; gen g̃ f computes a message that carries some payload
for f and includes a series of signatures for the labels visible by the intended receiver,
with a last signature computed by gensig p f . To check that a received message con-
tains valid signatures for the visible labels g̃′ in a state with stored labels g̃f , we also
implement

val chk egf eg′ : state ∗ bytes→ state ∗ payload(eg′)
where f is the last label sent by the role, and can be omitted when g̃ is empty (that is,
when receiving a first message for the role) and payload(g̃′) is the payload type for the
last label of g̃′, written last(g̃′), as specified in the session type. The function chk g̃f g̃′

updates the state with the new received signatures and updates the stored time with the
successor of the latest received timestamp.

For any path in the graph, there is a single active role r, which can send a message
to a role r′ with label selected from a set F that collects the possible outgoing labels at
this particular node; moreover, we can pre-compute the series of stored labels g̃ for this
active role. For each such g̃, our compiler generates the following sending and receiving
functions:

for all reachable eg with corresponding r, r′,F :hˆ
let rec|and

˜
send eg st msg = match msg with

for each f ∈ F :
ˆ
| f (v,w)→

let a’ = st.prins.r′ in let m = gen eg f st v in psend a’ m ;

if the next node is terminal: w else: recv egf st w
˜i

for all reachable eg with corresponding r, r′,F and for each f ∈ F :h
and recv egf st w = let a = st.prins.r in let m = precv a in verify egf st m w

and verify egf st m w = let path = visible egf m in match path with
for each eg′ such that egf + eg′ visible from a receiving node for r:ˆ
| t eg′→ let st,payload = chk egf eg′ st m in

if the next node is terminal: w.last(eg′) st.prins payload

else: let next = w.last(eg′) st.prins payload in send eg+eg′ st next
˜i

The function send g̃ takes two parameters, st and msg = f (v,w) for some label f inF ; it
sends f (v) to r′ and calls ‘recv g̃f st’ with the next received message given by ‘precv a’
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and the message handlers w. (If the process terminates after the send, it simply re-
turns w.) The function recv g̃f st calls ‘verify g̃f st’ on the message it has received.
This call extracts from the message the partial history (i.e. the partial path) it contains
and verifies that it matches one of the possible partial paths t g̃′ the role can expect to
encounter in this state. Specifically, the function visible g̃f matches the message against
every acceptable partial history, pre-computed as the visible sequences at node g̃f (see
Section 5). Finally, the incoming message m is checked to include the corresponding
series of valid signatures, and send g̃+g̃′ is invoked to send the next message in the
updated state (or, if the role terminates after the receive, the function simply returns the
value produced by w). Here, f̃+g̃ is the sequence of labels obtained from f̃ g̃ by erasing
from f̃ any label that has the same sending role as a label in g̃. If any test fails while
processing the message, the session is stuck and yields the inert expression 0.

Relying on these definitions, our implementation exports functions (ri)i<n and their
types; these top-level functions rely on auxiliary functions init and join to initialize the
session state when a role initiates or joins the session:

val init: principals→ unit state
for the initiator role r0:ˆ
let r0 prins msg =
let st = init prins in send ∅ st msg

˜
val join: bytes→ unit state ∗ bytes
for all other roles r:ˆ
let r self w =
let m0 = precv self in let st,m = join m0 in
if st.prins.r = self then verify ∅ st m w

˜
7 Correctness results

In order to express and prove the correctness of our implementation, we first use a
reduction and testing semantics and then, more precisely, use a labelled semantics that
explicitly tracks all interactions with the opponent. This labelled semantics is also used
to structure the proofs of our theorems, given in Appendix E.

We relate the behaviour of high-level processes, of the form L S̃ U O with the F+S
semantics to their implementations L MeS U O′ with the F semantics, where

– L consists of the symbolic libraries (see Section 4);
– S̃ is a series of session declarations; MeS is their implementation (see Section 6);
– U ranges over “user” code that may call the session interface but not Prins;
– O ranges over “opponent” code with access to the opponent interface of Prins,

including recv• and skey• (but not recv and skey), and to S.r• session entries;
– O′ corresponds to O in the implementation, with similar assumptions. We assume

thatO′ does not accessMeS—this entails no loss of generality, sinceO′ may include
its own copy of our implementation code.

Their code can use cryptography and exchange messages on shared channels. This re-
flects our intuition that U and O, O′ may be located on different machines connected
by a public network.

7.1 Testing semantics

Our first security theorem is stated in terms of may testing. Testing semantics have a
long history, which can be traced back to the Morris equivalence for the lambda cal-
culus [28]. As regards process calculi, may testing has been studied e.g. for CCS by
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De Nicola and Hennessy [13]. Informally, by quantifying over any potential user code,
we let user code internally implement any test on the behaviour of sessions and decide
when to report the result of a test as a “failure”; then, we show that F configurations
using our session implementations have no more test failures than F+S configurations.

As is customary in process calculi, we use a special channel ω to mark global failure.
We say that a configuration ∅, P may fail when ∅, P −→P

∗ ω()−−→P.

Theorem 1. If L MeS U O′ may fail in F for some O′ where ω does not occur, then
L S̃ U O may fail in F+S for some O where ω does not occur.

The theorem states that low-level F configurations, where sessions are implemented as
described in Section 6, cannot deviate from high-level F+S configurations, where ses-
sions are ideally followed as prescribed by the session semantics of Section 3. Hence,
our session implementations preserve session integrity. The proof is given in Section E.7.

A counter-example without the implementability condition. We now show that Theo-
rem 1 does not necessarily hold if we relax our secure implementability condition. For
example, recall the session of Figure 3(a), which fails to satisfy Property 3. Assume that
the principals for the client and officer are safe and run a single session with an unsafe
principal for the store. As mentioned in Section 2, a low-level opponent O′ implement-
ing the store can attack the session by sending both Accept and Reject messages. The
user code for the client and the officer can then communicate on some auxiliary chan-
nel, detect that they both have received a final message, then emit ω in protest. On the
other hand, no high-level opponent running the store can cause the same user code to
emit ω. We give below some concrete user code (U in Theorem 1) that conducts the test
and reports the attack:

let pr = { client = "Alice"; server = "Eve"; officer = "Bob"; } in
let x = new() in
let alice () =

let acceptbranch = send x "OK" in
S.client pr (Request (42,{hAccept=acceptbranch})) in

let bob () =
let rejectbranch pr’ = if pr = pr’ then let = recv x in send ω () in
S.officer "Bob" {hReject=rejectbranch} in

fork bob; alice()

In this code, Alice plays the client role and Bob plays the officer role for a single run of
the session. These safe principals synchronize using the side communication channel x
when they receive both Accept and Reject messages. In that case, Bob fails with ω.

Session integrity and correspondence assertions. Session integrity enforces all causal
relationships between message events. In cryptographic protocol analyses, such rela-
tionships are typically explicitly written as injective correspondences [36] between
events issued by different parties. Intuitively, from a session graph, one can read a series
of injective correspondences that hold in any session run. Theorem 1 then guarantees
that every such correspondence holds for compliant principals.

To relate these two formulations of authenticity, suppose that before sending each
message, each principal issues an event that indicates its current session history; and
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suppose that the principal that receives the final message issues this event before ter-
minating the session. As an example, consider a run of session (c) in Figure 1, with
identifier id, where the principals ac, as, and ao play the roles C, S, and O, respectively.
Let pr abbreviate the principal-assignment record { C = ac; S = as; O = ao; }. Before
sending the Contract message, ao issues the event:

SessionHistory(ao, id, pr, [Request,Contract])

This event indicates that the current session history at ao for session id has the principal
assignment pr and the session label history [Request,Contract].

We can extract from a session graph a set of correspondence assertions on event
traces. Since malicious principals may lie about their history, we only make assertions
about compliant session participants. First, for each compliant principal, we assert that
the history events it may issue must correspond to one of the paths in the graph. Second,
for each path followed in a session run, we assert that the histories at compliant princi-
pals must be consistent. Traditionally, correspondences do not have recursive operators,
so they cannot be used to express properties of graphs with loops. In the following,
we use an operator ∗ to express zero or more repetitions of a sequence, and hence, to
finitely represent a loop. Still, we do not capture all session integrity properties, such
as, for example, that two paths are mutually exclusive in any given session run.

We illustrate each type of assertion for our example. First, the history events issued
by ao are constrained as follows:

∀ac, as, ao, id : SessionHistory(ao, id, pr,H)⇒
H = [Request,Contract]∨
H = [Request,Contract]@[Offer,Change] ∗@[Reject,Abort]∨
H = [Request,Contract]@[Offer,Change] ∗@[Accept,Confirm]∨
Unsafe(ao)

Here, @ stands for sequence concatenation; and the event Unsafe(a) indicates that the
principal a is compromised (that is, ‘safe a’ returns false). This assertion says that the
SessionHistory events issued by a compliant ao must be in one of three forms, corre-
sponding to the three nodes where O appears in the graph.

Second, whenever ao accepts an Abort message, the histories at ac, as, and ao must
be related as follows:

∀ac, as, ao, id :
SessionHistory(ao, id, pr, [Request,Contract]@H ′@[Reject,Abort])⇒

Unsafe(ao)∨
((SessionHistory(ac, id, pr, [Request,Contract]@H ′@[Reject,Abort]) ∨ Unsafe(ac))∧
(SessionHistory(as, id, pr, [Request,Contract]@H ′@[Reject]) ∨ Unsafe(as)))

This assertion says that if the history at a compliant ao corresponds to a path ending in
Abort, then the histories at ac and ao must be consistent with this path, unless they are
compromised.

Since we can write user code that test these properties, Theorem 1 guarantees that
both these assertions, and others read from the session (c) in Figure 1, are preserved by
our compiled implementation of the session.

21



7.2 Labelled semantics for the opponent

Our second security theorem is more precise but also more complex; it provides an
explicit operational correspondence between high-level and low-level runs. To this end,
we extend our labelled semantics so that it can represent the adversary as an abstract
environment, rather than a top-level program (O and O′ in Theorem 1).

In the transitions of Section 3, we do not maintain scope for the sessions and val-
ues available to the opponent, and maintain instead a global store ρ, using interfaces to
ensure that the opponent code cannot access some values. Instead, we now introduce la-
belled transitions with an abstract environment, representing some unknown opponent,
and keep track of the values and sessions available to that environment. As in Section 3,
we define two variants of the labelled transition system, for F and for F+S.

We let K range over the knowledge and capabilities available to the environment.
Initially, K contains the opponent interfaces of our libraries, including the verification
keys of all principals and the signing keys and channels of unsafe principals, some fresh
names, as well as any value exported byU . In high-level configurations,K also contains
the signing keys of all safe principals and a supplementary set of nonces,N . (These do
not give any added power to the high-level attacker but are technically convenient to
allow our soundness result, Theorem 2, to be stated without being encumbered by key
and nonce renamings.)

The set K grows as the opponent obtains new values in labelled output transitions.
We let Val(K, ρ) represent values computed from K by repeatedly applying type con-
structors in ρ to the elements of K and constants in base types.

In F+S, for every running session recorded in ρ,Ks also record the state of the roles
instantiated to unsafe principals, written s.p. (Hence, if ρ initially has no sessions, K
initially records no session states.)

We define auxiliary notations to access these session states: we write K = K ′[σ]
either whenK records the state σ = s.p for an running session s of ρ, or whenK = K ′

and σ = S.r•i ã with safe ai = false.
We define transitions for F and F+S configurations with K as follows:

(KAPPLY)
li, v0, . . . , vk ∈ Val(K, ρ) (li x0 . . . xk = e) ∈ ρ ρ, li v0 . . . vk −→e

∗ ρ,w

K, ρ, P −→K K ∪ {w}, ρ, P

(KSEND)
ρ, P

c v−−→P ρ, P
′ c ∈ K

K, ρ, P
c v−−→K K ∪ {v}, ρ, P ′

(KRECV)
ρ, P

c v−−→P ρ, P
′ c, v ∈ Val(K, ρ)

K, ρ, P
c v−−→K K, ρ, P

′

(KSTEP)
ρ, P −→P ρ

′, P ′

K, ρ, P −→K K, ρ
′, P ′

(KSENDS)
ρ, P

sg v−−→P ρ
′, P ′ K, ρ′

sg−→o K
′, ρ′′

K, ρ, P
sg v−−→K K

′ ∪ {v}, ρ′′, P ′

(KRECVS)
K, ρ

sg−→o K
′, ρ′ ρ′, P

sg v−−→P ρ
′′, P ′ v ∈ Val(K, ρ)

K, ρ, P
sg v−−→K K

′, ρ′′, P ′

(OSTEP)
ρ, σ

η−→s ρ
′, s.p

K[σ], ρ
sη−→o K[s.p], ρ′

(OCOMM)
K, ρ

sg−→o
sg−→o

sf−→o K
′, ρ′

K, ρ
sf−→o K

′, ρ′

Rule (KAPPLY) lets the environment apply functions; its hypotheses require that
both the function and its arguments be known to the environment, and that the function
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be pure (since ρ is left unchanged). Additionally, function with side effects, or calls
from P to the environment, may be modelled using channel-based communications.

Rules (KSEND) and (KRECV) represent channel-based communications with the
environment. Rule (KSTEP) enables P to make silent progress.

Rules (KSENDS) and (KRECVS) represent session steps in the source semantics.
They rely on auxiliary transitions K, ρ α−→o K ′, ρ′ that represent session operations
in the environment. Rule (OSTEP) performs session steps for roles in the environment
(inits, joins, sends, and receives). In addition, Rule (OCOMM) accounts for commu-
nications between roles in the environment, which may advance the session without
involving compliant user code.

The lemma below relates the reduction-based and labelled-based semantics in F+S.
A similar lemma holds in F. These lemmas enable us to prove Theorem 1 using in-
ductions on traces. We write

ϕ⇒K for a series of transitions that consist of observable
transitions (with series of labels ϕ) interleaved with any number of silent transitions.
The proof is given in Section E.6.

Lemma 1. We have transitions K ]{ñ}, ρ]{ñ}, P ψ⇒K
ω()−−→K for some fresh names ñ

where ω 6∈ fn(ψ) if and only if ρ, P |O −→P
∗ ω()−−→P for some process O that does not

contain ω, does not match on constructors in ρ, that calls only pure functions of ρ, and
whose values defined in ρ are all included in Val(K, ρ).

Relating abstract and compiled sessions at runtime The state of a role implementation
in F is not entirely determined by high-level configurations H = K, ρ, P : in addition
to the session definition S and the session state s recorded in ρ, and to active ses-
sions s.p(e) within P , the implementation state records the time, the session nonce,
and a sequence of signed timestamped labels g̃. We let T record this additional infor-
mation. For every principal a:

– T.cache(a) is the content of the anti-replay cache of principal a: a set of pairs of
session identifiers and roles (s̃id, r).

For every running session s (ai)i<n {r̃} : S in ρ:

– T.nonce(s) is a term Ns in K;
– T.path(s) is an initial path f̃ of S, decorated with strictly-increasing integers j̃,

ending by a label sent or received by a safe principal;
– T.stuck(s) is the set of roles of the session that have received a bad input, if any. In

that case, the roles are stuck, and so is the whole session.

Finally, T provides an infinite (and co-infinite) set of fresh supplementary names, N ,
which is formally used to supply a fresh nonce to the high-level environment whenever
the low-level environment receives a fresh session nonce.

We say that a signature is exported by T when it is a signature of a running session s
of H , with the label and timestamp recorded in T.path(s), signed by a safe principal,
and such that this label is visible from a role on that path instantiated to an unsafe
principal. Informally, these are the signatures that the opponent has received. (They are
not known to user code unless the opponent explicitly pass them to the user.)

We define the translation [[K, ρ, P ]]T from F+S configurations to F configurations,
as follows: to translate K:
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– we replace session records s.p with the session nonces T.nonce(s);
– we add the signatures exported by T ;
– we remove the signing keys of all safe principals and the supplementary noncesN .

To translate the store ρ:

– we replace session type definitions S̃ with the types and function definitions ofMeS ;
– we remove the session entries and the nonces of N not in the image of T.nonce.

To translate the process P :

– we add the process F = forward ();
– for each principal a, we add the process Pa = send cachea T.cache(a), where

cachea is the channel of ρLeS that holds the state of the antireplay cache for a. (The
forwarding code and cache management are defined in Appendix C.)

– we translate all running session roles within P as follows:

[[s.p(w)]]T = 0 if p’s role is in T.stuck(s)
[[s.p(w)]]T = S.recv eg st [[w]]T else if p is an input
[[s.p(e)]]T = letxs = [[e]]T in S.send eg st (xs) else if p is an output
[[s.p(e)]]T = [[e]]T else if p is 0

where g̃ and st are computed from T.nonce(s) and T.path(s). Although we do not
translate expressions of the form S.r , they are now interpreted as function calls,
rather than primitive session entries.

Implementation soundness for labelled transitions We let ρLeS be defined by the de-
terministic reductions ∅, L S̃ [ ] −→P

∗ ρLeS , [ ] (that is, ρLeS is the store defining our
libraries and protocol implementations, after initialization).

An F+S configuration H = K, ρ, P is valid with respect to T when

1. ρ includes ρLeS ;
2. every value of K defined in ρLeS is built from the library interfaces of Section 4;
3. every session s (ai)i<n {r̃} : S in ρ has a running session s.p in P for each safe

principal plus a running session s.p in K for each unsafe principal, such that their
roles either send or receive on T.path(s) with role process p;

4. the signing keys of safe principals occur in P only within signatures exported by T ;
5. the other names of the Prins library do not occur in P ;
6. K includes all signing keys (including those for safe principals);
7. K and ρ include the supplementary set of nonces N (discussed above).

An F configuration W is a valid implementation of an F+S configuration H when
H is valid and W = [[H]]T for some low-level state T , up to functional steps. Further,
W has no bad inputs when T has no bad input record for any session.

A low-level trace with labels ϕ is a direct translation of a high-level trace with la-
bels ψ when ϕ is ψ after replacing all session inputs and outputs sη v of ψ with inputs
on channel psend• and outputs on channels in chans•, respectively. We also consider
low-level traces where some low-level inputs have been discarded (such as message
replays) or have not been processed yet (such as inputs that have passed anti-replay
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filtering): a low-level trace is a translation of a high-level trace when it is a direct trans-
lation interleaved with additional inputs on channel psend•.

At low-level, an attacker may copy signatures that it receives during session com-
munication from good participants and resend these signatures back via non-session
channels. In order to mirror these channel transitions at high-level, we need to allow the
high-level environment to construct such signatures since it cannot acquire them as a
biproduct of high-level session communication (which does not use any cryptography
at all). In valid configurations, we therefore require that the high-level environment K
contains the signing keys of all safe principals. The translation removes most of this
supplementary knowledge, to prevent the low-level attacker from knowing the signing
keys of safe principals. (We do not render the high-level attacker more powerful by
providing it with this supplementary knowledge, which plays no part in the high-level
semantics: at high level, we make no use of cryptography, so for any sequence of high-
level labelled transitions, we could “alpha convert” all the configurations and labelled
transitions by renaming the supplementary keys and nonces to entirely unrelated ones.)

Our second security theorem states that all low-level events on the network can
be explained by the high-level semantics, thereby ensuring that attackers do not gain
anything from trying to break sessions at low level. The proof appears in Section E.5.

Theorem 2. Let W be a valid implementation of H . For all transitions W
ϕ⇒K W ′

in F, there exist a valid implementation W ◦ of H◦ and a translation ϕ of ψ such that

H
ψ⇒K H

◦ W
ϕ⇒K W

◦ −→∗K W ′′ W ′ −→∗K W ′′

In the statement of the theorem, the first series of transitions gives high-level tran-
sitions that simulate the low-level transitions. However, due to silent implementation
steps (e.g. security checks), the resulting low-level configurations W ′ and W ◦ may dif-
fer slightly; the second and third series of transitions relate them, showing that both
may perform silent step leading to the same low-level configuration.

Conversely, our final theorem expresses functional completeness of our implemen-
tation of high-level transitions, under the assumption that no session has silently failed
after receiving a bad input. The theorem guarantees, in particular, that our implemen-
tation is functionally correct in the absence of an adversary. The proof appears in Sec-
tion E.1.

Theorem 3. Let W be a valid implementation of H with no bad inputs. For all transi-
tions H

ψ⇒KH
′ in F+S such that ψ contains neither any signing key of a safe principal

nor any elements ofN , there exist a valid implementation W ′ of H ′ with no bad inputs
and a direct translation ϕ of ψ such that W

ϕ⇒KW
′ in F.

The statement of the theorem excludes from consideration transitions involving
signing keys of safe principals or nonces in theN . These keys and most of these nonces
are not known to the low-level attacker and therefore high-level transitions containing
them could not necessarily be matched at low-level.

8 Experimental results

In this section, we discuss our prototype complier and present a case study in which
we model a conference management system using sessions—to our knowledge, the

25



largest session specification ever formalized in the literature. We describe the session as
a graph and as a local roles’ declaration written by the user. From this specification, the
compiler generates a type interface, which we illustrate with sample user code that may
be compiled against that interface to govern the behaviour of the individual roles. We
then discuss potential attacks on session integrity which are prevented by the generated
cryptographic protocol.

The code described here may be directly compiled by our prototype, s2ml, and ex-
ecuted over the network. In order to illustrate the compilation process, we interleave the
discussion of the case study with commentary on the operation of s2ml. We conclude
by presenting execution benchmarks for the case study.

Overview of the compiler Our prototype compiler, s2ml, is available at http://
msr-inria.inria.fr/projects/sec/sessions. The distribution provides
sample code, including the code for the case study below.

The compiler reads session declarations, that is, .session files like S1.session
in Figure 2, and works as follows:

– Initially, each local session declaration is transformed out to a global, graph repre-
sentation (see Appendix A). These graphs are checked to respect correctness and
security conditions (properties 1–3 from Section 2). As intermediate output to help
visualize the sessions, s2ml can output its DOT [17] graph file (e.g., S1.dot for
S1.session).

– Then, s2ml generates F# modules (along with their interfaces) for each specified
session (e.g., S1.fs and S1.fsi for S1.session).

– Using these generated interfaces and modules, programmers can develop user code
using the sessions, then call the F# compiler to typecheck them and produce exe-
cutable code for each role of the sessions

8.1 Application: a (simplified) conference management system

We now illustrate each of the phases of compilation for our case study, a session for a
conference management system (CMS).

Global description Figure 4 shows the graph of a CMS session. There are three roles: pc
(the program committee), author, and confman (the submission manager). All messages
carry as a payload either a string value (which is used for the call for papers, paper
submissions, and so on), or a unit value, when no payload is necessary.

The session proceeds as follows. Initially, the program committee pc sends a call
for papers message, Cfp, to the prospective author. (Our session specifications exclude
broadcast, so we assume here that the Cfp is sent to a single author, already chosen by
the program committee. In any event, we could replicate the program committee to start
other sessions with other prospective authors.)

The author then uploads a draft by sending an Upload message to the conference
manager confman, which checks whether the draft meets the conference format (e.g.
style and length compliance). If the format is invalid, the conference manager replies
to the author with a BadFormat message providing some explanation; at this point we
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Fig. 4. A conference management system (CMS): Global graph

have a loop in which the author can fix the draft and try again. Eventually the format is
valid, and the conference manager replies with an Ok message.

Now the author can submit a paper by sending a Submit message to the conference
manager. Alternatively, it can choose to refrain from submitting a paper by sending a
Withdraw message, which the conference manager communicates to the program com-
mittee by sending a Retract message. If the author indeed submits a paper, the confer-
ence manager forwards it to program committee, which then evaluates it. The program
committee can ask the author to revise the paper, by sending a ReqRevise message
to the conference manager which in turn sends a Revise message to the author. This
phase can loop until eventually the program committee reaches a decision, and asks the
conference manager to stop receiving revisions by sending a Close message.

The conference manager answers with a Done message, and then the program com-
mittee can notify the author of the result, possibly enclosing reviews of the paper. The
notification is either an acceptance of the paper (an Accept message), or a rejection (a
Reject message), or an exceptional decision to ‘shepherd’ the paper (a Shepherd mes-
sage), in which case the author can support her submission by sending a Rebuttal. This
can again loop until the program committee decides a final verdict, i.e. either accep-
tance or rejection the paper. In the case of acceptance, the author sends the program
committee a final version of the paper.

As explained in Section 2, not all expressible sessions is safe to implement, as they
also have to meet e.g. Property 3. We can check on Figure 4 that this indeed the case for
our example: at every fork in the graph, the two edges lead to the same role (e.g., when
the conference manager receives an Upload, it always replies to the author).
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session CMS =
role pc:string =

!Cfp:string; mu start.
?( Paper:string; !(Close:unit; ?Done:unit; mu discuss.

!(Accept:string; ?FinalVersion:string
+ Reject:string
+ Shepherd:string; ?Rebuttal:string; discuss)

+ ReqRevise:string; start)
+ Retract:unit)

role author:string =
?Cfp:string; mu reformat. !Upload:string;

?(BadFormat:string; reformat
+ Ok:unit; mu submission.

!(Submit:string; mu discuss.
?(Accept:string;

!FinalVersion:string
+ Reject:string
+ Shepherd:string; !Rebuttal:string; discuss
+ Revise:string; submission)

+ Withdraw:unit))
role confman:string =

mu uploading. ?Upload:string;
!(Ok:unit; mu waiting.

?(Submit:string; !Paper:string;
?(Close:unit; !Done:unit + ReqRevise:string; !Revise:string; waiting)

+ Withdraw:unit; !Retract:unit)
+ BadFormat:string; uploading)

Fig. 5. Session specification (file CMS.session)

Local processes Figure 5 presents the counterpart of the CMS graph from Figure 4 in
terms of local roles. We illustrate user code by describing in detail the behaviour of
the author role. From the author’s point of view, the session starts by receiving a Cfp
message. A recursion point called reformat is created, and then the author checks the
paper by sending an Upload message. If a BadFormat message is received, execution
jumps back to the reformat point. If an Ok message is received, the author sets a recur-
sion point called submission and then chooses to either send a Submit or a Withdrawal
message. For the latter, execution ends. For the former, another recursion step discuss
is set, and several messages can be expected: either an Accept, in which case the author
ends by sending a FinalVersion, or a Reject which also ends execution, or a Shepherd
message to which the author replies with a Rebuttal and then jumps back to discuss;
finally, a Revise message may also be received, in which case the author jumps back to
submission.

Generated types for the conference management system We run s2ml with the CMS
example of Figure 5 for the CMS session, on file CMS.session. This produces files
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CMS.fs and CMS.fsi. The interface CMS.fsi contains a specialized principals
record plus generated types and functions for each role (here we show only the ones
for the author role):

type principal = string
type principals = {pc:principal; author:principal; confman:principal}
type msg9 = { hCfp : (principals→ string→msg10)}
and msg10 = Upload of (string ∗ msg11)
and msg11 = { hBadFormat : (principals→ unit→msg10) ;

hOk : (principals→ unit→msg12)}
and msg12 = Submit of (string ∗ msg13) |Withdraw of (unit ∗ result author)
and msg13 = { hAccept : (principals→ string→ result author) ;

hReject : (principals→ string→ result author) ;
hShepherd : (principals→ string→msg16) ;
hRevise : (principals→ string→msg12)}

and msg16 = Rebuttal of (string ∗ msg13)
val author : principal→msg9→ result author

The underlying principle for programming session in continuation passing style is
that, whenever a message is received by the role, the generated secure implementation
calls back the continuation provided by the user and resumes the protocol once user
code returns the next message to be sent. Taking advantage of this calling convention,
with a separately-typed user-code continuation for each state of each role of the ses-
sion, we rely on ordinary F# typing to enforce session compliance in user code. The
programmer is then free to design the continuations that will be safely executed when-
ever the chosen role is active. Programming with a session consists then in following
the (possibly recursive) generated types by s2ml, by filling in the internal choices and
payload handling functions (i.e., the continuations).

Programming the author We give sample code (file author.fs) for an author that
first uploads a paper “First draft”, and then, upon receiving a Badformat message,
replies with a paper “Submission”. It then withdraws the paper with a one-fourth chance,
otherwise continues the execution. If the paper enters in shepherding, it answers with a
rebuttal message (of payload “Fixed!”).

let rec handler response =
{ hAccept = (fun comments→ FinalVersion("Final", "Accepted! " ˆ comments));

hReject = (fun comments→"Rejected because " ˆ comments);
hShepherd = (fun questions→

Rebuttal("Fixed!", handler response));
hRevise = (fun reviews→ Submit("Paper", handler response)) }

let rec handler format =
{ hBadFormat = (fun error→

printf "Formatting error: %s\n" error;
Upload("Submission", handler format));

hOk = (fun s→
if Random.int 4 <> 0
then Submit("Submission", handler response)
else Withdraw((), "Paper withdrawn")) }
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let handler cfp =
{ hCfp = fun p s→Upload("First draft", handler format)}

let result = CMS.author "alice" handler cfp in
printf "Author session complete: %s\n" result

In the code, the handler format record contains two functions: one handles a Bad-
Format message (which is called back when a BadFormat message is received), prints
the error message and sends a Upload message with a different payload and a recursive
continuation; the other handles the Ok message and chooses (in an over-simplified way)
if the paper has to be withdrawn, i.e. if the next message to be sent is a Submit or a With-
draw. The call to the author role function has thus as arguments the chosen principal, in
this case called Alice, and a record handling the first incoming Cfp message.

8.2 Session integrity in the conference management system

In order to illustrate the security properties expected by session users, we discuss some
attempts to break integrity on the CMS session. These attacks are instances of those
described in Section 2; they are, of course, prevented by the cryptographic protocols
generated by s2ml. Throughout this discussion, we consider the following assignment
of principals to roles: Alice to author, Bob to confman, and Charlie to pc .

Message integrity attacks One could imagine a malicious Alice sending Bob an Upload
message even though Charlie never sent a Cfp; if Bob omits to check the required
signature from Charlie in Alice’s message, session integrity is then be violated. More
precisely, consider the first time that the conference manager role gets contacted with
an Upload message in Figure 4. At that point, the generated protocol needs to check
signatures from the principals playing the roles author and program committee; for
our running session with session identifier as above, an incoming message is accepted
by Bob as conference manager only if it includes a signature from Charlie (program
committee) of a Cfp message, and another signature from Alice (as author) of an Upload
message. On the other hand, if Bob as conference manager is at the same node contacted
again (e.g. because Bob sent a BadFormat message and entered a loop), in the next
incoming message Bob needs to only check a (new) Upload message from Alice, and
the Cfp message needs not be forwarded again, as Bob already checked it. Our compiler
accounts for both situations, and accordingly outputs specifically tailored functions for
message generation and verification.

Session identifier confusions Each session instance needs to have a unique session iden-
tifier, as otherwise there could be confusions between different running sessions. For a
run of the CMS example, the generated protocol computes as session identifier the hash
of the whole session declaration of Figure 5 concatenated with ã = Charlie Alice Bob,
and a fresh random nonce N . Since all signatures include the identifier, they cannot be
accepted by any other instance of any session.
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Session specification compiled interface compiled implementation
S1 4 30 303
S2 6 36 380
S3 19 54 540
CMS (below) 49 83 907

Table 1. Length of sessions specifications and their implementations (lines of code)

No signatures Signing, not verifying Signing & verifying Standard
first loop 0.231 s 2.79 s 2.95 s
second loop 0.468 s 5.62 s 6.11 s
third loop 0.243 s 2.81 s 2.98 s
total 0.942 s 11.22 s 12.04 s 8.38 s

Table 2. Run-times and cryptographic costs for the CMS session

Intra- and Inter-session replays Message replays against session integrity consist of
three categories: (1) a message from one running CMS session can be injected into
another running session; (2) an initial message involving a principal can be replayed,
trying to re-involve the principal twice; and (3) a message from one running session can
be replayed in the same running session (e.g. messages inside any of the three loops
of Figure 4, which are particularly vulnerable). These attacks are prevented by using
adequately constructed sessions identifiers, anti-replay caches, and virtual clocks.

8.3 Evaluation of the concrete cryptographic protocols

Programs that use generated session interfaces can be linked against networking and
cryptographic libraries, to obtain executable code. For portability, our implementation
includes two variants of concrete cryptographic libraries: one for F# using the Microsoft
.NET cryptographic libraries, and another for Ocaml using the OpenSSL cryptographic
libraries. (Unfortunately the two implementations do not fully interoperate, due to in-
compatibilities between certificate formats.) The data and cryptographic functions we
use are as follows. For cryptography, we use SHA1 for hashing, RSASHA1 for signing,
and the standard pseudorandom function for nonce generation. Signing uses certificates
in ‘.cer’ format for Microsoft .NET and in ‘.key’ format for OpenSSL. For networking,
we use Base64 for encoding the messages in a communicable format, and use UDP for
communication (although in the future we plan to support TCP-based communication).

The s2ml compiler consists of 3352 lines of Ocaml code, plus 289 lines for the
OpenSSL bindings and 698 lines for the F# bindings.

Table 1 provides the length of source specifications, generated interfaces, and gen-
erated implementations for the sessions presented in this paper. The size of both kinds
of generated files is roughly linear in the size of the input, since we generate types and
message handlers for all reachable nodes in the graph. On the other hand, our compiler
can generate optimized code and message formats for each of these nodes.
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Table 2 reports run-times for user code that iterate the loops for the CMS session
example. All roles run on a single machine, equipped with a Pentium D at 3.0 GHz run-
ning linux-2.6.17-x86 64. We measure the time it takes to run 500 iterations for each
of the three loops of the session, thereby processing 4000 message sends and receives.
For comparison, we also measure variants of the implementation that omit part of the
public-key cryptographic operations. As could be expected, these results show that per-
formance is dominated by the cost of signing messages, whereas message-processing
and networking represent less than 10% of run-time. This confirms the benefits of com-
pact, specialized message handlers (and also suggests that an implementation partly
based on symmetric session keys would be more efficient.) The last column, labelled
’Standard’, compares our implementation to sending messages secured using standard
OpenSSL 0.9.8e, reporting the time it takes to send 4000 single-character messages us-
ing the command-line tool from the distribution. Our implementation deals with more
complex messages but achieves comparable performance.

9 Conclusions and future work

We present a simple language for specifying sessions between roles, and implement it
as an extension of ML, with protocol support for running secure distributed sessions.
Although session types have been thoroughly studied, and sometimes implemented, we
believe this paper is the first to address their secure implementation. Our compiler gen-
erates custom cryptographic protocols that guarantee global compliance to the session
specification for the principals that use our implementation, with no trust assumptions
for the principals that do not. Our theorems relate the runs and labelled traces of a
source semantics with primitive sessions to those of an implementation semantics using
ordinary communications and cryptographic primitives. Thus, we obtain a full-fledged
implementation for distributed sessions with strong security guarantees.

Discussion In terms of protocol verification, our results hold for any number of session
declarations and any number of principals, some of them controlled by the adversary,
running in parallel any number of instances of these sessions. Even for a single fixed
session, we believe such results are beyond automated tools for verifying cryptographic
protocols as soon as the session uses loops and branching. Moreover, our result holds
for a realistic model—except for the cryptographic primitives, the model is a functional
reference implementation.

Cryptographically, our results hold within a symbolic model à la Dolev-Yao. Al-
though a probabilistic polynomial semantics of ML is clearly outside the scope of this
paper, we believe our session-authentication mechanisms are also correct under stan-
dard, concrete cryptographic hypotheses. Specifically, our usage of signing keys in
generated protocols complies with the rules of unforgeability under adaptive chosen-
message attacks [21].

We do not consider other session security properties such as confidentiality, left for
future work. Moreover, we do not treat important liveness properties, such as progress,
global termination, and resistance to denial of service. This is in line with typical secu-
rity protocol analyses, where the opponent may block all messages anyway.
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Prior work consider secure implementation for small process calculi. In compar-
ison, our host language is more expressive and realistic. Hence, we have a running
implementation for a language very close to the formal language of the theorems, Also,
we rely on this additional expressiveness: we use higher-order functions (and typing,
informally) to enforce the session discipline, and use standard functional programming
for processing messages. Although we could compile F+S to some process calculus,
this would considerably complicate our formalization and proofs.

Overall, we believe that our work illustrates a compelling alternative to protocol
handcrafting. For any distributed application that fits our session language, a few lines
of high level code can yield a complete distributed implementation with authentica-
tion guarantees. In comparison, for session graphs with a dozen of nodes, the design,
implementation, and verification of an adequate ad hoc protocol is a challenging task,
even for security experts, even if one assumes that all point-to-point communications
are already secure.

Future work We are exploring variants of our design to increase the expressiveness of
sessions, with extended compiler and proof support. In particular, we are considering
session-scoped data bindings, to ensure that the same values are passed in a series of
messages, as well as more dynamic principal-joining mechanisms, to enable new prin-
cipals to enter a role by agreement among the current principals. More generally, we
would like to integrate sessions with other language-based security mechanisms, such
as secure marshalling for richer types. It would also be interesting (and delicate) to de-
velop secure implementations for existing session-description languages such as BPEL.

Another direction for future work is to extend sessions with more explicit security
requirements and relax our message-transparency principle. For instance, one may dis-
tinguish “critical messages” with strong authenticity and atomicity, and support them by
running a complex subprotocol, such as Byzantine agreement or fair signing. (In prin-
ciple, our language F+S already enables this approach, as principals may run their own
auxiliary protocols on communication channels, but it does not offer linguistic support
for them.) However, such extensions would also unavoidably complicate our security
model for session programmers.

Acknowledgements This work benefited from discussions with Cosimo Laneve and
Jean-Jacques Lévy and from comments of anonymous reviewers.
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A Constructing session graphs from role processes, and vice versa

Session graphs and syntactic sessions are interconvertible. Given a session graph and
a mapping from labels and roles to their types, we can construct role processes for
each role by translating each edge in the graph to dual send and receive operations.
Conversely, given the role processes for a session, if the sends and receives are correctly
matched, we can construct the corresponding graph, as detailed below.

Given a sessionΣ = (ri : τ̃i = pi)i<n, we build the graphG(Σ) = 〈R,V,L,m0, E , r〉
as follows.

– V , m0: we create a node m(fi)i<k for every sending subprocess !(fi : τ̃i ; pi)i<k
within Σ; in particular, we let m0 be the node for the process p0 (which must be a
send). We similarly create a node for each 0 subprocess after a receive.

– E : we create an edge (m ef , fi,m) for every label fi, where m depends on the sub-
process q of Σ after receiving fi. (The subprocess q must exist and be unique.) If q
is a send, or q = 0, we use the corresponding node created in V; if q is µχ.q′, we
use q′ instead of q; if q = χ, we use q′ in the binding µχ.q′ withinΣ. (This binding
must exist.)

The definitions for R, L, and r are straightforward. The construction fails if any of the
conditions above fail, e.g. if there is a send without a corresponding receive.

From session graphs to local session roles We now build a session Σ from a valid
session graph G plus a type assignment from labels and roles to their payload types τ̃
and return types τ̃ , respectively.

We build the role processes using a graph traversal, starting fromm0. For every new
node m with an outgoing edge, we grow a process µχm.!(fi : τ̃i ; pi)i<k in r(m), with
a branch fi for each outgoing edge of m, then we traverse the k target nodes. For every
node with no outgoing edges, we use the process 0. For every already-visited node m,
we use the process χm.

Interconvertibility In order to reason about the correctness of these transformations,
we first define equivalence on graphs: two graphs G,G′ are equivalent, written G ≈ G′,
when

– they have the same set of roles and labels:R = R′,L = L′
– they have the same source and target roles for each label: if (m1, l,m2) ∈ E and

(m′1, l,m
′
2) ∈ E ′, then r(m1) = r′(m′1) and r(m2) = r′(m′2)

– for every path (m0, l̃) in G, there is a path (m′0, l̃) in G′ and vice versa.

We obtain:

Remark 1. For all valid G, there exists a syntactic session Σ such that G ≈ G(Σ).

This is shown by building the session Σ directly from G using the Global to Local
transformation, and then transform it back to G(Σ) using the Local to Global transfor-
mation. Graphs G and G(Σ) are equivalent since only a renaming on nodes is intro-
duced by the transformations.

We present several examples of these interconversions in the paper. The syntactic
sessions S1 and S2 in Section 2 are the result of converting the session graphs in Fig-
ure 1(a,b), and vice versa.
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Fig. 6. Eliminating blind forks

B Transforming session graphs to meet Property 3

We say that a sessions graph has a blind fork for each two paths that violate Property 3.
We show how to eliminate blind forks.

Suppose a graph G = 〈R,V,L,m0, E , r〉 has a blind fork for the paths (m, f̃) and
(m, g̃), ending in nodes m1 and m2 respectively. Hence, the roles r(m1) and r(m2)
are distinct, and not active on f̃ and g̃. In particular, f̃ is not a prefix of g̃, and vice
versa. Let mfork be the last common node on two paths; we call it the forking node. To
eliminate this blind fork, we use the following transform:

– for each edge (mfork, l,m
′′′) ∈ E , introduce two new nodes m′,m′′ 6∈ V and two

new labels l′, l′′ 6∈ L; replace (mfork, l,m
′′′) with the three new edges (mfork, l

′,m′),
(m′, l′′,m′′) and (m′′, l,m′′′); and extend r with r(m′) = r(m1) and r(m′′) =
r(mfork).

We check that this transform introduces no new blind fork at mfork and does not affect
Property 3 at any other node. Hence, by repeated application of this transform, we can
eliminate all blind forks.

Figure 6 illustrates the transform for a sample graph with a blind fork: the graph on
the left has two paths ending in roles C and D with a forking node at B; the transformed
graph eliminates this fork by inserting C on all paths leading out of the forking node;
moreover, by inserting B on each path, the transformed graph maintains the same source
and destination roles for all the original labels.

We say that a session graph G′ is a valid transformation of G when G′ is valid and

– the roles of G and G′ are the same:R = R′
– the labels of G are included in G′ and have the same source and target roles for each

label: L ⊆ L′ and if (m1, l,m2) ∈ E and (m′1, l,m
′
2) ∈ E ′, then r(m1) = r′(m′1)

and r(m2) = r′(m′2)
– for every path (m0, f̃) in G, there is a path (m′0, g̃) in G′ and vice versa, where f̃ is

the same as g̃ after erasing all labels not in L.

Remark 2. For all session graphs G, the graph G′ obtained by repeatedly applying the
transform is a valid transformation of G.

The transformed graph G′ is valid because it no longer violates Property 3. More-
over, the transform only add new labels to and from new nodes; hence, the source and
destination roles of old labels remain the same, and the new paths are extensions of the
old paths (with possibly some of the new labels inserted in them).
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C Symbolic code for the libraries

In this appendix we provide the symbolic implementations for the libraries described in
Section 4. (These implementations are available as files crypto.ml and prins.ml
in the lib/symbolic directory of our prototype implementation.) Our code relies
on syntactic sugar: if ... then ... else is a shortcut for standard pattern-matching on the
result of the test; the semi-colon, which expresses sequentiality, can be written with
our let construct; function application where arguments are not values can be unfolded
using let bindings; and anonymous functions introduced with fun can be replaced by a
freshly named let binding for the function body.

Symbolic code for the Crypto library We first list the Crypto library, which implements
cryptographic types as algebraic datatypes:

type keybytes = SKey of name | VKey of keybytes
type bytes = Nonce of name

| Hash of bytes
| Concat of bytes ∗ bytes
| Sign of bytes ∗ keybytes
| Utf8 of string

let nonce (n: name) : bytes = Nonce n
let genskey (n: name) : keybytes = SKey n
let genvkey (n:keybytes) : keybytes =

match n with
| SKey →VKey n

let hash (b:bytes) : bytes = Hash b
let concat (m1 : bytes) (m2 : bytes) : bytes = Concat (m1, m2)
let sign (m : bytes) (k : keybytes) : bytes = Sign (m, k)
let verify (m : bytes) (s : bytes) (k : keybytes) : bool =

match s with
| Sign (mm, sk)→

if k = VKey sk && mm = m then true else false
| →0

let iconcat (m : bytes ) : (bytes ∗ bytes) =
match m with
| Concat (m1, m2)→ (m1, m2)

let utf8 (s:string) = Utf8 s
let iutf8 (m: bytes) = match m with | Utf8 m1→m1

Symbolic code for the Prins library In our model, the implementation of the Prins
library is parameterized by a finite list of principals and a safety predicate on those
principals. (In contrast, our concrete prototype implementation retrieves cryptographic
materials from a partial database and does not serve the opponent!)

let prins = . . . (∗ a fixed list of all principals ∗)
let safe (a:principal) = . . . (∗ a fixed predicate on principals ∗)
let skeys = List.map (fun a→ (a, genskey (new()))) prins
let skey (a : principal) = List.assoc a skeys
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let vkey (a : principal) = genvkey (skey a)
let chans = List.map

(fun a→ let (n:name) = new() in (a, n)) prins

type cache contents = (bytes ∗ int) list
type cache result = Stale | Fresh of cache contents

let asend m a = fork (fun ()→ send a m)
let caches = List.map

(fun a→ let (n:name) = new() in (a, n)) prins
let = map (asend []) caches (∗ caches init ∗)

let header s =
let (msg, sigs) = iconcat (ibase64 s) in
let (joinflag,header,payload) = iconcat3 (msg) in
let (host2, dest2, sid) = iconcat3 header in
let join = if (iS (iutf8 joinflag)) = "J" then true else false in

((int of string (iS (iutf8 dest2)),sid),join)

let antireplay old a msg =
let ((sid, r) as k), joining = header message in
if joining then

if List.mem k old then Stale
else Fresh(k::old)

else Fresh(old)

let psend (a : principal) (m : bytes) =
let ch = List.assoc a chans in
let cache = List.assoc a caches in
let oldcache = recv cache in
let r = antireplay oldcache a m in
match r with
| Fresh(newcache)→ asend cache newcache; send ch m
| Stale→ asend cache oldcache

let precv (a : principal) = recv (List.assoc a chans)

(∗ for modelling the opponent’s knowledge only: ∗)
let psend• = new()
let rec forward () =

let a,m = recv psend• in
fork forward; psend a m in

fork forward
let chans• = List.filter (fun (a,n)→ not (safe a)) chans
let skeys• = List.filter (fun (a,k)→ not (safe a)) skeys

The psend• channel implements a small server that receives requests to call psend;
this enables the opponent to send messages to safe principals, but not to receive such
messages sent by our implementation, by calling psend.
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The opponent is given access to prins, safe, vkey, psend•, chans•, and skeys•. Our
generated protocol implementations access safe, skey, vkey, psend, and precv. User
code is given access only to principal constants.

D Example code

We present in detail the code for the example session from Figure 1(c), as a concrete
illustration of the code produced by our session compiler. The example is also included
in the prototype distribution, in directory examples/ex3.

We first define the session S3 using local roles, then user code that uses this session.
Session S3’s compilation is sketched next; we first report on the generated interface,
and then show excerpts of generated module S3; finally, we include an excerpt of the
symbolic run of this example.

Syntactic session Session S3 is defined as follows:

session S3 =
role customer =
!Request:string; mu start.
?( Offer:string;

!( Change:string; start + Accept; )
+ Reject; !Abort )

role officer =
?Request:string; !Contract:string;
?( Confirm + Abort )

role store:string =
?Contract:string; mu start.
!( Offer:string;

?( Change:string; start
+ Accept; !Confirm )

+ Reject )

User code The user code defines implementations of each role; an office that forwards
messages and print the outcome of the session, a store that offers delivery locations
and times (Redmond 8am-9m, by default, then 3pm-4pm, then Orsay at lunchtime, and
finally Cambridge at 6pm-7pm). Finally, the code of the customer asks for a meeting
on 12 March 2007, and when given an offer of Redmond 8am-9am it changes to Cam-
bridge, otherwise it accepts.

open Printf
open S3

// office
let say s = printf "\nOffice: %s.\n\n" s
let log s id () = say s
let request id offer =

say ("running with "ˆid.customerˆ" and "ˆid.store);
Contract(offer,
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{ hConfirm = log "run confirmed";
hAbort = log "run aborted"; })

do Pi.fork (fun ()→
officer "charlie" {hRequest = request})

// store
let offer loc = List.assoc loc

[ "Default", "Redmond, 8am-9am";
"Redmond", "Redmond, 3pm-4pm";
"Orsay", "Orsay, lunchtime";
"Cambridge", "Cambridge, 6pm-7pm" ]

let server prins req =
printf "Server: session starting for %s.\n\n" req;
let rec new offer prins (loc:string) =
try

let o = offer loc in
Offer(o, {

hChange = new offer;
hAccept = (fun ()→Confirm((),"in "ˆo)); })

with →Reject((),"no offer available") in
new offer prins "Default"

do Pi.fork(fun ()→
let status = store "bob" { hContract = server; } in
printf "Store: Done! %s.\n\n" status)

// customer code (non-interactive)
type ChoiceOnOffer = UChange of string | UAccept
let Offer ui offer =

if offer = "Redmond, 8am-9am"
then UChange "Cambridge" else UAccept

do
let prins = {

customer = "alice";
officer = "charlie";
store = "bob"; } in

let r = "12 March 2007" in
let rec msg1 = {

hReject = (fun →Abort((),()));
hOffer = (fun offer→

match Offer ui offer with
| UChange location→Change(location,msg1)
| UAccept→Accept((),()))} in

let msg0 = Request(r,msg1) in
let worker () =

customer prins msg0;
printf "Customer: session complete.\n\n" in
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worker()

Generated interface The generated interface by our compiler for session S3 above is:

type principal=string
type principals= {customer:principal; officer:principal; store:principal}
type result customer = unit

type msg0 =
Request of (string ∗ msg1)

and msg1 = {
hOffer : (principals→ string→msg2) ;
hReject : (principals→ unit→msg4)}

and msg2 =
Change of (string ∗ msg1)
| Accept of (unit ∗ result customer)

and msg4 =
Abort of (unit ∗ result customer)

val customer : principals→msg0→ result customer

(∗ Proxy function for officer ∗)
type result officer = unit
type msg6 = {

hRequest : (principals→ string→msg7)}
and msg7 =

Contract of (string ∗ msg8)
and msg8 = {

hConfirm : (principals→ unit→ result officer) ;
hAbort : (principals→ unit→ result officer)}

val officer : principal→msg6→ result officer

(∗ Proxy function for store ∗)
type result store = string

type msg11 = {
hContract : (principals→ string→msg12)}

and msg12 =
Offer of (string ∗ msg13)
| Reject of (unit ∗ result store)

and msg13 = {
hChange : (principals→ string→msg12) ;
hAccept : (principals→ unit→msg14)}

and msg14 =
Confirm of (unit ∗ result store)

val store : principal→msg11→ result store
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Generated code excerpts In turn, the compiled module for session S3 above is as fol-
lows (we only show one example of a sending and receiving function here, for label
Request and Accept):

(∗ gen [Request ] Request = sendWiredRequest ... ∗)
(∗ gensig customer Request = sendlabel ... ∗)
let sendWiredRequest (host:int) (dest:int) (prin list: principals list)

: (wired0→ bytes list) = function (x:wired0)→
match x with
|WiredRequest (host, dest, localtime, sid, last sig, payl)→

let = Printf.printf "Preparing message: Request(%s)\n" (payl) in
let header = concat3 (utf8 (S (string of int host)))

(utf8 (S (string of int dest))) sid in
let tag = utf8 (S "Request") in
let payload = concat tag (utf8 (S payl)) in
let vision = [(0,"Request")] in
let (newLast sig, sigs) = send label prin list sid host dest

"Request" last sig localtime vision in
sendMsg host dest prin list sid header payload

newLast sig sigs (joining "Request")
| → assert false

...
(∗ recv Accept ∗)
let receiveWired12 (host:int) (prin list: principals list) running sid last sig

: (unit→wired12) = function (():unit)→
let (tag, host2, dest2, sid, raw payload, sigs) =

receiveMsg host prin list running sid in
match tag with
| "Reject"→ let payload = () in

let = Printf.printf "Accepting message: Reject(%s)\n" ("") in
let vision = [(2,"Reject")] in
let newLast sig = receive label prin list (sid) host "Reject"

sigs last sig localtime vision in
WiredReject(host2, dest2, localtime, sid, newLast sig, payload)
| "Offer"→ let payload = iS (iutf8 raw payload) in

let = Printf.printf "Accepting message: Offer(%s)\n" (payload) in
let vision = [(2,"Offer")] in
let newLast sig = receive label prin list (sid) host "Offer"

sigs last sig localtime vision in
WiredOffer(host2, dest2, localtime, sid, newLast sig, payload)

...
let customer (prin list: principals) (user input : msg0) =
...
(∗ sending Request ∗)
and customer msg0 sid (last sig:bytes list) : msg0→ result customer = function
| Request(x,next)→

let dest = 1 in
let newLast sig = sendWiredRequest host dest (genprin prin list)

(WiredRequest (host,dest,localtime,sid,last sig,x)) in
customer msg1 sid newLast sig next
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...
(∗ recv Accept or Change ∗)
and customer msg1 sid (last sig:bytes list)

: msg1→ result customer = function handlers→
let r = receiveWired12 host (genprin prin list) sid last sig () in

match r with
|WiredOffer (host,dest,localtime,sid,newLast sig,x)→
let next = handlers.hOffer prin list x in
customer msg2 sid newLast sig next
|WiredReject (host,dest,localtime,sid,newLast sig,x)→
let next = handlers.hReject prin list x in
customer msg4 sid newLast sig next

in
let nonce = mkNonce () in

let f s a = concat s (utf8 (S a)) in
let sid = concat3 session (make principals (genprin prin list)

nb parties) nonce in
let emptyLast sig = populate emptysigs nb parties in
Printf.printf "Executing role customer with

principal %s...\n" (List.nth (genprin prin list) host) ;
customer msg0 sid emptyLast sig user input

Symbolic run Finally, we report on the execution of the above code for session S3:

Executing role store with principal bob
Executing role officer with principal charlie...
Executing role customer with principal alice...
...
Preparing message: Request(12 March 2007)
alice sent NJ | 0 | 1 | SHA1(S3,(14,(Confirm,unit),9)(2,(Accept,unit),14)
(2,(Change,string),12)(4,(Abort,unit),10)(12,(Reject,unit),4)(12,(Offer,string),2)
(7,(Contract,string),12)(0,(Request,string),7)) | alice | charlie | bob |
nonce6 | Request | 12 March 2007 | 0 | RSA−SHA1{rsa secret3}
[SHA1(S3,(14,(Confirm,unit),9)(2,(Accept,unit),14)(2,(Change,string),12)
(4,(Abort,unit),10)(12,(Reject,unit),4)(12,(Offer,string),2)
(7,(Contract,string),12)(0,(Request,string),7)) | alice | charlie |
bob | nonce6 | Request | 0] | 0 | |

Receiving message: Request(12 March 2007)

Office: running with alice and bob.

Preparing message: Contract(12 March 2007)
charlie sent NJ | 1 | 2 | SHA1(S3,(14,(Confirm,unit),9)(2,(Accept,unit),14)
(2,(Change,string),12)(4,(Abort,unit),10)(12,(Reject,unit),4)
(12,(Offer,string),2)(7,(Contract,string),12)(0,(Request,string),7)) |
alice | charlie | bob | nonce6 | Contract | 12 March 2007 | 0 |
RSA−SHA1{rsa secret5}[SHA1(S3,(14,(Confirm,unit),9)(2,(Accept,unit),14)
(2,(Change,string),12)(4,(Abort,unit),10)(12,(Reject,unit),4)
(12,(Offer,string),2)(7,(Contract,string),12)(0,(Request,string),7)) |
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alice | charlie | bob | nonce6 | Contract | 0] | 0 |
RSA−SHA1{rsa secret3}[SHA1(S3,(14,(Confirm,unit),9)(2,(Accept,unit),14)
(2,(Change,string),12)(4,(Abort,unit),10)(12,(Reject,unit),4)
(12,(Offer,string),2)(7,(Contract,string),12)(0,(Request,string),7)) |
alice | charlie | bob | nonce6 | Request | 0] |
...
Store: Done! in Cambridge, 6pm−7pm.
Accepting message: Confirm()
Office: run confirmed.

E Proofs for Section 7

We first describe series of low-level transitions that implement each high-level transi-
tion, which essentially provides the proof of Theorem 3. We then use this description
as the basis of the case analysis in the proof of Theorem 2. We finally prove Lemma 1
and obtain Theorem 1 as a corollary of Theorem 2.

E.1 Proof of Theorem 3

Lemma 2. Let W be a valid implementation of H . For every transition H α−→KH
′ in

F+S, where α does not contain any signing key of a safe principal nor any element
of N , there exists a valid implementation W ′ of H such that W

ϕ⇒KW
′ in F.

Proof. Except for the transition steps that involve sessions, every high-level step car-
ries over to a low-level step with the same label, as their redexes are preserved by the
translation. We distinguish seven kinds of high-level session transitions, depending on
the base rules they use: rules KSENDS (using INIT or STEP), KRECVS (using JOIN or
STEP), and KSTEP (using COMML, COMMR and ENDS).

Unfolding the function definitions given in Section 6 and Appendix C, we exhibit a
series of low-level transitions that implement these high-level session transitions, lead-
ing to a valid implementation of H ′ for some possibly updated state T ′ .

We first set up auxiliary notations. We write the elements of high-level configura-
tions without subscripts: H = K, ρ, P or H ′ = K ′, ρ′, P ′; we use subscripts for the
elements of low-level configurations: W0 = K0, ρ0, P0 or W1 = K1, ρ1, P1. We also
use italics for metavariables.

Cache transitions We begin with auxiliary low-level transitions for filtering messages
through the anti-replay cache. We write W1 = K1, ρ1, P1 |E1 for the low-level ad-
versary knowledge, environment, processes and expression context. For a given safe
principal a, we let Pa = send cachea contenta abbreviate the message that holds the
state of the cache for principal a on channel cachea: hence, contenta is the list of ses-
sion identifiers and roles already seen by a, recorded in T.cache(a).

Starting from a message m sent to a in expression context E1, under the premise
that ‘header m’ evaluates either to ‘(sid,r),true’ with sid,r /∈ contenta or to ‘ ,false’,
by definition of psend we have transitions:

K1, ρ1, P1 |Pa |E1[psend a m]
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APPLY(psend)−−−−−−−−→ APPLY,LETVAL−−−−−−−−→
∗

K1, ρ1, P1 |Pa |E1[let oldcache = recv cachea in let isreplay = [...] in [...]]
COMML−−−−→
K1, ρ1, P1 | () |E1[let oldcache = contenta in let isreplay = [...] in [...] ]
LETVAL−−−−→
K1, ρ1, P1 | () |E1[let isreplay = antireplay contenta a m in match [...]]
APPLY,LETVAL−−−−−−−−→

∗ MATCH,MISMATCH−−−−−−−−−−→
∗

K1, ρ1, P1 | () |E1[match isreplay with [...] ] (1)
MATCH−−−−→
K1, ρ1, P1 | () |E1[asend cachea newcache ; send cha m ]
APPLY−−−→ FORK−−−→ LETVAL−−−−→
K1, ρ1, P1 | () | send cachea newcache |E1[send cha m ]

where newcache = (sid,r)::contenta if ‘header m’ evaluates to ‘(sid,r),true’, and newcache =
contenta otherwise. We let Cache−−−→ abbreviate this sequence of transitions, which repre-
sents successful anti-replay filtering.

Conversely, if ‘header m’ evaluates to ‘(sid,r),true’ with sid,r ∈ contenta, then
after (1) we have the transitions:

(1)
MATCH,MISMATCH−−−−−−−−−−→

∗
K1, ρ1, P1 | () |E1[asend cachea contenta]

APPLY,LETVAL−−−−−−−−→
∗

K1, ρ1, P1 | () |Pa |E1[()]

(This case plays a role in the proof of Theorem 2, but not in the proof of Theorem 3.)
In the rest of the proof, we may omit inert threads consisting of just the () expression,
such as the thread left after Pa in the transitions above.

Session transitions We now translate the high-level session transitions.

ENDS: The transition is trivially simulated: by definition, we have [[s.0(e)]]T = [[e]]T ,
so no low-level transition step is needed to simulate this step.

INIT: The high-level transition is of the form

K, ρ, P |E[S.rb0 (ai)i<n(g(ṽ), w)]
sg ev−−→K K ∪ {ṽ}, ρ′, P |E[s.p′ (w)]

Let P0 |Pa |E0[S.r prins (g(ṽ), w)] match [[P |E[S.rb0 (ai)i<n(g(ṽ), w)]]]T . Let
also K0 = [[K]]T and ρ0 = [[ρ]]T . We have the following sequence of transitions:

K0, ρ0, P0 |Pa |E0[S.r prins (g(ṽ), w)]
APPLY−−−→
K0, ρ0, P0 |Pa |E0[let st = init prins in send ∅ st (g(ṽ), w)] (2)
APPLY,LETVAL−−−−−−−−→

∗
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K0, ρ1, P0 |Pa |E0[send ∅ st (g(ṽ), w)]
APPLY−−−→ MISMATCH−−−−−−→

∗ MATCH−−−−→ LETVAL−−−−→
K0, ρ1, P0 |Pa |E0[let m = gen ∅ g st ṽ in psend a m ; recv g st w]
APPLY,LETVAL−−−−−−−−→

∗

K0, ρ1, P0 |Pa |E0[psend a m ; recv f st w|]
Cache−−−→ LETVAL−−−−→
K0, ρ1, P0 | send cachea ((sid,r)::contenta) |E0[send ch m ; recv g st w]
ch m(KSEND)−−−−−−−−→K

LETVAL−−−−→
K0 ∪ {m}, ρ1, P0 | send cachea ((sid,r)::contenta) |E0[recv g st w]

where (sid,r) comes from the evaluation of ‘header m’. In (2), the init function has
some side-effects, transforming ρ0 into ρ1 = [[ρ′]]T .
Also, the message m added to the low-level K is not the exact translation of the
updated high-level K, which contains the message payload v, new signatures, and
the nonce. To obtain matching knowledges, we apply KAPPLY steps at the low
level to retrieve these values from m.

KSENDS: The high-level transition is of the form

K, ρ, P |E[s.p (g(ṽ), w)]
sg ev−−→K K ∪ {ṽ}, ρ, P |E[s.p′ (w)]

We writeK0 = [[K]]T , ρ0 = [[ρ]] andP0 |Pa |E0[let xs = (g(ṽ), w) in send g̃ st xs] =
[[P |E[s.p (g(ṽ), w)]]]T . We have the following sequence of transitions:

K0, ρ0, P0 |Pa |E0[let xs = (g(ṽ), w) in send g̃ st xs]
LETVAL−−−−→
K0, ρ0, P0 |Pa |E0[send g̃ st (g(ṽ), w)]
APPLY−−−→ MISMATCH−−−−−−→

∗ MATCH−−−−→ LETVAL−−−−→
K0, ρ0, P0 |Pa |E0[let m = gen g̃ g st ṽ in psend a m ; recv g̃g st w]
APPLY,LETVAL−−−−−−−−→

∗

K0, ρ0, P0 |Pa |E0[psend a m ; recv g̃g st w]
Cache−−−→ LETVAL−−−−→
K0, ρ0, P0 | send cachea newcache |E0[send ch m ; recv g̃g st w]
ch m(KSEND)−−−−−−−−→K

LETVAL−−−−→
K0 ∪ {m}, ρ0, P0 | send cachea newcache |E0[recv g̃g st w]

We apply KAPPLY steps as above, to obtain matching knowledges.
JOIN: The high-level transition is of the form

K, ρ, P |E[S.rb0 aj(w)]
sg ev−−→K K

′, ρ′, P |E[s.p′ (w.g ã ṽ)]
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We writeK0 = [[K]]T , ρ0 = [[ρ]] andP0 |Pa |F |E0[S.r selfw] = [[P |E[S.rb0 aj(w)]]]T .
We also note F = forward () the forward process andP1 = P0 | send cachea contenta.
The translation of this transition is the following sequence of transitions:

K0, ρ0, P0 |Pa |F |E0[S.r st w]
APPLY−−−→
K0, ρ0, P0 |Pa | let a,m = recv psend• in [...] |E0[S.r self w]
psend• (a,m0)(KRECV)−−−−−−−−−−−−−−→K

LETVAL−−−−→ FORK−−−→ LETVAL−−−−→
K0, ρ0, P0 |Pa |F | psend a m |E0[S.r self w]
Cache−−−→ LETVAL−−−−→ (3)
K0, ρ0, P1 |F | send ch m0 |E0[S.r self w]
APPLY−−−→
K0, ρ0, P1 |F | send ch m0 |E0[let m0 = precv self in let st,m = join m0 in [...]]
APPLY−−−→
K0, ρ0, P1 |F | send ch m0 |E0[let m0 = recv ch in let st,m = join m0 in [...]]
COMML−−−−→ LETVAL−−−−→
K0, ρ0, P1 |F |E0[let st,m = join m0 in [...]]
APPLY,LETVAL−−−−−−−−→

∗ LETVAL−−−−→
K0, ρ0, P1 |F |E0[if st.prins.r = self then verify ∅ st m w]
MATCH−−−−→
K0, ρ0, P1 |F |E0[verify ∅ st m w]
APPLY−−−→
K0, ρ0, P1 |F |E0[let path = visible ∅m in match path with [...]]
APPLY,LETVAL−−−−−−−−→

∗ LETVAL−−−−→
K0, ρ0, P1 |F |E0[match path with [...]]
MISMATCH−−−−−−→

∗ MATCH−−−−→
K0, ρ0, P1 |F |E0[let st,payload = chk ∅ g̃′ st m in let next = [...]]
APPLY,LETVAL−−−−−−−−→

∗ LETVAL−−−−→
K0, ρ0, P1 |F |E0[let next =w.last(g̃′) st.prins payload in [...]]

The cache transition (3) always succeeds, since there is no bad input.
KRECVS: The high-level transition is of the form

K, ρ, P |E[s.p (w)]
sg ev−−→K K

′, ρ, P |E[s.p′ (w.g ã ṽ)]

We writeK0 = [[K]]T , ρ0 = [[ρ]] and P0 |F |E0[recv g̃f st w] = [[P |E[s.p (w)]]]T .
We also note F = forward () the forward process.
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The translation of this transition is the following sequence of transitions:

K0, ρ0, P0 |F |E0[recv g̃f st w]
APPLY−−−→ APPLY,LETVAL−−−−−−−−→

∗

K0, ρ0, P0 | let a,m = recv psend• in [...] |E0[let m = recv ch in verify g̃f st m w]
psend• (a,m)(KRECV)−−−−−−−−−−−−−−→K

LETVAL−−−−→ FORK−−−→ LETVAL−−−−→
K0, ρ0, P0 |F | psend a m |E0[let m = recv ch in verify g̃f st m w]
Cache−−−→ LETVAL−−−−→
K0, ρ0, P0 |F | send ch m |E0[let m = recv ch in verify g̃f st m w]
COMML−−−−→ LETVAL−−−−→
K0, ρ0, P0 |F |E0[verify g̃f st m w]
APPLY−−−→
K0, ρ0, P0 |F |E0[let path = visible g̃f m in match path with [...]]
APPLY,LETVAL−−−−−−−−→

∗ LETVAL−−−−→
K0, ρ0, P0 |F |E0[match path with [...]]
MISMATCH−−−−−−→

∗ MATCH−−−−→
K0, ρ0, P0 |F |E0[let st,payload = chk g̃f g̃′ st m in let next = [...]]
APPLY,LETVAL−−−−−−−−→

∗ LETVAL−−−−→
K0, ρ0, P0 |F |E0[let next = w.last(g̃′) st.prins payload in [...]]

KSTEP: High-level session communication steps are translated as a high-level send
(without extending K) followed by a high-level receive. ut

We are now ready to prove completeness for our implementation:

Restatement of Theorem 3. LetW be a valid implementation ofH with no bad inputs.
For all transitions H

ψ⇒KH
′ in F+S such that ψ contains neither any signing key of a

safe principal nor any elements ofN , there exist a valid implementation W ′ of H ′ with
no bad inputs and a direct translation ϕ of ψ such that W

ϕ⇒KW
′ in F.

Proof. By induction on the number of high-level transitions, applying Lemma 2 for
each transition. ut

E.2 Notations for Theorem 2

Administrative transitions Among the transitions that are part of the implementation of
a high-level session transition (made explicit in the proof of lemma 2), we designate as
administrative the ones that do not concern communication (i.e. different from SEND
or RECV or COMML). We use −→KA as an abbreviation for those transitions.
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Transition names In order to easily reason about the reordering of the low-level tran-
sitions, we give names to some selected sequences of low-level transitions that are part
of the session implementation detailed in the proof of Lemma 2.

– The low-level implementation of INIT and KSENDS have only one non-administrative
transition, labelled with ch m, corresponding to the application of the (KSEND)
rule. We name this transition ε0 and write the sequence of transitions as follows:

preε0−−−→
∗

KA
ε0−→K

postε0−−−→
∗

KA

– The low-level implementation of KRECVS and JOIN have three non-administrative
transitions, which we name as follows:
• ε1 = psend•(a,m)(KRECV)
• ε2 is the silent transition corresponding to a (COMML) on a cachea channel
• ε3 is the silent transition corresponding to a (COMML) on a cha channel

The sequence of transitions is then written

preε1−−−→
∗

KA
ε1−→K

preε2−−−→
∗

KA
ε2−→K

preε3−−−→
∗

KA
ε3−→K

postε3−−−→
∗

KA

In the proof of theorem 2, we refer more generically to the pre and (possibly empty)
post transitions of a given non-administrative transition εn.

Thread and commutativity We designate as a thread an expression placed in evalua-
tion context. Each session role implementation uses only one thread, so administrative
transitions (which are purely local computations) can be reordered with respect to other
threads’ transitions.

Visibility We write V for the visibility function: if g̃ is the sequence of labels on a given
path from the initial nodem0 to a nodem with role r, V (g̃) is the corresponding visible
sequence, that is, the result of erasing from g̃ every label g (1) whose sending role is r;
or (2) that is followed by a label whose sending role is either r or g’s sending role.

E.3 An extended translation for Theorem 2

The proof of theorem 2 relies on the translation relation and other invariants that track
the link between low and high-level configurations. However, there exist low-level in-
termediate states of our session implementation that do not have a direct high-level
reflection. We thus extend the translation function so that it coincides with the trans-
lation given in Section 7 on their joint domain, and so that it also keeps track of the
session implementation intermediate steps.

We first define an extended version of the state T . The only added elements are the
inner and outer functions (T.inner and T.outer). For every session record s (ai)i<n {r̃} :
S in ρ,

– T.nonce(s) is a term Ns in K.
– T.path(s) is an initial path f̃ of S, decorated with strictly-increasing integers j̃,

ending by a label sent or received by a safe principal;
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– T.stuck(s) is the set of roles that have received a bad input so far—in that case, the
roles have silently terminated.

For every principal a,

– T.cache(a) is the content of the cache of principal a: a set of pairs of session iden-
tifiers and roles (s̃id, r).

– T.outer(a) is the multiset of messages m̃ that have been received on chabut have
not been checked against the cache yet.

– T.inner(a) is the multiset of messages ñ that have passed the cache test but have not
received further treatment, with the following properties: (1) the multiset contains at
most one joining message for each role of each running session, and (2) all joining
message are also registered in the cache.

Finally, T provides an infinite (and co-infinite) set of fresh supplementary names,
N , which is formally used to supply a fresh nonce to the high-level environment when-
ever the low-level environment receives a fresh session nonce.

We define the translation [[K, ρ, P ]]T from F+S configurations to F configurations,
as follows:
To translate K:

– we replace session records s.p with the session nonces T.nonce(s);
– we add the signatures exported by T ;
– we remove the signing keys of all safe principals and the supplementary noncesN .

To translate the store ρ:

– we replace session type definitions S̃ with the types and function definitions ofMeS ;
– we remove the session entries and the nonces of N not in the image of T.nonce.

To processes, we add the following ones:

– the forwarding process F = forward ();
– for each principal a, the process Pa = send cachea T.cache(a), where cachea is

the channel of ρLeS that holds the state of the antireplay cache for a. (The forwarding
code and cache management are defined in Appendix C.)

– for each principal a and for each message n of T.inner(a), a sending process
send cha n (cha denotes the principal’s communication channel).

– for each principal a and for each message m of T.outer(a), a sending process
psend a m.

To translate the process P :

– we translate all running session roles within P as follows:

[[s.p(w)]]T = 0 if p’s role is in T.stuck(s)
[[s.p(w)]]T = S.recv eg st [[w]]T else if p is an input

or is an output of a message in T.inner or T.outer
[[s.p(e)]]T = letxs = [[e]]T in S.send eg st (xs) else if p is an output
[[s.p(e)]]T = [[e]]T else if p is 0
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where g̃ and st are computed from T.nonce(s) and T.path(s). Note that the trans-
lation knows for each process s.p which session S it implements, the reason being
that the translation acts on configurations which include the necessary information
in environments ρ.

– Expressions of the form S.r . . . are unchanged but now interpreted as function
calls, rather than primitive session entries.

The refined translation coincides with the original translation when both the inner and
outer functions (T.inner and T.outer) are empty (as in the proof of theorem 3).

E.4 Auxiliary path properties

Lemma 3. Consider a session Σ and a node n with role r. Let f̃ be a visible sequence
ending in n. Let g̃ be the longest suffix such that r is not active, of a pre-image of f̃ from
the visibility function V . Then the set of active roles in f̃ is the set of active roles in g̃.

Proof. By definition of visibility. ut

Lemma 4. Consider a sessionΣ and an initial path g̃ leading to a node n2 with role r.
Let f̃ be the longest suffix of g̃ for which r is not active. Let n1 be the first node of f̃ .

Then the set of active roles of all paths starting at n1 where r is not active is included
in the set of active roles of f̃ .

Proof. The proof relies on the absence of “blind forks” in session graphs, excluded by
property 3 of section 2. ut

E.5 Proof of Theorem 2

Restatement of Theorem 2. LetW be a valid implementation ofH . For all transitions
W

ϕ⇒K W
′ in F, there exist a valid implementation W ◦ of H◦ and a translation ϕ of ψ

such that

H
ψ⇒K H

◦ W
ϕ⇒K W

◦ −→∗K W ′′ W ′ −→∗K W ′′

Proof. By induction on the number of non-administrative transitions in W
ϕ⇒KW

′. We
start from a low-level configuration W that is the translation in a state T of a high-level
configuration H = K, ρ, U , thus W = (K0, ρ0, U0) = ([[K]]T , [[ρ]]T , [[U ]]T ). We first
explain our induction principle and the step reordering it uses, then conduct the main
case analysis.

Outline In this proof, our initial hypothesis is that there are transitions W
ϕ⇒KW

′ that
lead a low-level configuration W to a configuration W ′ and that have an observable
trace ϕ. The invariant of our proof relates a high-level configuration H , a state T and
a low-level configuration W by the translation function described above: W = [[H]]T .
Our goal is then to propagate this invariant over the transitions W

ϕ⇒KW
′ by finding

intermediary configurations Wi where we have high-level configuration Hi and states
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Ti such thatWi = [[Hi]]Ti and that theHi are related by high-level transitions. However
the intermediary low-level configurationsWi cannot always be found on the initial path
from W to W ′ because of the interleaving of steps allowed by the session implemen-
tation. Thus, we first need to reorder (and complete) the original series of transitions
before matching high-level and low-level transitions.

We present this reordering in an inductive manner. We start by examining the low-
level transitions W

ϕ⇒KW
′ that we can decompose and complete in the following way:

W
extra + preε−−−−−−→

∗
KA W0

ε−→K W1
ϕ′

⇒K W
′

The sequence W
ϕ⇒KW

′ starts with some administrative steps W
extra+preε−−−−−→

∗
KA W0 fol-

lowed by a session-related communication or a user-code transition W0
ε−→K W1. This

transition may be silent or not: we use the metavariable ε to denote either the presence
and content of a label or its absence. Among the administrative transitions that precede
the ε transition, we distinguish the ones that causally precede ε: preε; and the others:
‘extra’. We write ϕ′ for the sequence of labels that are on the remaining transitions
W1

ϕ′

⇒KW
′. We have thus ϕ = ε ϕ′.

We then commute the ‘extra’ steps after the ε transition. We possibly need to add
administrative postε steps to fully match in the low-level transitions the implementation
of a high-level session transition. The result is the following series of transitions:

W
preε−−→

∗
KA

ε−→K
postε−−−→

∗
KA W

◦ extra−−→
∗
KA W

′
1
ϕ′

⇒KW
′′

where the extra transitions are moved after the complete session step consisting in
preε, ε, postε. The transitions W ′1

ϕ′

⇒KW
′′ consist of those in W1

ϕ′

⇒KW
′ after having

removed any transitions that is also in postε. If all of the postε transitions are included
in W1

ϕ′

⇒KW
′, then we have W ′ = W ′′. Otherwise the missing ones can be applied to

W ′ to reach W ′′.
We iterate the reordering from configuration W ◦. The remaining transitions

W ◦
extra−−→

∗
KAW

′
1
ϕ′

⇒KW
′′

contain fewer non-administrative steps than the original series of transitions.
The next part of the proof consists in a case analysis on the transitionsW

preε−−→
∗
KA

ε−→K
postε−−−→

∗
KAW

◦

that correspond to specific high-level transitions .

Case analysis We now proceed with the inductive step of the proof: for each transi-
tions W

preε−−→
∗
KA

ε−→K
postε−−−→

∗
KAW

◦, we exhibit a corresponding high-level transition that
preserves the valid implementation relation.

APPLY, MATCH, MISMATCH, LETVAL, LETFUN, TYPE, FRESH (KSTEP): The dif-
ferent KSTEP transitions are reflexions of P -transitions and e-transitions. By hy-
pothesis those silent transitions are not administrative steps, so the redex they re-
duce is also present in the original high-level U and is invariant under translation.
The low level transitions, which are available at high level, may therefore be mir-
rored identically.
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KAPPLY: Since we have excluded administrative steps, the applied function appears in
ρ before and after the translation. The arguments applied to the function used in the
low-level KAPPLY transition may consist of values built from cryptographic mate-
rial (signatures, nonces) received by the low-level attacker as a biproduct of session
communication. The matching between high and low-level adversarial knowledge
provided by our invariant ensures that a high-level application of KAPPLY directly
simulate the low-level one.

KSEND on a principal channel in chans•: In this case, the channel belongs to an un-
safe principal b and the message is thus sent by the implementation of a run-
ning session role, for some principal a, at node n. As a consequence, the mes-
sage is among the pending messages in T.inner(b). The low-level process that
initiates this message send is of the form send chb m ; [...], itself derived from
let xs = [[e]]T in S.send g̃ st (xs).
We know that T.path(s) is an initial path. If the messagem is the first of the session,
then T.path(s) is empty and we set T.path(s) to the label and time-stamp, thus
maintaining the relation between T.path(s) and the role processes. If s is already
started, the implementation for the principal a imposes that it previously received a
signed label that, by definition of a valid implementation, is in T.path(s), and that
there is only one safe participant a that is in a sending state. Thus T.path(s) ends
in the current node n. Appending the last label and time-stamp of m to T.path(s)
therefore preserves the invariant.
As part of m, the attacker receives a sequence of signatures that are added to K.
These signatures correspond to the updated translation under the new T.path(s).
However, to have matching high and low-level adversarial knowledge as required
by the valid implementation invariant, the high-level configuration need to do some
KAPPLY transitions to build the corresponding signatures from the available keys.
When the attacker joins the session for the first time (i.e. has not already joined as a
different role), the low-level message contains a nonce that we assume, without loss
of generality, is already included in the supplementary infinite set of nonces N in
the high-level K set. We therefore add Ns to T.nonce(b) to maintain our invariant.
In all cases, the high-level transition is a KSENDS.

KRECV on the psend• channel: This a communication from the adversary to a safe
principal a using the psend• channel and therefore handled by the forward process,
defined as let a,m = recv psend• in [...]. The reception of the message yields the
process

let a,m = a,m in fork forward ; psend a m

which performs administrative transitions then yields process psend a m. To con-
clude, we update T by appending the message m to the multiset of pending mes-
sages in T.outer(a), and leave the high-level configuration unchanged.

COMML or COMMR on a safe principal channel from chans: By definition of the
translation, this transition is enabled only for a receiver in the implementation of a
running role r instantiated by a safe principal a. (Reception for unsafe principals is
handled in case KRECV). Then we know that the received message m has passed
the cache test and is among the pending messages in T.inner(a). The sending pro-
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cess is then of the form: send ch m while the receiving one is:

let m = recv ch in verify g̃g st m [[w]]T

Recall that g̃ ends at the node from which r previously sent g ; let n0 be the node
receiving g. Let f be the label corresponding to the m message and n2 be the node
in which r receives f .
The message m contains a session id, and a list of signed labels and time-stamps.
Checking that the session id corresponds to a running session (or a new one) gives
us the correct high-level s. The verify g̃g function also checks that the signatures
are correct, the time-stamps are consecutive and the list of labels corresponds to a
visible sequence f̃f .
By our invariant, the labels in f̃ that are signed by safe principals are in T.path(s).
Since we know that T.path(s) is an initial path, we can deduce that T.path(s)
contains in particular the last label that is signed by a safe principal in f̃ . We call
n1 the receiving node of this label.
We next prove that T.path(s) ends in n1. Suppose for contradiction that T.path(s)
goes further. Then there is a path starting in n1 which does not meet r and which
leads a node n3 where role r′, different from r, is active and is instantiated by a
safe principal. By Lemma 4, this role r′ is also active in all paths from n1 to n2.
By Lemma 3, this role has signed a label among the visible sequence f̃ received by
r in n2 and thus T.path(s) contains this label between n1 and n2, a contradiction.
Therefore T.path(s) ends in n1 and there is no label signed by a safe principal
between n1 and n2 in f̃ .
If a compliant principal is the sender of the message m, then we can simulate the f
message exchange at high-level by a COMML or COMMR. If the messagem is sent
by an unsafe principal, then there is (possibly) a multi-step gap between n1 and n2.
The signed visible labels f̃ received by r in n2 give then a skeleton of internal ad-
versary communication. By definition of visibility, we know that we can complete
it to a contiguous path ending by f , going from n1 to n2. We therefore append this
path to T.path(s) to maintain the invariant. These internal communication steps
are simulated at high-level through the use of (multiple) OCOMM steps inside the
global KRECVS transition.
Finally, the message m is removed from T.inner(a).

COMML or COMMR on a cache channel: In this case, the receiving process is pro-
duced by a call psend a m that either is itself called by the implementation code

let xs = [[e]]T in S.send g̃ st (xs)

or that comes from the presence of m in T.outer(a). The object of this transition is
the communications of the current version of the cache of a and then administrative
transitions decide if m can be forwarded to a. If m is a joining message and the
session id s and the role r played by a in s are already recorded in the cache, then
a new cache process is forked and r is added to T.stuck(s) because m is a replay
attack. Otherwise if m passes the cache test, we add it to T.inner(a) and remove
it from T.outer(a). If m is a joining message we add the corresponding role and
session id to T.cache(a). We make no transition at high-level. The new low-level
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configuration is the image of the high-level configuration under the updated state
T , modulo the identification of stuck processes with 0.

KSEND, KRECV, COMML or COMMR on any other channel: Since in this case the
channels are not part of the session, these transitions correspond to redexes that are
identically present in the original high-level U . We therefore reflect these transi-
tions identically at high-level. Note that, in the KRECV case, a value v from the
low-level Val(K, ρ) is sent from the attacker: our invariant that matches high and
low-level adversarial knowledge ensures that such a value can be built and sent at
high-level. ut

E.6 Proof of Lemma 1

Restatement of Lemma 1. We have transitions K ] {ñ}, ρ ] {ñ}, P ψ⇒K
ω()−−→K for

some fresh names ñ where ω 6∈ fn(ψ) if and only if ρ, P |O −→P
∗ ω()−−→P for some

process O that does not contain ω, does not match on constructors in ρ, that calls only
pure functions of ρ, and whose values defined in ρ are all included in Val(K, ρ).

Proof. (⇒) First, for every K, ρ, P , and ψ where ω() 6∈ fn(ψ) we exhibit a process
O = eO |

∏
σ∈K eσ , such that

(1) each eσ represents an active session role controlled by the attacker and is of the form
(let xi = ei in)i∈[1..n] σ v, where n ≥ 0;
(2) the processes in O do not contain ω;
(3) the processes in O do not match on constructors and call only pure functions of ρ;
(4) the values in O are all contained in Val(K ] {c}, ρ ] {c})[ω := ω′];
(5) if K, ρ, P

ψ⇒K
ω()−−→K then ρ ] {c, ω′}, P |O −→P

∗ ω()−−→P.
Here, c 6∈ ρ is a distinguished channel used for communicating values between the dif-
ferent subprocesses of O; ω′ 6∈ ρ is also a distinguished name used whererver K uses

ω instead. We proceed by induction on the length of
ψ⇒K.

Base Case:
ψ⇒K is empty.

Hence, P sends on ω (KSEND). Let O be an arbitrary process satisfying the five condi-
tions above; say O = 0 |

∏
σ∈K σ(). Then ρ ] {c, ω′}, P |O ω()−−→P (SEND,PARL).

Inductive Case:K, ρ, P α−→K K
′, ρ′, P ′

ψ⇒K
ω()−−→K, where α 6= ω(). By the inductive hy-

pothesis, there exists a processO′ = eO′ |
∏
σ∈K′ e′σ such that the five conditions above

hold. By case analysis on the first transition, we construct a process O = eO |
∏
σ∈K eσ

that also satisfies the conditions:

KSTEP The transition is wholly in P . Let O = O′; P performs the same transition in
ρ ] {c, ω′}, P |O.

KAPPLY K, ρ, P −→K K∪{w}, ρ, P , where ρ, li v0 . . . vk −→e
∗ ρ, w and li, v0, . . . , vk

∈ Val(K, ρ) We spell out this case in detail, the construction ofO in the other cases
is similar. Here, K ′ = K ∪ {w}, ρ′ = ρ, and P ′ = P . First, we rename any occur-
rences of ω in v0, . . . , vk to ω′, obtaining v′0, . . . , v

′
k By the inductive hypothesis,

O′ may contain w[ω = ω′] and so must be of the form:
eO′ [x := w][ω = ω′] |

∏
σ∈K e

′
σ[x := w][ω = ω′], where x is some fresh variable.

Let eO be let x = li v′0 . . . v
′
k in (let = send c x in)σ∈K eO′ and for each σ ∈ K, let

eσ = let x = recv c in e′σ . Here, eO computes the function result, broadcasts it to all
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the active session processes in O, and continues with eO′ , while each eσ receives
this result and continues with e′σ . (This is a common pattern that we use to distribute
any new values that are generated in K among the subprocesses of O.) Then O =
eO |

∏
σ∈K eσ satisfies the induction hypothesis; it extends O′ with the application

of a pure function li, with some new values v′0, . . . , v
′
k ∈ Val(K, ρ)[ω := ω′]; it in-

troduces some message sends and receives on the channel c but none on the channel
ω; moreover, ρ ] {c, ω′}, P |O −→P

∗ ρ ] {c, ω′}, P |O′ (APPLY,COMMR); hence
ρ ] {c, ω′}, P |O −→P

∗ ω()−−→P

KSEND K, ρ, P
ch w−−−→K K ∪ {w}, ρ, P ′, where P sends a message w on a channel

ch in K. Here, ω 6∈ fn(ch,w); hence, ch, w ∈ Val(K ] {w}, ρ)[ω := ω′], and
O′ = eO′ [x := w] |

∏
σ∈K e

′
σ[x := w].

Let eO = let x = recv ch in (let = send c x in)σ∈K eO′ , and for each σ ∈ K, let
eσ = let x = recv c in e′σ . Then O = eO |

∏
σ∈K eσ satisfies the induction hypothe-

sis; in particular, using COMMR, ρ ] {c, ω′}, P |O −→P
∗ ρ ] {c, ω′}, P ′ |O′ −→P

∗
ω()−−→P

KRECV K, ρ, P
ch w−−−→K K, ρ, P ′, where ch, w ∈ Val(K, ρ) and ω 6∈ fn(ch,w);

hence ch, w ∈ Val(K, ρ)[ω = ω′], and O′ = eO′ |
∏
σ∈K e

′
σ .

Let eO be let = send ch w in eO′ . ThenO = eO |
∏
σ∈K e

′
σ satisfies the induction

hypothesis; it extends O′ with a message w sent on ch , where w ∈ Val(K, ρ); it
does not introduce a message send on ω, since by the inductive hypothesis ch 6= ω;
using COMML, ρ ] {c, ω′}, P |O −→P

∗ ω()−−→P

KSENDS K[σr], ρ, P
sg w−−−→K K[s.p]∪{w}, ρ′′, P ′, where ω 6∈ fn(w), and ρ, P

sg w−−−→P

ρ′, P ′, and ρ′, σr
sg−→s ρ

′′, s.p. Hence O′ = eO′ [x := w] |
∏
σ∈K[s.p] e

′
σ[x := w];

in particular es.p corresponds to the session process s.p.
Let eσr = σr(v) where v.g ã x = (let = send c x in )σ∈K[s.p]es.p; and for each
σ ∈ K[σr], if σ 6= σr then let eσ = let x = recv c in e′σ . Let eO be let x = recv c in eO′ .
Then O = eO | eσ

∏
σ∈K[σ] e

′
σ satisfies the induction hypothesis; using RECVS,

ρ ] {c, ω′}, P |O −→P
∗ ω()−−→P

KRECVS K[σ̃], ρ, P
sg w−−−→K K[s̃.p, s′.p′], ρ′′′, P ′, where ω 6∈ fn(w),

K[σ̃], ρ
sg1−−→o

sg1−−→o · · ·
sgm−−→o

sgm−−→o K[s̃.p, σs], ρ′, and ρ′, σs
sg−→s s

′.p′, ρ′′, and
ρ′′, P

sg w−−−→P ρ′′′, P ′. That is, the session role processes σ̃ in K perform session
communications with each other, resulting in the processes s̃.p and a process σs
that then performs a session send and interacts with a session receive in P . We
construct a process O that simulates this sequence of steps.
First we construct the process Om corresponding to K[s̃.p, σs],ρ′, just before the
last session send. By the inductive hypothesis,O′ = eO′ |

∏
σ∈K[ fs.p,s′.p′] e

′
σ , where

es′.p′ must be of the form (let xi = ei in)i∈[1..n] s
′.p′(v), where v is a record of han-

dlers h1, . . . , hk. We let eσs = σs(g(w), v′), where v′ has the same message han-
dlers h1, . . . , hk as v, and for each hi, we let v′.hi ã x =let (x1, ...,xn) = recv c in es.p;
in all other cases eσ = e′σ . We let eOm = eO′ |(let xi = ei in)i∈[1..n] send c (x1, ...,xn).
Hence, we split the process for σs into two threads, passing control through a stan-
dard process calculus maneuver: the first part eσs performs the session send and
waits with a message handler for the next session receive; in the meanwhile, the sec-
ond subprocess of eOm performs some intermediate computations and sends the re-
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sults to the message handler in eσs over the channel c. ThenOm = eOm |
∏
σ∈K[ fs.p,σs] eσ

satisfies the induction hypothesis; using RECVS and SENDS, ρ]{c, ω′}, P |Om −→P
∗

ω()−−→P. By using similar techniques, we extend Om to the process O corresponding
to K[σ̃], ρ by adding the corresponding internal session communications.

Using the process O = eO |
∏
σ∈K eσ as constructed above, we can establish the

(⇒) direction of the lemma. For every K, ñ, ρ, P , ψ, if K ] {ñ}, ρ ] {ñ}, P ψ⇒K
ω()−−→K

and ω 6∈ fn(ψ), then the process OK,c,en,ρ defined as follows satisfies the lemma:
let c = new() in let ω′ = new() in (let ni = new () in)ni∈en (let = fork eσ in)σ∈K eO.
It uses only pure functions in ρ, does not match on constructors, and does not contain
ω; all its values are in Val(Kρ,O)[ω = ω′] and hence the only values that are not in
Val(Kρ,O) are undefined in ρ; finally, using FRESH and FORK, we have:
ρ, P |OK,c,en,ρ −→P

∗ ρ ] {c, ω′, ñ}, P |O −→P
∗ ω()−−→P

(⇐) For every ρ,O, such that O only uses pure functions in ρ, does not match on con-
structors, does not contain ω, and whose values defined in ρ are contained in Val(K, ρ)
we exhibit a K, ñ, ψ such that the lemma holds. We define reduction contexts: R[·] ::=
E[·] || R[·] |P || P |R[·].

For a given ρ,O we define Kρ,O as the smallest set that satisfies the following:

– ω ∈ Kρ,O,
– for every pure expression e such that O = R[e] and ρ, e −→e

∗ ρ, v, v ∈ Kρ,O, and
– for every session state σ in O: for all ρ1, σ1 such that ρ1, σ1

eη−→s
∗ ρ, σ, σ1 ∈ Kρ,O;

and for all ρ2, σ2 such that ρ, σ
eη−→s
∗ ρ2, σ2, σ2 ∈ Kρ,O.

We show that if ρ ] ρl, P |O −→P
∗ ω()−−→P, where ρl consists of local type, session,

and function definitions used only in O (and not in P ), then there exists ñ, ψ, such that
Kρ,O]{ñ}, ρ]{ñ}, P

ψ⇒K
ω()−−→K. We proceed by induction on the number of reductions

in −→P
∗.

Base Case: −→P
∗ is empty.

Hence, P sends on ω; and Kρ,O, ρ, P
ω()−−→K, using KRECV.

Inductive Case: ρ]ρl, P |O −→P ρ
′]ρ′l, P ′ |O′ −→P

∗ ω()−−→P. By the induction hypothe-
sis, there exists ñ′, ψ′, such that Kρ′,O′ ]{ñ′}, ρ′ ]{ñ′}, P ′ψ

′

⇒K
ω()−−→K. We exhibit ñ, ψ

by case analysis on the first reduction ρ, P |O −→P ρ
′, P ′ |O′:

PARL The reduction step occurs within P : ρ, P α−→P ρ
′, P ′ andO = O′. ThenKρ,O =

Kρ′,O′ , ñ = ñ′, ψ = ψ′, and, using KSTEP, Kρ,O ] {ñ}, ρ ] {ñ}, P ⇒K Kρ,O ]
{ñ}, ρ ] {ñ}, P ′ψ

′

⇒K
ω()−−→K.

PARR The reduction step occurs within O. By further case analysis:
MATCH,MISMATCH,LETVAL,FORK, LETFUN, TYPE, SESSION In these cases,

ρ = ρ′, O = O′, Kρ,O = Kρ′,O′ , and no labeled transitions are needed.
APPLY O = R[lvo . . . vk], O′ = R[e{x0 = v0; . . . ;xk = vk}], and ρ = ρ′, where

l must be a pure function, and hence, e is a pure expression.
APPLY O = R[lv0 . . . vk], O′ = R[e{x0 = v0; . . . ;xk = vk}], and ρ = ρ′,

where l must be a pure function, and hence, e is a pure expression. Kρ′,O′

already includes the value v computed from the function application (ρ, e{x0 =
v0; . . . ;xk = vk} −→e

∗ ρ, v).Kρ,O contains l, v0, . . . , vk, hence by KAPPLY,
Kρ,O ] {ñ}, ρ ] {ñ}, P −→K Kρ′,O′ ] {ñ}, ρ′ ] {ñ}, P .
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FRESH ρ′ = ρ ] {n}, O = R[new()], and O′ = R[n]. Let ñ = ñ′ ] {n}, then
Kρ,O ] {ñ′, n} = Kρ,O′ ] {ñ′}, ρ ] {ñ′, n}, P ψ′

⇒K
ω()−−→K

COMMR,COMML In the non-session communication case, ρ = ρ′ and Kρ,O =
Kρ,O′ ; no labeled transitions are needed. If it is a session communication on
a session defined in ρl, againKρ,O = Kρ′,O′ and no transitions are needed. The
remaining cases are whenO = R[σ1e1] |R′[σ2e2] andO′ = R[σ′1e

′
1] |R′[σ′2e′2]

Then σ1, σ2, σ′1, and σ′2 are all included in both Kρ,O and Kρ′,O′ and again no
transitions are needed.

COMML O sends a message to P . If it is a channel communication c v, then both c
and v must be in Kρ,O; and using KRECV, Kρ,O ] {ñ}, ρ ] {ñ}, P

c v⇒K Kρ,O ]
{ñ}, ρ ] {ñ}, P ′ψ

′

⇒K
ω()−−→K.

If it is a session communication sg v, then O = R[σ(g(v), w)] and ρ, σ
gsg v−−→s

ρ′, σ′; using KRECVS, Kρ,O ] {ñ}, ρ ] {ñ}, P
sg v−−→K K

′, ρ′′, P ′
ψ′

⇒K
ω()−−→K.

COMMR P sends a message to O. If it is a channel communication cv, then c must
be in Kρ,O; and using KSEND, Kρ,O ] {ñ}, ρ ] {ñ}, P

c v⇒K Kρ,O ] {ñ, v}, ρ ]
{ñ}, P ′ψ

′

⇒K
ω()−−→K.

If it is a session communication sg v, then O = R[σ(w)] and ρ, σ
gsg v−−→s ρ

′, σ′;

using KSENDS, Kρ,O ] {ñ}, ρ ] {ñ}, P
sg v−−→K K

′, ρ′′, P ′
ψ′

⇒K
ω()−−→K. ut

E.7 Proof of Theorem 1

Auxiliary Lemma In the configuration L S̃ UO we have that the libraries L and the
session declarations S̃ reduce deterministically. Hence, for any U and O, there exists
ρLeS (defining functions, sessions and values), substitutions σ and σ• for values, the for-
warder process F and the cache processes C, s.t. ∅, L S̃ UO −→P

∗ ρLeS , Uσ |F |C |Oσ•.
Here ρLeS records the declared sessions, plus the functions and types declared in the
Crypto and Prins libraries as given in Appendix C, while σ records principals constants
prins and σ• records opponent accessible information: prins, safe, vkey, psend•, chans•,
and skeys•, plus any information bound by U . Also, F = forward () is the forwarder
process that receives messages from opponent code to be sent to compliant principals
and C represents the cache processes send cachea contenta (one per principal).

Similarly, for the implemented sessions MeS , we have the deterministic reductions
∅, L MeS UO′ −→P

∗ ρLM eS , Uσ |F |C |O′σ•. Here, in contrast to the session declara-
tions in ρLeS , the environment ρLM eS contains role functions and types defined by the
compiler, satisfying the relation: [[ρLeS ]]∅ = ρLM eS which holds at the beginning, when
no session has yet started, for the state empty T = ∅, that is, with empty cache, nonce,
path, and stuck (see Section 7).

We also know that initial user code is independent of the compilation: [[Uσ]]∅ = Uσ
In addition, we let K0 ]Kh denote the initial values K0 exported by L to opponent

code, i.e. prins, safe, vkey, psend•, chans•, and skeys•, plusKh that contains additional
nonces N and signing keys from safe principals.

We then obtain that for all fresh ñ: K0 ]Kh ]{ñ}, ρLeS , U is a valid configuration.
Since the values K0 ]Kh exported by the libraries are the same in both high and low
levels, modulo Kh, we get [[K0 ]Kh ] {ñ}]]∅ = [[K0 ]Kh]]∅ ] {ñ} = K0 ] {ñ}.

Gathering all of the above auxiliary results, we obtain the following lemma:
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Lemma 5. For the initial configuration L S̃ UO it holds:

∅, L S̃ UO −→P
∗ ρLeS , Uσ |F |C |Oσ• (4)

∅, L MeS UO′ −→P
∗ ρLM eS , Uσ |F |C |O′σ• (5)

[[ρLeS ]]∅ = ρLM eS (6)
[[Uσ]]∅ = Uσ (7)

K0 ]Kh ] {ñ}, ρLeS , U is a valid configuration (8)
[[K0 ]Kh ] {ñ}]]∅ = [[K0 ]Kh]]∅ ] {ñ} = K0 ] {ñ} (9)

Restatement of Theorem 1. If L MeS U O′ may fail in F for some O′ where ω does
not occur, then L S̃ U O may fail in F+S for some O where ω does not occur.

Proof. We prove the theorem using the above fact. Since L MeS U O′ fails, using
Lemma 5(5) we have that:

∅, L MeS U O′ −→P
∗ ρLM eS , Uσ |F |C |O′σ• −→P

∗ ω()−−→P

Let W be
K0 ] {ñ}, ρLM eS ] {ñ}, (Uσ |F |C)

SinceO′σ• does not contain ω, by Lemma 1(⇐) applied on ρ := ρLM eS ,P := (Uσ |F |C)

, O := O′σ•, there are fresh names ñ and ϕ s.t. ω 6∈ fn(ϕ) and W
ϕ·ω()⇒ K.

Let H be
K0 ]Kh ] {ñ}, ρLeS ] {ñ}, (Uσ |F |C)

We have that W is a valid implementation of H , that is, [[H]]∅ = W , by Lemma 5(7),

Lemma 5(8), and Lemma 5(9). By Theorem 2, there is W ◦, H◦,W ′′ s.t. W
ϕ·ω()⇒ K

W ◦ −→∗K W ′′, W ′ −→∗K W ′′ and H
ψ·ω()⇒ K H◦, with ϕ a translation of ψ. Hence,

ω 6∈ fn(ψ) neither. Expanding H and ignoring H◦, we have:

K0 ]Kh ] {ñ}, ρLeS ] {ñ}, Uσ |F |C ψ⇒K
ω()−−→K

Now, by Lemma 1(⇒), since ω 6∈ fn(ψ), there isO s.t. ρLeS , Uσ |F |C |Oσ• −→P
∗ ω()−−→P;

by Lemma 5(4), then:

∅, L S̃ U O −→P
∗−→P

∗ ω()−−→P

i.e., L S̃ U O fails, establishing the theorem. ut
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